BibTex RIS Cite

Polimorfizm of the Genes Related to Cotton Fiber Elongation

Year 2014, Volume: 3 Issue: 1, 79 - 98, 07.07.2014
https://doi.org/10.17100/nevbiltek.210892

Abstract

Cotton isespecially grown for natural fibers which is an important raw material for textile industry. For this reason, fiber initiation and maturation steps are the subject of many researches. The goal of this study is to determine polymorphism of the genes related to cotton fiber elongation and distribution throughout the germplasm. Plant materials used in the experiment were total of 35 genotypes that were selected out of 247 according to length character of the fiber. The species in which cotton genotypes were belong are Gossypium barbadense L. (1-9), Gossypium hirsutum L. (10-25) and other diploids and tetraploids; Gossypium herbaceum L. (26), G.laxum Phillipe (27), G.yucatanense (28), G.marie galante(29), G.mustelinum Miers ex Watt(30), G.Darwinii Watt(31), G.nelsonii Fryx. (32), G.Stocksii Mast. ex Hook. (33), G.areysianum Defl. Hutch. (34) and G.bickii Prokh (35). Selected genotypes also include fiberless traits in Lifsiz (23), PI 528429 (24) and PI 528426 (25) genotypes. Genes related to fiber elongation were determined after a wide literature search and 4 primers were designed according to their homologies. After screening 35 genotypes with the primers, CesA gene had more polymorphism. Phenotyping resulted long and fine fibers for G.barbadense while medium length and quality fibers for G.hirsutum. Averaged fiber length was 25.25 mm and it ranged from 0 to 36 mm. PI 528896 (1) had the longest fiber length that ranged from 22-23 mm for most of the genotypes. With this, alleles * e-mail: gulayzulkadir@ksu.edu.tr (500-510 bp) with SNPs were determined and two of them caused amino acid change in the sequence. This change may be related to fiber length but detailed work is needed.

References

  • Jia S.R., ‘Transgenic Cotton’ Science Press, Beijing/New York, 2005.
  • Qin Y., Zhu Y., ‘A brief summary of major advances in cotton functional genomics and molecular breeding studies in china’ Chinese Science Bulletin, Vol.52, No.23, 3174-3178, 2007.
  • John M.E., Crown L.J., ‘gene expression in cotton (Gossypium hirsutum L.) Fiber: Cloning of the mrnas’ Proc Natl Acad Scienc., Usa 89: 5769–5773, 1992.
  • Tokumoto H., Wakabayashi K., Kamisaka S., Hoson T., ‘Changes in the sugar composition and molecular mass distribution of matrix polysaccharides during cotton fiber development’ Plant Cell Physiol., 43(4):411-418, 2002.
  • Lee J.J.,Woodward, A.W. Chen Z.J., ‘Gene expression changes and early events in cottton fibre development’ Annals of Botany, 100:1391-1401, 2007.
  • Basra A., Malik C.P., ‘Development of the Cotton Fiber’ International Review of Cytology 89: 65–113, 19 Paterson A.H., Saranga Y., Menz M., Jiang C.X., Wright R.J., ‘QTL analysis of genotype-environment interactions affecting cotton fiber quality’ Theor Appl Genetics. 106: 384–396. 2003.
  • Hulskamp M., ‘Plant trichomes: A model for cell differentiation’ Nature Reviews. Molecular Cell Biology 5: 471–480, 2004.
  • Hulskamp, M., Misera, S., Jurgens, G., ‘Genetic dissection of trichome cell development in Arabidopsis’ Cell, 76: 555–566, 1994. Hulskamp M., Schnittger A.T., ‘Spatial regulation of trichome formation in Arabidopsis thaliana’ Seminars in Cell and Developmental Biology, 9: 213–220, 1998. Marks Md., ‘Molecular genetic analysis of trichome development in Arabidopsis’ Annual Review of Plant Physiology and Plant Molecular Biology, 48: 137–163, 1997. Dubois, F., Brugie, R.N., Sangwan, R.S., Hirel, B., ‘localization of tobacco cytosolic glutamine synthetase enzymes and the corresponding transcripts shows organ- and cell-specific patterns of protein synthesis and gene expression’ Plant Molecular Biology, 31, 803–817, 1996. Ochs, G., Schock, G., Trischler, M., Kosemund, K., Wild, A., ‘complexity and expression of the glutamine synthetase multigene family in the amphidiploid crop Brassica napus’ Plant Molecular Biology, 39, 395–405, 1999. Yajun, H., Wangzhen, G., Xinlian, S., Tianzhen, Z., ‘molecular cloning and characterization of a cytosolic glutamine synthetase gene, a fiber strength-associated gene in cotton’ Planta, 228:473–483, 200
  • Ming, L., Zhong-Yi, X.,Yue-Hua, X., Xian-Bi, L., Jian-Ping, Z., Ming-Yu, H., Yan, P., ‘Cloning and expression analysis of a brassinosteroid biosynthetic enzyme gene, GhDWF1, from cotton (Gossypium hirsufurm L.)’ Agricultural Sciences in China, 6(11): 1297-1305, 2007. Suo, J., Liang, X., Pu, L., Zhang, Y., Xue, Y., ‘Identification of GhMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber ınitials and elongating fibers of cotton (Gossypium hirsutum L.)’ Biochim. Biophys. Acta, 1630: 25-34, 2003.
  • Preuss, M., Kovar, D., Lee, Y., Staıger, C., Delmer, D., Liu, B., ‘A plant-specific kinesin binds to actin microfilaments and ınteracts with cortical microtubules in cotton fibers’ Plant Physiol, 136:3945-3955, 200 Xu, T., Qu, Z., Yang, X., Qin, X., Xiong, J., Wang, Y., Ren, D., Liu, G., ‘A cotton kinesin GhKCH2 interacts with both microtubules and microfilaments’ Biochem J. doi,10.1042/BJ20082020, 2009.
  • Notle, K.D., Hendrix, D.L., Radin, J.W., Koch, K.E., ‘sucrose synthase localization during initiation of seed development and trichome differentiation in cotton ovules’ Plant Physiol, 109: 1285–1293, 1995. Zhu, Y.Q., Xu, K.X., Luo, B.,Wang, J.W., Chen, X.Y., ‘An ATP-Binding cassette transporter GhWBC1 from elongating cotton fibers’ Plant Physiology, Vol. 133, Pp. 580–588, 2003.
  • Kim, H.J., Triplett, B.A., ‘Characterization of GhRac1 GTPase expressed in developing cotton (Gossypium hirsutum L.) fibers’ Biochimica Et Biophysica Acta., 1679: 214– 221, 2004.
  • Richmond, T., Somerville, C., ‘The cellulose synthase superfamily’ Plant Physiology, 124, 495–498, 2000.
  • Richmond, T., Somerville, C., ‘Integrative approaches to determining Csl function’ Plant Molecular Biology, Reporter 47, 131–143, 2001.
  • Desprez, T., Vernhettes, S., Fagard, M., Refregier, G., Desnos, T., Aletti, E., Py, N., Pelletier, S., Hofte, H., ‘Resistance against herbicide isoxaben and cellulose deficiency caused by distinct mutations in same cellulose synthase ısoform CESA6’ Plant Physiology, 128, 482–490, 2002.
  • Doblin, Ms., Kurek, I., Jacob-Wilk, D., Delmer, Dp., ‘Cellulose biosynthesis in plants: from genes to rosettes’ Plant and Cell Physiology, 43, 1407–1420, 2002. Robert, S., Mouille, G., Hofte, H., ‘The mechanism and regulation of cellulose synthesis in primary walls: lessons from cellulose-deficient Arabidopsis mutants’ Cellulose 11, 351–364, 2004. Scheible, W., Eshed, R., Richmond, T., Delmer, D., Somerville, C., ‘Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in Arabidopsis Ixr1 mutants’ Proceedings of the National Academy of Sciences, USA 98, 10079–10084, 2001.
  • Taylor, N., Laurie, S., Turner, S., ‘Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis’ The Plant Cell, 12, 2529–2540, 2000. Taylor, N., Howells, R., Huttly, A., Vichers, K., Turner, S., ‘Interactions among three distinct CesA proteins essential for cellulose synthesis’ Proceedings of the National Academy of Sciences, USA 100, 1450–1455, 2003. Desprez, T., Juraniec, M., Crowell, E., Jouy, H., Pochylova, Z., Parcy, F., Hofte, H., Gonneau, M., Vernhettes, S., ‘Organization of cellulose synthase complexes ınvolved in primary cell wall synthesis in Arabidopsis thaliana’ Proceedings of the National Academy of Sciences, USA 39, 15572–15577, 200 Persson, S., Paredez, A., Carroll, A., Palsdottir, H., Doblin, M., Poindexter, P., Khitrov, N., Auer, M., Somerville, C., ‘Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis’ Proceedings of the National Academy of Sciences, USA 39, 15566– 15571, 2007. Lacape, J.M., Nguyen, T.B., Thibivilliers, S., Bojinov, B., Courtois, B., Cantrell, R.G., ‘A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum × Gossypium barbadense backcross population’ Genome, 46:612–626, 2003. Mei, M., Syed, N.H., Gao, W., Thaxton, P.M., Smith C.W., ‘Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium)’ Theor. Appl. Genet., 108: 280–291, 2004.
  • Zhang, T., Yuan, Y., Yu, J., Guo, W., Kohel, R.J., ‘Molecular tagging of a major QTL for fiber strength ın upland cotton and ıts marker-assisted selection’ Theor. Appl. Genet., 106:262–268, 2003.
  • Rong, J., Abbey, C., Bowers, J.E., Brubaker, C.L., Chang, C., Chee, P.W., ‘A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium)’ Genetics, 166:389–417, 2004.
  • Nguyen, T.B., Giband, M., Brottier, P., Risterucci, A.M., Lacape, J.M., ‘Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers’ Theor. Appl. Genet., 109:167– 175, 2004.
  • Han, Z., Guo, W., Song, X., Zhang, T., ‘Genetic mapping of EST-Derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton’ Mol. Genet. Genomics, 272(3):308–327, 2004.
  • Han, Z., Wang, C., Song, X., Guo, W., Gou, J., Li, C., ‘Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton’ Theor. Appl. Genet. 112:430–439, 200 Guo, W., Cai, C., Wang, C., Han, Z., Song, X., Wang, K., Niu, X., Wang, C., Lu, K., Shi, B., Zhang, T., ‘A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium’ Genetics 176: 527–541, 2007.
  • Yu, J., Yu, S., Lu, C., Wang, W., Fan, S., Song, M., Lin, Z., Zhang, X., Zhang, J., ‘high-density linkage map of cultivated allotetraploid cotton based on SSR, TRAP, SRAP and AFLP markers’ J. Integr. Plant Biol., 49(5): 716−724, 2007.
  • Wu, J., Gutierrez, O.A., Jenkis, J.N., Mccarty, J.C., Zhu, J., ‘Quantitative analysis and QTL mapping for agronomic and fiber traits in and R1 population of upland cotton’ Euphytica 165:213-245, 2009.
  • Lin, Z., He, D., Zhang, X., Nie, Y., Guo, X., Feng, C., ‘Linkage map construction and mapping QTL for cotton fibre quality using SRAP, SSR and RAPD’ Plant Breed., 124:180–187, 2005.
  • Jiang, C., Wright, R.J., El-Zik, K.M., Paterson, A.H., ‘Polyploid formation created unique avenues for response to selection in Gossypium (Cotton)’ Proc. Natl. Acad. Sci., Usa 95: 4419-4424, 1998.
  • Shappley, Z.W., Jenkins, J.N., Meredith, W.R., Mccarty, J.C., ‘An RFLP linkage map of upland cotton (Gossypium Hirsutum L.)’ Theor. Appl. Genet., 97: 756–761, 1998.
  • Ulloa, M., Meredith, W.R., ‘Genetic linkage map and QTL analysis of agronomic and fiber traits in an intraspecific population’ J. Cotton Sci., 4: 161–170, 2000.
  • Kohel, R.J., Yu, J., Park, Y.H., Lazo, G.R., ‘Molecular mapping and characterization of traits controlling fiber quality in cotton’ Euphytica, 121:163-172, 2001. Ulloa, M., Meredith, W.R., Shappley, Z.W., Kahler, A.L., ‘RFLP genetic linkage maps from four F2.3 populations and a joinmap of Gossypium hirsutum L.’ Theor. Appl. Genet., 104:200–208, 2002. Zhang, T., Yuan, Y., Yu, J., Guo, W., Kohel, R.J., ‘Molecular tagging of a major QTL for fiber strength ın upland cotton and its marker-assisted selection’ Theor. Appl. Genet., 106:262–268, 2003. Zhang, Z., Xiao, Y., Luo, M., Li, X., Luo, X., Hou, L., ‘Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.)’ Euphytica, 144(1):91–99, 200 Li, X. B., Fan, X. P., Wang, X. L., ‘The Cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation’ Plant Cell, 17: 859―875, 2005.
  • Park, Y.H., Alabady, M.S., Ulloa, M., Sickler, B., Wilkins, T.A., Yu, J., ‘Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred line cotton population’ Mol. Genet. Genomics, 274:428–441, 2005.
  • Shen, X., Guo, W., Zhu, X., Yuan, Y., Yu, J., Kohel, R., ‘Molecular mapping of QTLs for fiber qualities in three diverse lines in upland cotton using SSR markers’ Mol. Breed., 15: 169–181, 2005.
  • Shen, X., Zhang, T., Guo, W., Zhu, X., Zhang, X., ‘Mapping fiber and yield QTLs with main, epistatic, and QTL × Environment interaction effects in recombinant inbred lines of upland cotton’ Crop Sci., 61–66, 2006. Frelichowski, J.M., Palmer, M.B., Main, D., Tomkins, J.P., Cantrell, R.G., Stelly, D.M., ‘Cotton genome mapping with new microsatellites from Acala ‘Maxxa’ Bac-Ends’ Mol. Genet. Genomics, 275:479–491, 2006. Yu, J., Yu, S., Lu, C., Wang, W., Fan, S., Song, M., Lin, Z., Zhang, X., Zhang, J., ‘High-density linkage map of cultivated allotetraploid cotton based on SSR, TRAP, SRAP and AFLP markers’ J. Integr. Plant Biol., 49(5): 716−724, 2007. Wu, J., Gutierrez, O.A., Jenkis, J.N., Mccarty, J.C., Zhu, J., ‘Quantitative analysis and QTL mapping for agronomic and fiber traits in and R1 population of upland cotton’ Euphytica 165:213-245, 2009.
  • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, Dg., ‘The clustalx windows ınterface: Flexible strategies for multiple sequence alignment aided by quality analysis tools’ Nucleic Acids Res;24: 4876–82, 1997. Sas I. SAS/STAT software: Changes and enhancements through release 6.12. SAS Inst., Cary, NC., 19 Li, X. B., Fan, X. P., Wang, X. L., ‘The Cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation’ Plant Cell, 17: 859―875, 2005. Li, C.H., Zhu, Y.Q., Meng, Y.L., Wang, J.W., Xu, K.X., Zhang, T.Z., Chen, X.Y., ‘Isolation of genes preferentially expressed in cotton fibers by cDNA filter arrays and RT-PZR’ Plant Science, 163:11131120, 2002.
  • Betancur, L., Singh, B., Rapp, R. A., Wendel, J.F., Marks, D.M., Roberts, A.W., Haigler, C.H., ‘Phylogenetically distinct cellulose synthase genes support secondary wall thickening in Arabidopsis shoot trichomes and cotton fiber’ Journal of Integrative Plant Biology, 52 (2): 205–220, 2010. Lee, J.J., Hassan, O.S.S., Gao, W., Wang, J., Wei, E.N., Russel, J.K., ‘Developmental and gene expression analyses of a cotton naked seed mutant’ Planta, 223: 418–432, 2006. Xu, W., Wang, X., Wang, H., Li, X., ‘Molecular characterization and expression analysis of nine cotton GhEF1A genes encoding translation elongation factor 1A’ Gene, 389: 27–35, 2007. Endler, A., Persson, S., ‘Cellulose synthases and synthesis in Arabidopsis’ Molecular Plant, 199–211, 20
  • Notle, K.D., Hendrix, D.L., Radin, J.W., Koch, K.E., ‘Sucrose synthase localization during initiation of seed development and trichome differentiation in cotton ovules’ Plant Physiol, 109: 1285–1293, 1995. Mangeon, A., Junqueira, R.M., Sachetto-Martins, G., ‘Functional diversity of the plant glycine-rich proteins superfamily’ Plant Signal Behav., 5(2): 99–104, 2010.
  • Torii, K.U., ‘Leucine-rich repeat receptor kinases in plants: Structure, function, and signal transduction pathways’ International Review of Cytology, 234/1-46, 2004.
  • Droux, M., ‘Plant serine acetyltransferase: New insights for regulation of sulphur metabolism in plant cells’ Plant Physiology and Biochemistry, 41: 619–627, 2003.
  • Gulledge, J.B., Aggen, H.B., Huang, A.C., Chamberlin, N.-A.R., ‘The Microcystins and nodularins: Cyclic polypeptide inhibitors of PP1 and PP2A’ Curr Med Chem. 9(22):1991-2003.
  • Ashenberg, O., Rozen-Gagnon, K., Laub, M.T., Keating, A.E., ‘Determinants of homodimerization specificity in histidine kinases’ Journal of Molecular Biology, 413/ 222-235, 2011.
  • Slocum, R.D., ‘Genes, enzymes and regulation of arginine biosynthesis in plants’ Plant Physiology and Biochemistry, 43/ 729-745, 2005.

Pamukta Lif Uzamasıyla İlişkili Genlerin Polimorfizmi

Year 2014, Volume: 3 Issue: 1, 79 - 98, 07.07.2014
https://doi.org/10.17100/nevbiltek.210892

Abstract

Tekstil sanayinin önemli hammaddesi olan pamuk özellikle doğal lifleri için yetiştirilmektedir. Bu nedenle lif oluşumu ve olgunlaşma aşamaları birçok araştırmanın konusu olmuştur. Pamukta lif uzamasıyla ilgili genlerin, pamuk ıslah çalışmalarında sıkça kullanılan germplazm içerisinde dağılımlarını ve polimorfizm durumlarını incelemek amacıyla yapılan bu çalışmada farklı türlere ait toplam 247 adet genotip arasından liflerinin uzun, orta, kısa ve lifsizlik özellikleri dikkate alınarak seçilen 35 adet pamuk genotipi materyal olarak kullanılmıştır.

Seçilen pamuk genotipleri, Gossypium barbadense L.(1-9), Gossypium hirsutum L.(10-25) ve diğer diploid ve tetraploidler; Gossypium herbaceum L. (26), G.laxum Phillipe (27), G.yucatanense (28), G.marie galante (29), G.mustelinum Miers ex Watt (30), G.darwinii Watt (31), G.nelsonii Fryx. (32), G.Stocksii Mast. ex Hook. (33), G.areysianum Defl. Hutch. (34), G.bickii Prokh (35) türlerinden seçilmiştir.

Ayrıca, lifsiz (23), PI 528429 (24) ve PI 528426 (25) genotipleri lifsiz özellikte olup, seçilen yabani genotipler A, D, AD, C, E ve G genomlarını kapsamaktadır.

Lif uzamasında etkili olduğu düşünülen genler geniş bir literatür taraması yapılarak belirlenmiş ve bunların homolojilerine bakılarak 4 adet primer tasarlanmıştır. Bu primerlerin tamamı kullanılarak pamuk genotiplerinde amplifikasyon yapılmış ve bu sonuçlar doğrultusunda genotipler arasında önemli farklılık gösteren CesA genine odaklanılmıştır.

Fenotipleme neticesinde, G.barbadense genotipleri uzun ve kaliteli lifler, G.hirsutum genotipleri ise orta kalite ve orta uzunlukta lif üretmiştir.

Çalışmada, seçilen genotiplerde lif uzunluğunun ortalama değeri 25,25 mm olup, 0- 36 mm arasında değişmiştir. PI 528896 (1) genotipi 36 mm ile en uzun lif özelliğine sahiptir. Genotiplerin birçoğunun lif uzunluğu 22 - 33 mm arasında değişmiştir. Bununla birlikte, yaklaşık olarak 500-510 bp uzunluğundaki allellerin SNP taşıdığı ve 2 allelde bulunan bu SNP’lerin amino asit değişimine neden olduğu belirlenmiştir. Bu değişimlerin lif kalitesiyle ilişkili olabileceği ve daha detaylı çalışmaların yapılması gerektiği sonucuna varılmıştır.

Anahtar Kelime: Lif Kalitesi, Lif Uzunluğu, Gen, Polimorfizm, GhCesA, Pamuk

References

  • Jia S.R., ‘Transgenic Cotton’ Science Press, Beijing/New York, 2005.
  • Qin Y., Zhu Y., ‘A brief summary of major advances in cotton functional genomics and molecular breeding studies in china’ Chinese Science Bulletin, Vol.52, No.23, 3174-3178, 2007.
  • John M.E., Crown L.J., ‘gene expression in cotton (Gossypium hirsutum L.) Fiber: Cloning of the mrnas’ Proc Natl Acad Scienc., Usa 89: 5769–5773, 1992.
  • Tokumoto H., Wakabayashi K., Kamisaka S., Hoson T., ‘Changes in the sugar composition and molecular mass distribution of matrix polysaccharides during cotton fiber development’ Plant Cell Physiol., 43(4):411-418, 2002.
  • Lee J.J.,Woodward, A.W. Chen Z.J., ‘Gene expression changes and early events in cottton fibre development’ Annals of Botany, 100:1391-1401, 2007.
  • Basra A., Malik C.P., ‘Development of the Cotton Fiber’ International Review of Cytology 89: 65–113, 19 Paterson A.H., Saranga Y., Menz M., Jiang C.X., Wright R.J., ‘QTL analysis of genotype-environment interactions affecting cotton fiber quality’ Theor Appl Genetics. 106: 384–396. 2003.
  • Hulskamp M., ‘Plant trichomes: A model for cell differentiation’ Nature Reviews. Molecular Cell Biology 5: 471–480, 2004.
  • Hulskamp, M., Misera, S., Jurgens, G., ‘Genetic dissection of trichome cell development in Arabidopsis’ Cell, 76: 555–566, 1994. Hulskamp M., Schnittger A.T., ‘Spatial regulation of trichome formation in Arabidopsis thaliana’ Seminars in Cell and Developmental Biology, 9: 213–220, 1998. Marks Md., ‘Molecular genetic analysis of trichome development in Arabidopsis’ Annual Review of Plant Physiology and Plant Molecular Biology, 48: 137–163, 1997. Dubois, F., Brugie, R.N., Sangwan, R.S., Hirel, B., ‘localization of tobacco cytosolic glutamine synthetase enzymes and the corresponding transcripts shows organ- and cell-specific patterns of protein synthesis and gene expression’ Plant Molecular Biology, 31, 803–817, 1996. Ochs, G., Schock, G., Trischler, M., Kosemund, K., Wild, A., ‘complexity and expression of the glutamine synthetase multigene family in the amphidiploid crop Brassica napus’ Plant Molecular Biology, 39, 395–405, 1999. Yajun, H., Wangzhen, G., Xinlian, S., Tianzhen, Z., ‘molecular cloning and characterization of a cytosolic glutamine synthetase gene, a fiber strength-associated gene in cotton’ Planta, 228:473–483, 200
  • Ming, L., Zhong-Yi, X.,Yue-Hua, X., Xian-Bi, L., Jian-Ping, Z., Ming-Yu, H., Yan, P., ‘Cloning and expression analysis of a brassinosteroid biosynthetic enzyme gene, GhDWF1, from cotton (Gossypium hirsufurm L.)’ Agricultural Sciences in China, 6(11): 1297-1305, 2007. Suo, J., Liang, X., Pu, L., Zhang, Y., Xue, Y., ‘Identification of GhMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber ınitials and elongating fibers of cotton (Gossypium hirsutum L.)’ Biochim. Biophys. Acta, 1630: 25-34, 2003.
  • Preuss, M., Kovar, D., Lee, Y., Staıger, C., Delmer, D., Liu, B., ‘A plant-specific kinesin binds to actin microfilaments and ınteracts with cortical microtubules in cotton fibers’ Plant Physiol, 136:3945-3955, 200 Xu, T., Qu, Z., Yang, X., Qin, X., Xiong, J., Wang, Y., Ren, D., Liu, G., ‘A cotton kinesin GhKCH2 interacts with both microtubules and microfilaments’ Biochem J. doi,10.1042/BJ20082020, 2009.
  • Notle, K.D., Hendrix, D.L., Radin, J.W., Koch, K.E., ‘sucrose synthase localization during initiation of seed development and trichome differentiation in cotton ovules’ Plant Physiol, 109: 1285–1293, 1995. Zhu, Y.Q., Xu, K.X., Luo, B.,Wang, J.W., Chen, X.Y., ‘An ATP-Binding cassette transporter GhWBC1 from elongating cotton fibers’ Plant Physiology, Vol. 133, Pp. 580–588, 2003.
  • Kim, H.J., Triplett, B.A., ‘Characterization of GhRac1 GTPase expressed in developing cotton (Gossypium hirsutum L.) fibers’ Biochimica Et Biophysica Acta., 1679: 214– 221, 2004.
  • Richmond, T., Somerville, C., ‘The cellulose synthase superfamily’ Plant Physiology, 124, 495–498, 2000.
  • Richmond, T., Somerville, C., ‘Integrative approaches to determining Csl function’ Plant Molecular Biology, Reporter 47, 131–143, 2001.
  • Desprez, T., Vernhettes, S., Fagard, M., Refregier, G., Desnos, T., Aletti, E., Py, N., Pelletier, S., Hofte, H., ‘Resistance against herbicide isoxaben and cellulose deficiency caused by distinct mutations in same cellulose synthase ısoform CESA6’ Plant Physiology, 128, 482–490, 2002.
  • Doblin, Ms., Kurek, I., Jacob-Wilk, D., Delmer, Dp., ‘Cellulose biosynthesis in plants: from genes to rosettes’ Plant and Cell Physiology, 43, 1407–1420, 2002. Robert, S., Mouille, G., Hofte, H., ‘The mechanism and regulation of cellulose synthesis in primary walls: lessons from cellulose-deficient Arabidopsis mutants’ Cellulose 11, 351–364, 2004. Scheible, W., Eshed, R., Richmond, T., Delmer, D., Somerville, C., ‘Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in Arabidopsis Ixr1 mutants’ Proceedings of the National Academy of Sciences, USA 98, 10079–10084, 2001.
  • Taylor, N., Laurie, S., Turner, S., ‘Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis’ The Plant Cell, 12, 2529–2540, 2000. Taylor, N., Howells, R., Huttly, A., Vichers, K., Turner, S., ‘Interactions among three distinct CesA proteins essential for cellulose synthesis’ Proceedings of the National Academy of Sciences, USA 100, 1450–1455, 2003. Desprez, T., Juraniec, M., Crowell, E., Jouy, H., Pochylova, Z., Parcy, F., Hofte, H., Gonneau, M., Vernhettes, S., ‘Organization of cellulose synthase complexes ınvolved in primary cell wall synthesis in Arabidopsis thaliana’ Proceedings of the National Academy of Sciences, USA 39, 15572–15577, 200 Persson, S., Paredez, A., Carroll, A., Palsdottir, H., Doblin, M., Poindexter, P., Khitrov, N., Auer, M., Somerville, C., ‘Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis’ Proceedings of the National Academy of Sciences, USA 39, 15566– 15571, 2007. Lacape, J.M., Nguyen, T.B., Thibivilliers, S., Bojinov, B., Courtois, B., Cantrell, R.G., ‘A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum × Gossypium barbadense backcross population’ Genome, 46:612–626, 2003. Mei, M., Syed, N.H., Gao, W., Thaxton, P.M., Smith C.W., ‘Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium)’ Theor. Appl. Genet., 108: 280–291, 2004.
  • Zhang, T., Yuan, Y., Yu, J., Guo, W., Kohel, R.J., ‘Molecular tagging of a major QTL for fiber strength ın upland cotton and ıts marker-assisted selection’ Theor. Appl. Genet., 106:262–268, 2003.
  • Rong, J., Abbey, C., Bowers, J.E., Brubaker, C.L., Chang, C., Chee, P.W., ‘A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium)’ Genetics, 166:389–417, 2004.
  • Nguyen, T.B., Giband, M., Brottier, P., Risterucci, A.M., Lacape, J.M., ‘Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers’ Theor. Appl. Genet., 109:167– 175, 2004.
  • Han, Z., Guo, W., Song, X., Zhang, T., ‘Genetic mapping of EST-Derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton’ Mol. Genet. Genomics, 272(3):308–327, 2004.
  • Han, Z., Wang, C., Song, X., Guo, W., Gou, J., Li, C., ‘Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton’ Theor. Appl. Genet. 112:430–439, 200 Guo, W., Cai, C., Wang, C., Han, Z., Song, X., Wang, K., Niu, X., Wang, C., Lu, K., Shi, B., Zhang, T., ‘A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium’ Genetics 176: 527–541, 2007.
  • Yu, J., Yu, S., Lu, C., Wang, W., Fan, S., Song, M., Lin, Z., Zhang, X., Zhang, J., ‘high-density linkage map of cultivated allotetraploid cotton based on SSR, TRAP, SRAP and AFLP markers’ J. Integr. Plant Biol., 49(5): 716−724, 2007.
  • Wu, J., Gutierrez, O.A., Jenkis, J.N., Mccarty, J.C., Zhu, J., ‘Quantitative analysis and QTL mapping for agronomic and fiber traits in and R1 population of upland cotton’ Euphytica 165:213-245, 2009.
  • Lin, Z., He, D., Zhang, X., Nie, Y., Guo, X., Feng, C., ‘Linkage map construction and mapping QTL for cotton fibre quality using SRAP, SSR and RAPD’ Plant Breed., 124:180–187, 2005.
  • Jiang, C., Wright, R.J., El-Zik, K.M., Paterson, A.H., ‘Polyploid formation created unique avenues for response to selection in Gossypium (Cotton)’ Proc. Natl. Acad. Sci., Usa 95: 4419-4424, 1998.
  • Shappley, Z.W., Jenkins, J.N., Meredith, W.R., Mccarty, J.C., ‘An RFLP linkage map of upland cotton (Gossypium Hirsutum L.)’ Theor. Appl. Genet., 97: 756–761, 1998.
  • Ulloa, M., Meredith, W.R., ‘Genetic linkage map and QTL analysis of agronomic and fiber traits in an intraspecific population’ J. Cotton Sci., 4: 161–170, 2000.
  • Kohel, R.J., Yu, J., Park, Y.H., Lazo, G.R., ‘Molecular mapping and characterization of traits controlling fiber quality in cotton’ Euphytica, 121:163-172, 2001. Ulloa, M., Meredith, W.R., Shappley, Z.W., Kahler, A.L., ‘RFLP genetic linkage maps from four F2.3 populations and a joinmap of Gossypium hirsutum L.’ Theor. Appl. Genet., 104:200–208, 2002. Zhang, T., Yuan, Y., Yu, J., Guo, W., Kohel, R.J., ‘Molecular tagging of a major QTL for fiber strength ın upland cotton and its marker-assisted selection’ Theor. Appl. Genet., 106:262–268, 2003. Zhang, Z., Xiao, Y., Luo, M., Li, X., Luo, X., Hou, L., ‘Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.)’ Euphytica, 144(1):91–99, 200 Li, X. B., Fan, X. P., Wang, X. L., ‘The Cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation’ Plant Cell, 17: 859―875, 2005.
  • Park, Y.H., Alabady, M.S., Ulloa, M., Sickler, B., Wilkins, T.A., Yu, J., ‘Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred line cotton population’ Mol. Genet. Genomics, 274:428–441, 2005.
  • Shen, X., Guo, W., Zhu, X., Yuan, Y., Yu, J., Kohel, R., ‘Molecular mapping of QTLs for fiber qualities in three diverse lines in upland cotton using SSR markers’ Mol. Breed., 15: 169–181, 2005.
  • Shen, X., Zhang, T., Guo, W., Zhu, X., Zhang, X., ‘Mapping fiber and yield QTLs with main, epistatic, and QTL × Environment interaction effects in recombinant inbred lines of upland cotton’ Crop Sci., 61–66, 2006. Frelichowski, J.M., Palmer, M.B., Main, D., Tomkins, J.P., Cantrell, R.G., Stelly, D.M., ‘Cotton genome mapping with new microsatellites from Acala ‘Maxxa’ Bac-Ends’ Mol. Genet. Genomics, 275:479–491, 2006. Yu, J., Yu, S., Lu, C., Wang, W., Fan, S., Song, M., Lin, Z., Zhang, X., Zhang, J., ‘High-density linkage map of cultivated allotetraploid cotton based on SSR, TRAP, SRAP and AFLP markers’ J. Integr. Plant Biol., 49(5): 716−724, 2007. Wu, J., Gutierrez, O.A., Jenkis, J.N., Mccarty, J.C., Zhu, J., ‘Quantitative analysis and QTL mapping for agronomic and fiber traits in and R1 population of upland cotton’ Euphytica 165:213-245, 2009.
  • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, Dg., ‘The clustalx windows ınterface: Flexible strategies for multiple sequence alignment aided by quality analysis tools’ Nucleic Acids Res;24: 4876–82, 1997. Sas I. SAS/STAT software: Changes and enhancements through release 6.12. SAS Inst., Cary, NC., 19 Li, X. B., Fan, X. P., Wang, X. L., ‘The Cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation’ Plant Cell, 17: 859―875, 2005. Li, C.H., Zhu, Y.Q., Meng, Y.L., Wang, J.W., Xu, K.X., Zhang, T.Z., Chen, X.Y., ‘Isolation of genes preferentially expressed in cotton fibers by cDNA filter arrays and RT-PZR’ Plant Science, 163:11131120, 2002.
  • Betancur, L., Singh, B., Rapp, R. A., Wendel, J.F., Marks, D.M., Roberts, A.W., Haigler, C.H., ‘Phylogenetically distinct cellulose synthase genes support secondary wall thickening in Arabidopsis shoot trichomes and cotton fiber’ Journal of Integrative Plant Biology, 52 (2): 205–220, 2010. Lee, J.J., Hassan, O.S.S., Gao, W., Wang, J., Wei, E.N., Russel, J.K., ‘Developmental and gene expression analyses of a cotton naked seed mutant’ Planta, 223: 418–432, 2006. Xu, W., Wang, X., Wang, H., Li, X., ‘Molecular characterization and expression analysis of nine cotton GhEF1A genes encoding translation elongation factor 1A’ Gene, 389: 27–35, 2007. Endler, A., Persson, S., ‘Cellulose synthases and synthesis in Arabidopsis’ Molecular Plant, 199–211, 20
  • Notle, K.D., Hendrix, D.L., Radin, J.W., Koch, K.E., ‘Sucrose synthase localization during initiation of seed development and trichome differentiation in cotton ovules’ Plant Physiol, 109: 1285–1293, 1995. Mangeon, A., Junqueira, R.M., Sachetto-Martins, G., ‘Functional diversity of the plant glycine-rich proteins superfamily’ Plant Signal Behav., 5(2): 99–104, 2010.
  • Torii, K.U., ‘Leucine-rich repeat receptor kinases in plants: Structure, function, and signal transduction pathways’ International Review of Cytology, 234/1-46, 2004.
  • Droux, M., ‘Plant serine acetyltransferase: New insights for regulation of sulphur metabolism in plant cells’ Plant Physiology and Biochemistry, 41: 619–627, 2003.
  • Gulledge, J.B., Aggen, H.B., Huang, A.C., Chamberlin, N.-A.R., ‘The Microcystins and nodularins: Cyclic polypeptide inhibitors of PP1 and PP2A’ Curr Med Chem. 9(22):1991-2003.
  • Ashenberg, O., Rozen-Gagnon, K., Laub, M.T., Keating, A.E., ‘Determinants of homodimerization specificity in histidine kinases’ Journal of Molecular Biology, 413/ 222-235, 2011.
  • Slocum, R.D., ‘Genes, enzymes and regulation of arginine biosynthesis in plants’ Plant Physiology and Biochemistry, 43/ 729-745, 2005.
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Diğer Bölümler
Authors

Gülay Zulkadir

Publication Date July 7, 2014
Published in Issue Year 2014 Volume: 3 Issue: 1

Cite

APA Zulkadir, G. (2014). Pamukta Lif Uzamasıyla İlişkili Genlerin Polimorfizmi. Nevşehir Bilim Ve Teknoloji Dergisi, 3(1), 79-98. https://doi.org/10.17100/nevbiltek.210892
AMA Zulkadir G. Pamukta Lif Uzamasıyla İlişkili Genlerin Polimorfizmi. Nevşehir Bilim ve Teknoloji Dergisi. July 2014;3(1):79-98. doi:10.17100/nevbiltek.210892
Chicago Zulkadir, Gülay. “Pamukta Lif Uzamasıyla İlişkili Genlerin Polimorfizmi”. Nevşehir Bilim Ve Teknoloji Dergisi 3, no. 1 (July 2014): 79-98. https://doi.org/10.17100/nevbiltek.210892.
EndNote Zulkadir G (July 1, 2014) Pamukta Lif Uzamasıyla İlişkili Genlerin Polimorfizmi. Nevşehir Bilim ve Teknoloji Dergisi 3 1 79–98.
IEEE G. Zulkadir, “Pamukta Lif Uzamasıyla İlişkili Genlerin Polimorfizmi”, Nevşehir Bilim ve Teknoloji Dergisi, vol. 3, no. 1, pp. 79–98, 2014, doi: 10.17100/nevbiltek.210892.
ISNAD Zulkadir, Gülay. “Pamukta Lif Uzamasıyla İlişkili Genlerin Polimorfizmi”. Nevşehir Bilim ve Teknoloji Dergisi 3/1 (July 2014), 79-98. https://doi.org/10.17100/nevbiltek.210892.
JAMA Zulkadir G. Pamukta Lif Uzamasıyla İlişkili Genlerin Polimorfizmi. Nevşehir Bilim ve Teknoloji Dergisi. 2014;3:79–98.
MLA Zulkadir, Gülay. “Pamukta Lif Uzamasıyla İlişkili Genlerin Polimorfizmi”. Nevşehir Bilim Ve Teknoloji Dergisi, vol. 3, no. 1, 2014, pp. 79-98, doi:10.17100/nevbiltek.210892.
Vancouver Zulkadir G. Pamukta Lif Uzamasıyla İlişkili Genlerin Polimorfizmi. Nevşehir Bilim ve Teknoloji Dergisi. 2014;3(1):79-98.

Dergimizin tarandığı indeksler


12300          20980     2097822081