Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation of the Prediction Algorithms for the Diagnosis of Hepatic Dysfunction

Yıl 2023, , 1 - 13, 31.12.2023
https://doi.org/10.17100/nevbiltek.1256873

Öz

Acute liver failure develops due to liver dysfunction. Early diagnosis is crucial for acute liver failure, which develops in a short time and causes serious damage to the body. Prediction processes based on machine learning methods can provide assistance to the physician in the decision-making process in order for the physician to make a diagnosis earlier. This study aims to evaluate three recently presented algorithms with high predictive capabilities that can assist the doctor in determining the existence of acute liver failure. In this study, the prediction performances of the XGBoost, LightGBM, and NGBoost methods are examined on publicly available data sets. In this research, two datasets are used; the first dataset was gathered in the “JPAC Health Diagnostic and Control Center” during the periods 2008–2009 and 2014–2015. The dataset includes a total of 8785 patients' information, and it mostly does not contain patients' information that "acute liver failure" was developing. Furthermore, a dataset collected by Iesu et al., containing information on patients who developed or did not develop "acute liver dysfunction," is used for the second evaluation. According to the information obtained from the data set, "acute liver dysfunction" developed in 208 patients, while this situation did not develop in 166 patients. It is observed within the scope of the evaluations that all three algorithms give high estimation results during the training and testing stages, and moreover, the LightGBM method achieves results in a shorter time while the NGBoost method provides results in a longer time compared to other algorithms.

Kaynakça

  • [1]. Arshad M. A., Murphy N., Bangash M. N.,” Acute liver failure” Clinical Medicine Journal, 20 (5), 505-508, 2020 DOI: 10.7861/clinmed.2020-0612
  • [2]. Kayaalp C., Ersan V., Yılmaz S., “Acute liver failure in Turkey: A systematic review” Turkish Journal of Gastroenterology, 25(1), 35 – 40, 2014 DOI: 10.5152/tjg.2014.4231
  • [3]. Sugawara K., Nakayama N., Mochida S., “Acute liver failure in Japan: definition, classification, and prediction of the outcome” Journal of Gastroenterology, 47, 849–861, 2012 Available from: https://doi.org/10.1007/s00535-012-0624-x
  • [4]. Saberi-Karimian M., Khorasanchi Z., Ghazizadeh H., Tayefi M., Saffar S., Ferns G. A., Ghayour-Mobarhan M.,” Potential value and impact of data mining and machine learning in clinical diagnostics” Critical Reviews in Clinical Laboratory Sciences, 58(4), 275-296, 2021 DOI: 10.1080/10408363.2020.1857681
  • [5]. Park D. J., Park M. W., Lee H., Kim Y. J., Kim Y., Park Y. H., “Development of machine learning model for diagnostic disease prediction based on laboratory tests” Scientific Reports, 11, 7567, 2021 Available from: https://doi.org/10.1038/s41598-021-87171-5
  • [6]. Mostafa F., Hasan E., Williamson M., Khan H., “Statistical machine learning approaches to liver disease prediction” Livers, 1(4), 294-312, 2021 Available from: https://doi.org/10.3390/livers1040023
  • [7]. Ahn J. C., Connell A., Simonetto D. A., Hughes C., Shah V. H., “Application of artificial intelligence for the diagnosis and treatment of liver diseases” Hepatology, 73(6), 2546-2563, 2021 Available from: https://doi.org/10.1002/hep.31603
  • [8]. Chen T., Guestrin C., “XGBoost: A scalable tree boosting system” Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, California, USA, 2016
  • [9]. Ke G., Meng Q., Finley T., Wang T., Chen W., Ma W., Ye Q., Liu T. Y., “LightGBM: A highly efficient gradient boosting decision tree” Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, California, USA, 2017
  • [10]. Duan T., Avati A., Ding D.Y., Thai K. K., Basu S., Ng A., Schuler A.,”NGBoost: Natural gradient boosting for probabilistic prediction“ Proceedings of the 37th International Conference on Machine Learning, Virtual Event, 2020
  • [11]. Abdurrahman G., Sintawati M., “Implementation of XGBoost for classification of parkinson’s disease” 3rd International Conference on Combinatorics, Graph Theory, and Network Topology, East Java, Indonesia, 2019
  • [12]. Paleczek A., Grochala D., Rydosz A., “Artificial breath classification using XGBoost algorithm for diabetes detection” Sensors, 21(12), 4187, 2021 Available from: https://doi.org/10.3390/s21124187
  • [13]. Aydin Z. E., Ozturk Z. K., “XGBoost feature selection on chronic kidney disease diagnosis” Proceedings of the IV International Conference on Data Science and Applications, Virtual Event, 2021
  • [14]. Wang L., Wang X., Chen A., Jin X., Che H., “Prediction of type 2 diabetes risk and its effect evaluation based on the XGBoost model” Healthcare, 8(3), 247, 2020 Available from: https://doi.org/10.3390/healthcare8030247
  • [15]. Ali N., Srivastava D., Tiwari A., Pandey A., Pandey A. K., Sahu A., "Predicting life expectancy of Hepatitis B patients using machine learning" IEEE International Conference on Distributed Computing and Electrical Circuits and Electronics, Ballari, India, 2022
  • [16]. Hou F., Cheng Z., Kang L., Zheng W., “Prediction of gestational diabetes based on LightGBM” Proceedings of the 2020 Conference on Artificial Intelligence and Healthcare, Taiyuan, China, 2020
  • [17]. Wang Y., Wang T., “Application of Improved LightGBM Model in Blood Glucose Prediction” Applied Sciences, 10(9), 3227, 2020 Available from: https://doi.org/10.3390/app10093227
  • [18]. Shobana G., Umamaheswari K., “Prediction of liver disease using gradient boost machine learning techniques with feature scaling” 5th International Conference on Computing Methodologies and Communication, Erode, India, 2021
  • [19]. Sinthuja U., Hatti V., Thavamani S., “Analysis and prediction of liver disease for the patients in India using various machine learning algorithms” International Conference on Advances in Data Computing, Communication and Security, Kurukshetra, India, 2021
  • [20]. Rufo D. D., Debelee T. G., Ibenthal A., Negera W. G., “Diagnosis of diabetes mellitus using gradient boosting Machine (LightGBM)” Diagnostics, 11(9), 1714, 2021 Available from: https://doi.org/10.3390/diagnostics11091714
  • [21]. Noh B., Park Y. M., Kwon Y., Choi C. I., Choi B. K., Seo K., Park Y. H., Yang K., Lee S., Ha T., Hyon Y., Yoon M., “Machine learning-based survival rate prediction of Korean hepatocellular carcinoma patients using multi-center data” BMC Gastroenterology, 22, 1-9, 2022 Available from: https://doi.org/10.1186/s12876-022-02182-4
  • [22]. Zhang D., Gong Y., "The comparison of LightGBM and XGBoost coupling factor analysis and prediagnosis of acute liver failure” IEEE Access, 8, 220990-221003, 2020 DOI: 10.1109/ACCESS.2020.3042848
  • [23]. Sengupta D., Mondal S., Basu S., De A. K., Nath S., Pandey A., “Classification of acute liver failure using machine learning algorithms” IEEE International Conference on Electronics, Computing and Communication Technologies, Bangalore, India, 2022
  • [24]. Kumar R., “Acute liver failure dataset”, Available from: https://www.kaggle.com/datasets/rahul121/acute-liver-failure [Accessed 20 December 2022]
  • [25]. Iesu E., Franchi F., Cavicchi F. Z., Pozzebon S., Fontana V., Mendoza M., Nobile L., Scolletta S, Vincent J. L., Creteur J., Taccone F. S., “Acute liver dysfunction after cardiac arrest” PLoS ONE, 13(11), e0206655, 2018 Available from: https://doi.org/10.1371/journal.pone.0206655
  • [26]. Lin J. L., Peng Z. Q., Lai R. K., “Improving pavement anomaly detection using backward feature elimination” 20th International Conference on Business Information Systems, Poznan, Poland, 2017
  • [27]. Misra P., Yadav A. S., “Improving the classification accuracy using recursive feature elimination with cross-validation” International Journal on Emerging Technologies, 11 (3), 659-665, 2020
  • [28]. Mustaqim A. Z., Adi S., Pristyanto Y., Astuti Y., “The effect of recursive feature elimination with cross-validation (RFECV) feature selection algorithm toward classifier performance on credit card fraud detection” International Conference on Artificial Intelligence and Computer Science Technology, Yogyakarta, Indonesia, 2021
  • [29]. Chang Y., Chen X., “Estimation of chronic illness severity based on machine learning methods” Wireless Communications and Mobile Computing, 2021, 1-13, 2021 Available from: https://doi.org/10.1155/2021/1999284
  • [30]. Kern C., Klausch T., Kreuter F., “Tree-based machine learning methods for survey research” Surv Res Methods, 13(1), 73-93, 2019
  • [31]. Sagi O., Rokach L., “Ensemble learning: A survey” WIREs Data Mining Knowl Discov, 8(4), 1-18, 2018 Available from: https://doi.org/10.1002/widm.1249
  • [32]. Mayr A., Binder H., Gefeller O., Schmid M., “The evolution of boosting algorithms. From machine learning to statistical modelling” Methods Inf Med, 53(6), 419-427, 2014
  • [33]. Friedman J. H., “Greedy function approximation: A gradient boosting machine” The Annals of Statistics, 29(5), 1189–1232, 2001
  • [34]. Bentéjac C., Csörgő A., Martínez-Muñoz G., “A comparative analysis of gradient boosting algorithms” Artificial Intelligence Review, 54, 1937–1967, 2021 Available from: https://doi.org/10.1007/s10462-020-09896-5
  • [35]. Kim C., Park T., “Predicting determinants of lifelong learning intention using gradient boosting machine (GBM) with grid search” Sustainability, 14(9), 5256, 2022 Available from: https://doi.org/10.3390/su14095256
  • [36]. Ma X., Sha J., Wang D., Yu Y., Yang Q., Niu X.,” Study on a prediction of P2P network loan default based on the machine learning LightGBM and XGboost algorithms according to different high dimensional data cleaning” Electronic Commerce Research and Applications, 31, 24-39, 2018 Available from: https://doi.org/10.1016/j.elerap.2018.08.002
  • [37]. Dalianis H., “Evaluation metrics and evaluation”, Clinical Text Mining, Springer, Cham, Switzerland, 2018 Available from: https://doi.org/10.1007/978-3-319-78503-5_6
  • [38]. Hussain S, Mustafa M. W., Al-Shqeerat K. H. A., Saeed F., Al-rimy B. A. S., “A novel feature-engineered–NGBoost machine-learning framework for fraud detection in electric power consumption data” Sensors, 21(24), 8423, 2021 Available from: https://doi.org/10.3390/s21248423
  • [39]. McNemar Q., “Note on the sampling error of the difference between correlated proportions or percentages” Psychometrika, 12(2), 153–157, 1947 Available from: https://doi.org/10.1007/BF02295996
  • [40]. Prokhorenkova L., Gusev G., Vorobev A., Dorogush A. V., Gulin A., “CatBoost: unbiased boosting with categorical features” NIPS'18: Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montréal, Canada, 2018
  • [41]. Han L., Yang T., Pu X., Sun L., Yu B., Xi J., “Alzheimer's disease classification using LightGBM and Euclidean distance map” IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference, Chongqing, China, 2021
  • [42]. Zheng P., Yu Z., Li L., Liu S., Lou Y., Hao X., Yu P., Lei M., Qi Q., Wang Z., Gao F., Zhang Y., Li Y., “Predicting blood concentration of tacrolimus in patients with autoimmune diseases using machine learning techniques based on real-world evidence” Front. Pharmacol, 12, 727245, 2021 DOI: 10.3389/fphar.2021.727245
  • [43]. Muzumdar P., Basyal G. P., Vyas P., “An empirical comparison of machine learning models for student’s mental health illness assessment” Asian Journal of Computer and Information Systems, 10(1), 1-10, 2022 Available from: https://www.ajouronline.com/index.php/AJCIS/article/view/6882
  • [44]. Kim E., Han K. S., Cheong T., Lee S. W., Eun J., Kim S. J., “Analysis on benefits and costs of machine learning-based early hospitalization prediction” IEEE Access, 10, 32479-32493, 2022 DOI: 10.1109/ACCESS.2022.3160742

Karaciğer Fonksiyon Bozukluğu Teşhisinde Tahmin Algoritmalarının Değerlendirilmesi

Yıl 2023, , 1 - 13, 31.12.2023
https://doi.org/10.17100/nevbiltek.1256873

Öz

Akut karaciğer yetmezliği, karaciğerdeki fonksiyon bozukluğuna bağlı olarak gelişir. Kısa sürede gelişen ve vücutta ciddi hasarlara sebep olan akut karaciğer yetmezliği için erken tanı büyük önem taşır. Hekimin daha erken tanı koyabilmesi açısından makine öğrenimi yöntemlerine dayalı tahmin işlemleri, hekime karar verme sürecinde yardım sağlayabilir. Bu çalışma, akut karaciğer yetmezliği varlığının tahmini için hekime yardımcı olabilecek, yakın zamanda sunulan ve yüksek tahmin kabiliyetlerine sahip üç algoritmanın değerlendirilmesini amaçlar. Çalışmada kamuya açık veri kümeleri üzerinde XGBoost, LightGBM ve NGBoost yöntemlerinin tahmin başarımları incelenir. Bu araştırmada iki veri kümesi kullanılır; ilk veri kümesi 2008–2009 ve 2014–2015 dönemlerinde “JPAC Health Diagnostic and Control” Merkezinde toplandı. Veri kümesinde, toplam 8785 hastanın bilgisi bulunur ve hastaların çoğunda "akut karaciğer yetmezliği" geliştiğine dair bilgi yer almıyor. Ayrıca ikinci değerlendirme için Iesu vd. tarafından toplanan ve "akut karaciğer fonksiyon bozukluğu" gelişen veya gelişmeyen hastalar hakkında bilgi içeren bir veri kümesi kullanılır. Veri kümesinden edinilen bilgiye göre, 208 hastada "akut karaciğer fonksiyon bozukluğu" gelişirken, 166 hastada bu durum gelişmemiştir. Eğitim ve test aşamalarında her üç algoritmanın yüksek tahmin sonuçları verdiği ve LightGBM yönteminin daha kısa sürede sonuca ulaştığı, NGBoost yönteminin ise diğer algoritmalara göre daha uzun sürede sonuç verdiği değerlendirmeler kapsamında gözlenmiştir.

Kaynakça

  • [1]. Arshad M. A., Murphy N., Bangash M. N.,” Acute liver failure” Clinical Medicine Journal, 20 (5), 505-508, 2020 DOI: 10.7861/clinmed.2020-0612
  • [2]. Kayaalp C., Ersan V., Yılmaz S., “Acute liver failure in Turkey: A systematic review” Turkish Journal of Gastroenterology, 25(1), 35 – 40, 2014 DOI: 10.5152/tjg.2014.4231
  • [3]. Sugawara K., Nakayama N., Mochida S., “Acute liver failure in Japan: definition, classification, and prediction of the outcome” Journal of Gastroenterology, 47, 849–861, 2012 Available from: https://doi.org/10.1007/s00535-012-0624-x
  • [4]. Saberi-Karimian M., Khorasanchi Z., Ghazizadeh H., Tayefi M., Saffar S., Ferns G. A., Ghayour-Mobarhan M.,” Potential value and impact of data mining and machine learning in clinical diagnostics” Critical Reviews in Clinical Laboratory Sciences, 58(4), 275-296, 2021 DOI: 10.1080/10408363.2020.1857681
  • [5]. Park D. J., Park M. W., Lee H., Kim Y. J., Kim Y., Park Y. H., “Development of machine learning model for diagnostic disease prediction based on laboratory tests” Scientific Reports, 11, 7567, 2021 Available from: https://doi.org/10.1038/s41598-021-87171-5
  • [6]. Mostafa F., Hasan E., Williamson M., Khan H., “Statistical machine learning approaches to liver disease prediction” Livers, 1(4), 294-312, 2021 Available from: https://doi.org/10.3390/livers1040023
  • [7]. Ahn J. C., Connell A., Simonetto D. A., Hughes C., Shah V. H., “Application of artificial intelligence for the diagnosis and treatment of liver diseases” Hepatology, 73(6), 2546-2563, 2021 Available from: https://doi.org/10.1002/hep.31603
  • [8]. Chen T., Guestrin C., “XGBoost: A scalable tree boosting system” Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, California, USA, 2016
  • [9]. Ke G., Meng Q., Finley T., Wang T., Chen W., Ma W., Ye Q., Liu T. Y., “LightGBM: A highly efficient gradient boosting decision tree” Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, California, USA, 2017
  • [10]. Duan T., Avati A., Ding D.Y., Thai K. K., Basu S., Ng A., Schuler A.,”NGBoost: Natural gradient boosting for probabilistic prediction“ Proceedings of the 37th International Conference on Machine Learning, Virtual Event, 2020
  • [11]. Abdurrahman G., Sintawati M., “Implementation of XGBoost for classification of parkinson’s disease” 3rd International Conference on Combinatorics, Graph Theory, and Network Topology, East Java, Indonesia, 2019
  • [12]. Paleczek A., Grochala D., Rydosz A., “Artificial breath classification using XGBoost algorithm for diabetes detection” Sensors, 21(12), 4187, 2021 Available from: https://doi.org/10.3390/s21124187
  • [13]. Aydin Z. E., Ozturk Z. K., “XGBoost feature selection on chronic kidney disease diagnosis” Proceedings of the IV International Conference on Data Science and Applications, Virtual Event, 2021
  • [14]. Wang L., Wang X., Chen A., Jin X., Che H., “Prediction of type 2 diabetes risk and its effect evaluation based on the XGBoost model” Healthcare, 8(3), 247, 2020 Available from: https://doi.org/10.3390/healthcare8030247
  • [15]. Ali N., Srivastava D., Tiwari A., Pandey A., Pandey A. K., Sahu A., "Predicting life expectancy of Hepatitis B patients using machine learning" IEEE International Conference on Distributed Computing and Electrical Circuits and Electronics, Ballari, India, 2022
  • [16]. Hou F., Cheng Z., Kang L., Zheng W., “Prediction of gestational diabetes based on LightGBM” Proceedings of the 2020 Conference on Artificial Intelligence and Healthcare, Taiyuan, China, 2020
  • [17]. Wang Y., Wang T., “Application of Improved LightGBM Model in Blood Glucose Prediction” Applied Sciences, 10(9), 3227, 2020 Available from: https://doi.org/10.3390/app10093227
  • [18]. Shobana G., Umamaheswari K., “Prediction of liver disease using gradient boost machine learning techniques with feature scaling” 5th International Conference on Computing Methodologies and Communication, Erode, India, 2021
  • [19]. Sinthuja U., Hatti V., Thavamani S., “Analysis and prediction of liver disease for the patients in India using various machine learning algorithms” International Conference on Advances in Data Computing, Communication and Security, Kurukshetra, India, 2021
  • [20]. Rufo D. D., Debelee T. G., Ibenthal A., Negera W. G., “Diagnosis of diabetes mellitus using gradient boosting Machine (LightGBM)” Diagnostics, 11(9), 1714, 2021 Available from: https://doi.org/10.3390/diagnostics11091714
  • [21]. Noh B., Park Y. M., Kwon Y., Choi C. I., Choi B. K., Seo K., Park Y. H., Yang K., Lee S., Ha T., Hyon Y., Yoon M., “Machine learning-based survival rate prediction of Korean hepatocellular carcinoma patients using multi-center data” BMC Gastroenterology, 22, 1-9, 2022 Available from: https://doi.org/10.1186/s12876-022-02182-4
  • [22]. Zhang D., Gong Y., "The comparison of LightGBM and XGBoost coupling factor analysis and prediagnosis of acute liver failure” IEEE Access, 8, 220990-221003, 2020 DOI: 10.1109/ACCESS.2020.3042848
  • [23]. Sengupta D., Mondal S., Basu S., De A. K., Nath S., Pandey A., “Classification of acute liver failure using machine learning algorithms” IEEE International Conference on Electronics, Computing and Communication Technologies, Bangalore, India, 2022
  • [24]. Kumar R., “Acute liver failure dataset”, Available from: https://www.kaggle.com/datasets/rahul121/acute-liver-failure [Accessed 20 December 2022]
  • [25]. Iesu E., Franchi F., Cavicchi F. Z., Pozzebon S., Fontana V., Mendoza M., Nobile L., Scolletta S, Vincent J. L., Creteur J., Taccone F. S., “Acute liver dysfunction after cardiac arrest” PLoS ONE, 13(11), e0206655, 2018 Available from: https://doi.org/10.1371/journal.pone.0206655
  • [26]. Lin J. L., Peng Z. Q., Lai R. K., “Improving pavement anomaly detection using backward feature elimination” 20th International Conference on Business Information Systems, Poznan, Poland, 2017
  • [27]. Misra P., Yadav A. S., “Improving the classification accuracy using recursive feature elimination with cross-validation” International Journal on Emerging Technologies, 11 (3), 659-665, 2020
  • [28]. Mustaqim A. Z., Adi S., Pristyanto Y., Astuti Y., “The effect of recursive feature elimination with cross-validation (RFECV) feature selection algorithm toward classifier performance on credit card fraud detection” International Conference on Artificial Intelligence and Computer Science Technology, Yogyakarta, Indonesia, 2021
  • [29]. Chang Y., Chen X., “Estimation of chronic illness severity based on machine learning methods” Wireless Communications and Mobile Computing, 2021, 1-13, 2021 Available from: https://doi.org/10.1155/2021/1999284
  • [30]. Kern C., Klausch T., Kreuter F., “Tree-based machine learning methods for survey research” Surv Res Methods, 13(1), 73-93, 2019
  • [31]. Sagi O., Rokach L., “Ensemble learning: A survey” WIREs Data Mining Knowl Discov, 8(4), 1-18, 2018 Available from: https://doi.org/10.1002/widm.1249
  • [32]. Mayr A., Binder H., Gefeller O., Schmid M., “The evolution of boosting algorithms. From machine learning to statistical modelling” Methods Inf Med, 53(6), 419-427, 2014
  • [33]. Friedman J. H., “Greedy function approximation: A gradient boosting machine” The Annals of Statistics, 29(5), 1189–1232, 2001
  • [34]. Bentéjac C., Csörgő A., Martínez-Muñoz G., “A comparative analysis of gradient boosting algorithms” Artificial Intelligence Review, 54, 1937–1967, 2021 Available from: https://doi.org/10.1007/s10462-020-09896-5
  • [35]. Kim C., Park T., “Predicting determinants of lifelong learning intention using gradient boosting machine (GBM) with grid search” Sustainability, 14(9), 5256, 2022 Available from: https://doi.org/10.3390/su14095256
  • [36]. Ma X., Sha J., Wang D., Yu Y., Yang Q., Niu X.,” Study on a prediction of P2P network loan default based on the machine learning LightGBM and XGboost algorithms according to different high dimensional data cleaning” Electronic Commerce Research and Applications, 31, 24-39, 2018 Available from: https://doi.org/10.1016/j.elerap.2018.08.002
  • [37]. Dalianis H., “Evaluation metrics and evaluation”, Clinical Text Mining, Springer, Cham, Switzerland, 2018 Available from: https://doi.org/10.1007/978-3-319-78503-5_6
  • [38]. Hussain S, Mustafa M. W., Al-Shqeerat K. H. A., Saeed F., Al-rimy B. A. S., “A novel feature-engineered–NGBoost machine-learning framework for fraud detection in electric power consumption data” Sensors, 21(24), 8423, 2021 Available from: https://doi.org/10.3390/s21248423
  • [39]. McNemar Q., “Note on the sampling error of the difference between correlated proportions or percentages” Psychometrika, 12(2), 153–157, 1947 Available from: https://doi.org/10.1007/BF02295996
  • [40]. Prokhorenkova L., Gusev G., Vorobev A., Dorogush A. V., Gulin A., “CatBoost: unbiased boosting with categorical features” NIPS'18: Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montréal, Canada, 2018
  • [41]. Han L., Yang T., Pu X., Sun L., Yu B., Xi J., “Alzheimer's disease classification using LightGBM and Euclidean distance map” IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference, Chongqing, China, 2021
  • [42]. Zheng P., Yu Z., Li L., Liu S., Lou Y., Hao X., Yu P., Lei M., Qi Q., Wang Z., Gao F., Zhang Y., Li Y., “Predicting blood concentration of tacrolimus in patients with autoimmune diseases using machine learning techniques based on real-world evidence” Front. Pharmacol, 12, 727245, 2021 DOI: 10.3389/fphar.2021.727245
  • [43]. Muzumdar P., Basyal G. P., Vyas P., “An empirical comparison of machine learning models for student’s mental health illness assessment” Asian Journal of Computer and Information Systems, 10(1), 1-10, 2022 Available from: https://www.ajouronline.com/index.php/AJCIS/article/view/6882
  • [44]. Kim E., Han K. S., Cheong T., Lee S. W., Eun J., Kim S. J., “Analysis on benefits and costs of machine learning-based early hospitalization prediction” IEEE Access, 10, 32479-32493, 2022 DOI: 10.1109/ACCESS.2022.3160742
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sistem Biyolojisi, Mühendislik
Bölüm Biyoloji
Yazarlar

Saadet Aytaç Arpacı 0000-0001-6226-4210

Songül Varlı 0000-0002-1786-6869

Yayımlanma Tarihi 31 Aralık 2023
Kabul Tarihi 29 Aralık 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Arpacı, S. A., & Varlı, S. (2023). Evaluation of the Prediction Algorithms for the Diagnosis of Hepatic Dysfunction. Nevşehir Bilim Ve Teknoloji Dergisi, 12(2), 1-13. https://doi.org/10.17100/nevbiltek.1256873
AMA Arpacı SA, Varlı S. Evaluation of the Prediction Algorithms for the Diagnosis of Hepatic Dysfunction. Nevşehir Bilim ve Teknoloji Dergisi. Aralık 2023;12(2):1-13. doi:10.17100/nevbiltek.1256873
Chicago Arpacı, Saadet Aytaç, ve Songül Varlı. “Evaluation of the Prediction Algorithms for the Diagnosis of Hepatic Dysfunction”. Nevşehir Bilim Ve Teknoloji Dergisi 12, sy. 2 (Aralık 2023): 1-13. https://doi.org/10.17100/nevbiltek.1256873.
EndNote Arpacı SA, Varlı S (01 Aralık 2023) Evaluation of the Prediction Algorithms for the Diagnosis of Hepatic Dysfunction. Nevşehir Bilim ve Teknoloji Dergisi 12 2 1–13.
IEEE S. A. Arpacı ve S. Varlı, “Evaluation of the Prediction Algorithms for the Diagnosis of Hepatic Dysfunction”, Nevşehir Bilim ve Teknoloji Dergisi, c. 12, sy. 2, ss. 1–13, 2023, doi: 10.17100/nevbiltek.1256873.
ISNAD Arpacı, Saadet Aytaç - Varlı, Songül. “Evaluation of the Prediction Algorithms for the Diagnosis of Hepatic Dysfunction”. Nevşehir Bilim ve Teknoloji Dergisi 12/2 (Aralık 2023), 1-13. https://doi.org/10.17100/nevbiltek.1256873.
JAMA Arpacı SA, Varlı S. Evaluation of the Prediction Algorithms for the Diagnosis of Hepatic Dysfunction. Nevşehir Bilim ve Teknoloji Dergisi. 2023;12:1–13.
MLA Arpacı, Saadet Aytaç ve Songül Varlı. “Evaluation of the Prediction Algorithms for the Diagnosis of Hepatic Dysfunction”. Nevşehir Bilim Ve Teknoloji Dergisi, c. 12, sy. 2, 2023, ss. 1-13, doi:10.17100/nevbiltek.1256873.
Vancouver Arpacı SA, Varlı S. Evaluation of the Prediction Algorithms for the Diagnosis of Hepatic Dysfunction. Nevşehir Bilim ve Teknoloji Dergisi. 2023;12(2):1-13.

Dergimizin tarandığı indeksler


12300          20980     2097822081