Acute liver failure develops due to liver dysfunction. Early diagnosis is crucial for acute liver failure, which develops in a short time and causes serious damage to the body. Prediction processes based on machine learning methods can provide assistance to the physician in the decision-making process in order for the physician to make a diagnosis earlier. This study aims to evaluate three recently presented algorithms with high predictive capabilities that can assist the doctor in determining the existence of acute liver failure. In this study, the prediction performances of the XGBoost, LightGBM, and NGBoost methods are examined on publicly available data sets. In this research, two datasets are used; the first dataset was gathered in the “JPAC Health Diagnostic and Control Center” during the periods 2008–2009 and 2014–2015. The dataset includes a total of 8785 patients' information, and it mostly does not contain patients' information that "acute liver failure" was developing. Furthermore, a dataset collected by Iesu et al., containing information on patients who developed or did not develop "acute liver dysfunction," is used for the second evaluation. According to the information obtained from the data set, "acute liver dysfunction" developed in 208 patients, while this situation did not develop in 166 patients. It is observed within the scope of the evaluations that all three algorithms give high estimation results during the training and testing stages, and moreover, the LightGBM method achieves results in a shorter time while the NGBoost method provides results in a longer time compared to other algorithms.
Akut karaciğer yetmezliği, karaciğerdeki fonksiyon bozukluğuna bağlı olarak gelişir. Kısa sürede gelişen ve vücutta ciddi hasarlara sebep olan akut karaciğer yetmezliği için erken tanı büyük önem taşır. Hekimin daha erken tanı koyabilmesi açısından makine öğrenimi yöntemlerine dayalı tahmin işlemleri, hekime karar verme sürecinde yardım sağlayabilir. Bu çalışma, akut karaciğer yetmezliği varlığının tahmini için hekime yardımcı olabilecek, yakın zamanda sunulan ve yüksek tahmin kabiliyetlerine sahip üç algoritmanın değerlendirilmesini amaçlar. Çalışmada kamuya açık veri kümeleri üzerinde XGBoost, LightGBM ve NGBoost yöntemlerinin tahmin başarımları incelenir. Bu araştırmada iki veri kümesi kullanılır; ilk veri kümesi 2008–2009 ve 2014–2015 dönemlerinde “JPAC Health Diagnostic and Control” Merkezinde toplandı. Veri kümesinde, toplam 8785 hastanın bilgisi bulunur ve hastaların çoğunda "akut karaciğer yetmezliği" geliştiğine dair bilgi yer almıyor. Ayrıca ikinci değerlendirme için Iesu vd. tarafından toplanan ve "akut karaciğer fonksiyon bozukluğu" gelişen veya gelişmeyen hastalar hakkında bilgi içeren bir veri kümesi kullanılır. Veri kümesinden edinilen bilgiye göre, 208 hastada "akut karaciğer fonksiyon bozukluğu" gelişirken, 166 hastada bu durum gelişmemiştir. Eğitim ve test aşamalarında her üç algoritmanın yüksek tahmin sonuçları verdiği ve LightGBM yönteminin daha kısa sürede sonuca ulaştığı, NGBoost yönteminin ise diğer algoritmalara göre daha uzun sürede sonuç verdiği değerlendirmeler kapsamında gözlenmiştir.
XGBoost LightGBM NGBoost akut karaciğer yetmezliği sınıflandırma
Birincil Dil | İngilizce |
---|---|
Konular | Sistem Biyolojisi, Mühendislik |
Bölüm | Biyoloji |
Yazarlar | |
Yayımlanma Tarihi | 31 Aralık 2023 |
Kabul Tarihi | 29 Aralık 2023 |
Yayımlandığı Sayı | Yıl 2023 |