The mathematical modeling of drug release systems
has a significant potential to facilitate product development and to help
understanding complex pharmaceutical dosage forms. The findingsof the modeling studiescan helpcontrolsome
of the parametersto obtainthe
desiredreleaseperformance.
In this article, we have introduced a Chebyshev collocation method, which is
based on collocation method for solving initial-boundary value problem
describing the Higuchi and power law.
Higuchi T., “Rate of release of medicaments from ointment bases containing drugs in suspension” J. Pharm. Sci., 50, 874–875, 1961
Pillai O., Dhanikula A. B., Panchagnula R.,”Drug delivery: an odyssey of 100 years” Current Opinion in Chemical Biology 5, 439–446, 2001
Cartensen T., J., “Modeling and data treatment in the pharmaceutical sciences” Technomic Publishing Co. Inc., Lancaster, Basel, 1996
Israel G., “In Modelli Matematici nelle Scienze Biologiche” P. ed. Edizioni Quattro Venti, Urbino, 1998
Peppas N. A., “Analysis of Fickian and non-Fickian drug release from polymers”, Pharm. Acta Helv., 60, 110–111, 1985
Ritger P. L., Peppas N. A., “A simple equation for description of solute release I. Fickian and non-Fickian release from nonswellable devices in the form of slabs spheres, cylinders or discs” J. Control. Release 5, 23–36, 1987.
Ritger P. L., Peppas N. A., “A simple equation for description of solute release II. Fickian and anomalous release from swellable devices” J. Control. Release, 5, 37–42, 1987
Siepmann J., Peppas N. A., “Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose” Adv. Drug Deliv. Rev., 48, 139–157, 2001.
Gao P., Nixon P. R., Skoug J. W., “Diffusion in HPMC gels. II. Prediction of drug release rates from hydrophilic matrix extended- release dosage forms” Pharm. Res. 12, 965–971, 1995
Peppas N. A., Gurny R., Doelker E., Buri P., “Modelling of drug diffusion through swellable polymeric systems” J. Membr. Sci., 7, 241–253, 1980.
Weibull W., “A statistical distribution of wide applicability” J. Appl. Mechan. 18, 293 –297, 19 Sahte P. M., Song Y. T., Shah V. P., “In-vitro dissolution profile comparison: statistics and analysis, model dependent approach” Pharm. Res. 13, 1799–1803, 1996
Kosmidis K., Argyrakis P., Macheras P., “A Reappraisal of drug release laws using Monte Corlo simulations: the prevalence of the Weibull function” Pharm Res. 20(7), 988-95, 2003
Gülsu M., Öztürk Y., Sezer M., “A new collocation method for solution of mixed linear integrodifferential-difference equations” Appl. Math. Comp., 216, 2183-2198, 2010
Gülsu M., Öztürk Y., Sezer M., “Numerical approach for solving Volterra integro differential equations with piecewise intervals” J. Avdan. Research Appl. Math. 4(1), 23-37, 2012
Gülsu M., Öztürk Y., Sezer M., “Approximate solution of the singular-perturbation problem on Chebyshev-Gauss grid” J. Avdan. Research Diff. Equa. 3(1), 1-13, 2012
Öztürk Y., Gülsu M., “Approximate solution of linear generalized pantograph equations with variable coefficients on Chebyshev-Gauss grid” J. Avdan. Research Scie. Comp. 4(1), 36-51, 2012
Gülsu M., Öztürk Y., Sezer M., “On the solution of the Abel equation of the second kind by the shifted Chebyshev polynomials” Appl. Math. Comp. 217, 4827-4833, 2011
Body J., P., “Chebyshev and fourier spectral methods” University of Michigan, New York, 2000 Mason J., M., Handscomb D., S., “Chebyshev polynomials” Chapman and Hall/CRC, New York, 2003
İlaç Salım Sistemleri için Modifiye Epidemiyolojik Modelin Sayısal Çözümü
İlaç salım sistemlerinin matematiksel modellemesi
ürün geliştirme ve karmaşıkfarmasötik dozaj formlarıanlama kolaylığı
sağlamada önemli bir potansiyele sahiptir. Modelleme
çalışmaları bulguları, bazı parametrelerin kontrolü, istenilen salım
performanslarının elde edilmesine yardımcı olmaktadır. Bu makalede Chebyshev
sıralama metodu ile taşıyıcı sistemlerden ilaç salım modeli Higuchi ve güç
modeli için nümerik sonuçlar verilmiştir.
Higuchi T., “Rate of release of medicaments from ointment bases containing drugs in suspension” J. Pharm. Sci., 50, 874–875, 1961
Pillai O., Dhanikula A. B., Panchagnula R.,”Drug delivery: an odyssey of 100 years” Current Opinion in Chemical Biology 5, 439–446, 2001
Cartensen T., J., “Modeling and data treatment in the pharmaceutical sciences” Technomic Publishing Co. Inc., Lancaster, Basel, 1996
Israel G., “In Modelli Matematici nelle Scienze Biologiche” P. ed. Edizioni Quattro Venti, Urbino, 1998
Peppas N. A., “Analysis of Fickian and non-Fickian drug release from polymers”, Pharm. Acta Helv., 60, 110–111, 1985
Ritger P. L., Peppas N. A., “A simple equation for description of solute release I. Fickian and non-Fickian release from nonswellable devices in the form of slabs spheres, cylinders or discs” J. Control. Release 5, 23–36, 1987.
Ritger P. L., Peppas N. A., “A simple equation for description of solute release II. Fickian and anomalous release from swellable devices” J. Control. Release, 5, 37–42, 1987
Siepmann J., Peppas N. A., “Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose” Adv. Drug Deliv. Rev., 48, 139–157, 2001.
Gao P., Nixon P. R., Skoug J. W., “Diffusion in HPMC gels. II. Prediction of drug release rates from hydrophilic matrix extended- release dosage forms” Pharm. Res. 12, 965–971, 1995
Peppas N. A., Gurny R., Doelker E., Buri P., “Modelling of drug diffusion through swellable polymeric systems” J. Membr. Sci., 7, 241–253, 1980.
Weibull W., “A statistical distribution of wide applicability” J. Appl. Mechan. 18, 293 –297, 19 Sahte P. M., Song Y. T., Shah V. P., “In-vitro dissolution profile comparison: statistics and analysis, model dependent approach” Pharm. Res. 13, 1799–1803, 1996
Kosmidis K., Argyrakis P., Macheras P., “A Reappraisal of drug release laws using Monte Corlo simulations: the prevalence of the Weibull function” Pharm Res. 20(7), 988-95, 2003
Gülsu M., Öztürk Y., Sezer M., “A new collocation method for solution of mixed linear integrodifferential-difference equations” Appl. Math. Comp., 216, 2183-2198, 2010
Gülsu M., Öztürk Y., Sezer M., “Numerical approach for solving Volterra integro differential equations with piecewise intervals” J. Avdan. Research Appl. Math. 4(1), 23-37, 2012
Gülsu M., Öztürk Y., Sezer M., “Approximate solution of the singular-perturbation problem on Chebyshev-Gauss grid” J. Avdan. Research Diff. Equa. 3(1), 1-13, 2012
Öztürk Y., Gülsu M., “Approximate solution of linear generalized pantograph equations with variable coefficients on Chebyshev-Gauss grid” J. Avdan. Research Scie. Comp. 4(1), 36-51, 2012
Gülsu M., Öztürk Y., Sezer M., “On the solution of the Abel equation of the second kind by the shifted Chebyshev polynomials” Appl. Math. Comp. 217, 4827-4833, 2011
Body J., P., “Chebyshev and fourier spectral methods” University of Michigan, New York, 2000 Mason J., M., Handscomb D., S., “Chebyshev polynomials” Chapman and Hall/CRC, New York, 2003
Gülsu, M., Öztürk, Y., & Gülsu, A. (2014). A Numerical Approach for Solving Modified Epidemiological Model for Drug Release Systems. Nevşehir Bilim Ve Teknoloji Dergisi, 2(2), 56-64. https://doi.org/10.17100/nevbiltek.210873
AMA
Gülsu M, Öztürk Y, Gülsu A. A Numerical Approach for Solving Modified Epidemiological Model for Drug Release Systems. Nevşehir Bilim ve Teknoloji Dergisi. Ocak 2014;2(2):56-64. doi:10.17100/nevbiltek.210873
Chicago
Gülsu, Mustafa, Yalçın Öztürk, ve Aydan Gülsu. “A Numerical Approach for Solving Modified Epidemiological Model for Drug Release Systems”. Nevşehir Bilim Ve Teknoloji Dergisi 2, sy. 2 (Ocak 2014): 56-64. https://doi.org/10.17100/nevbiltek.210873.
EndNote
Gülsu M, Öztürk Y, Gülsu A (01 Ocak 2014) A Numerical Approach for Solving Modified Epidemiological Model for Drug Release Systems. Nevşehir Bilim ve Teknoloji Dergisi 2 2 56–64.
IEEE
M. Gülsu, Y. Öztürk, ve A. Gülsu, “A Numerical Approach for Solving Modified Epidemiological Model for Drug Release Systems”, Nevşehir Bilim ve Teknoloji Dergisi, c. 2, sy. 2, ss. 56–64, 2014, doi: 10.17100/nevbiltek.210873.
ISNAD
Gülsu, Mustafa vd. “A Numerical Approach for Solving Modified Epidemiological Model for Drug Release Systems”. Nevşehir Bilim ve Teknoloji Dergisi 2/2 (Ocak 2014), 56-64. https://doi.org/10.17100/nevbiltek.210873.
JAMA
Gülsu M, Öztürk Y, Gülsu A. A Numerical Approach for Solving Modified Epidemiological Model for Drug Release Systems. Nevşehir Bilim ve Teknoloji Dergisi. 2014;2:56–64.
MLA
Gülsu, Mustafa vd. “A Numerical Approach for Solving Modified Epidemiological Model for Drug Release Systems”. Nevşehir Bilim Ve Teknoloji Dergisi, c. 2, sy. 2, 2014, ss. 56-64, doi:10.17100/nevbiltek.210873.
Vancouver
Gülsu M, Öztürk Y, Gülsu A. A Numerical Approach for Solving Modified Epidemiological Model for Drug Release Systems. Nevşehir Bilim ve Teknoloji Dergisi. 2014;2(2):56-64.