Review
BibTex RIS Cite

Bitki Patojeni Virüslerin Nanoteknolojide Kullanımı

Year 2017, Volume: 6 Issue: 2, 594 - 604, 30.12.2017
https://doi.org/10.17100/nevbiltek.335788

Abstract

Bitki virüsleri nanobiyoteknolojide konukçularında çok miktarda
antijenik materyal üretmeleri nedeni ile sıklıkla kullanılmaktadır. Bitki
virüslerinin şablon olarak kullanıldığı biyomateryaller, biyonanobilim
araştırmalarının bir alt alanında, nanoölçek düzeyinde cihazların üretiminde ya
da yöntemlerin hazırlanmasında kullanılmaktadır. Bitki patojeni virüslerden,
ayrıca, viral nanopartikül olarak tıpta yararlanılmakta, biyokatalizör olarak
kullanılmakta, tarımda bitki patojenlerinin kontrolünde de yararlanılmaktadır.
Bu makalede bitki virüslerinden nanobiyoteknolojide yararlanma olanakları derlenmiştir. 

References

  • 1. Evans,, D.J. (2008). The bionanoscience of plant viruses: templates and synthons for new materials. United Kingdom. Journal of Materials. 18, 3746-3754.
  • 2. Wellink, J. (1998) From Virus Isolation to Transgenic Resistance. Methods in Molecular Biology. 81, 205–209.
  • 3. Brumfield, S., Willits, D., Tang, L., Johnson, J. E., Douglas, T. and Young, M. (2004). Heterologous expression of the modified coat protein of Cowpea chlorotic mottle bromovirus results in the assembly of protein cages with altered architectures and function. J. Gen. Virol.85, 1049–1053.
  • 4. Lucas, R. W., Larson, S. B. and McPherson, A. (2002). The crystallographic structure of brome mosaic virus. J. Mol. Biol.,317, 95–108.
  • 5. Speir, J. A., Munshi, S., Wang, G., Baker, T. S. and Johnson, J. E. (1995). Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. Structure. 3, 63–78.
  • 6. Smith TJ, Chase E, Schmidt T, Perry KL. (2000). The structure of cucumber mosaic virus and comparison to cowpea chlorotic mottle virus. J Virol.,74(16):7578-86. 7. Zhao, X., Fox, J. M., Olson, N. H., Baker, T. S. and Young, M. J.(1995). Virion swelling is not required for cotranslational disassembly of cowpea chlorotic mottle virus in vitro. Virology, 207, 486–494.
  • 8. Cuillel, M., Berthet-Colominas, C., Krop, B., Tardieu, A., Vachette, P. and Jacrot, B. (1983). J. Mol. Biol.164, 645–650.
  • 9. Schneemann, A. and Young, M. J. (2003). Viral assembly using heterologous expression systems and cell extracts. Adv. Protein Chem. 64, 1–36.
  • 10. Liepold, L. O., Revis, J., Allen, M., Oltrogge, L., Young M., and Douglas, T. (2005). Structural transitions in Cowpea chlorotic mottle virus (CCMV).Phys. Biol. 2, S166–172.
  • 11. Sit, T. L., Vaewhongs, A. A. and Lommel, S. A. (1998). RNA-mediated trans-activation of transcription from a viral RNA. Science. 281, 829–832 12. Lvov, Y., Haas, H., Decher, G., Möhwald, H., Mikhailov, A., Mtchedlishvily, B., Morgunova, E., and Vainshtein, B. (1994). Successive deposition of alternate layers of polyelectrolyds and a charged virus. Langmuir. 10, 4232–4236.
  • 13. Canady M. A., Larson, S. B., Day, J. and McPherson, A. (1996). Crystal structure of turnip yellow mosaic virus. Nat. Struct. Biol. 3, 771–781.
  • 14. Lin, T. and Johnson, J. E. ( 2003) Structures of picorna-like plant viruses: implications and applications. Adv. Virus Res. 62, 167–239.
  • 15. Lin, T., Chen, Z., Usha, R., Stauffacher, C. V., Dai, J. B., Schmidt, T. and Johnson, J.E. (1999). The refined crystal structure of cowpea mosaic virus at 2.8 A resolution. Virology. 265, 20–34.
  • 16. Caspar, D. L. D. (1963) Assembly and Stability of the Tobacco Mosiac Virus Particle. Adv. in Protein Chemistry, 18, 37-121.
  • 17. Gillitzer, E., Willits, D., Young, M. and Douglas,T. ( 2002) Chemical modification of a viral cage for multivalent presentation. Chem. Commun., 2002, 2390–2391. 18. Yıldız, İ., Shukla, S., Steinmetz, N.F. (2011). Applications of viral nanoparticles in medicine. Curr Opin Biotechnol. 22, 901-908.
  • 19. Wang, Q., Lin, T., Tang, L., Johnson, J.E. and Finn, M. G. ( 2002). Icosahedral virus particles as addressable nanoscale building blocks. Angew. Chem., Int. Ed. 41, 459–462
  • 20. Russell, J. T., Lin, Y., Böker, A., Su, L., Carl, P., et.al. ( 2005). Self-assembly and cross-linking of bionanoparticles at liquid-liquid interfaces. Angew. Chem., Int. Ed. 44, 2420–2426.
  • 21. Kuncicky, D. M., Naik, R. R. and Velev, O. D. (2006). Rapid Deposition and Long-Range Alignment of Nanocoatings and Arrays of Electrically Conductive Wires from Tobacco Mosaic Virus. Small. 2, 1462–1466.
  • 22. Klem, M. T., Willits, D., Young, M. and Douglas, T. ( 2003). 2-D Array Formation of Genetically Engineered Viral Cages on Au Surfaces and Imaging by Atomic Force Microscopy. J. Am. Chem. Soc. 125, 10806–10807.
  • 23. Smith, J. C., Lee, K.-B., Wang, Q., Finn, M. G., Johnson, J. E., Mrksich, M. and Mirkin, C. A. (2003). Nanopatterning the Chemospecific Immobilization of Cowpea Mosaic Virus Capsid. Nano Lett. 3, 883–886.
  • 24. Cheung, C. L., Camarero, J. A., Woods, B. W., Li, T., Johnson, J. E. and De Yoreo, J. J. (2003). Fabrication of assembled virus nanostructures on templates of chemoselective linkers formed by scanning probe nanolithography. J.Am. Chem. Soc. 125, 6848–6849. 25. Steinmetz, N. F., Lomonossoff, G. P. and Evans, D. J. (2006). Cowpea mosaic virus for material fabrication: addressable carboxylate groups on a programmable nanoscaffold. Langmuir. 22, 10032–10037.
  • 26. Shenton W., Douglas, T., Young, M., Stubbs, G. and Mann, S. (1999). Inorganic–Organic Nanotube Composites from Template Mineralization of Tobacco Mosaic Virus. Adv. Mater. 11, 253–256.
  • 27. Balci, S., A. M. Bittner, K. Hahn, C. Scheu, M. Knez, A. Kadri, C. Wege, H. Jeske and K. Kern. (2006). Copper nanowires within the central channel of tobacco mosaic virus paricles. Electrochim. Acta, 51, 6251–6357.
  • 28. Dujardin, E., C. Peet, G. Stubbs, J. N. Culver and S. Mann. (2003). Organization of Metallic Nanoparticles Using Tobacco Mosaic Virus Templates. Nano Lett., 3, 413–417.
  • 29. Knez, M., A. M. Bittner, F. Boes, C. Wege, H. Jeske, E. Maiß and K. Kern. (2003). Biotemplate Synthesis of 3-nm Nickel and Cobalt Nanowires. Nano Lett., 3, 1079–1082.
  • 30. Knez, M., A. Kadri, C. Wege, U. Gosele, H. Jeske and K. Nielsch. (2006) Atomic Layer Deposition on Biological Macromolecules:  Metal Oxide Coating of Tobacco Mosaic Virus and Ferritin. Nano Lett., 6, 1172–1177.
  • 31. Knez, M., M. Sumser, A. M. Bittner, C. Wege, H. Jeske, S. Kooi, M. Burghard and K. Kern. (2002) Electrochemical modification of individual nano-objects. J. Electroanal. Chem.,522, 70–74.
  • 32. Knez, M., M. Sumser, A. M. Bittner, C. Wege, H. Jeske, T. P. Martin and K. Kern. (2004). Spatially selective nucleation of metal clusters on the tobacco mosaic virus. Adv. Funct. Mater, 14, 116–124.
  • 33. Lee, S. Y, J. Choi, E. Royston, D. B. Janes, J. N. Culver and M. T. Harris. (2006). Deposition of platinum clusters on surface-modified tobacco mosaic virus. J. Nanosci. Nanotechnol., 6, 974–981.
  • 34. Lee S. Y, E. Royston, J. N. Culver and M. T. Harris. (2005). Improved metal cluster deposition on a genetically engineered tobacco mosaic template. Nanotechnology, 16, 435–441.
  • 35. Royston, E., S. Y. Lee, J. N. Culver and M. T. Harris. (2006). Characterization of silica-coated tobacco mosaic virus. J. Colloid Interface Sci., 298, 706–712. 36. Fujikawa, S. and T. Kunitake. (2003). Surface Fabrication of Hollow Nanoarchitectures of Ultrathin Titania Layers from Assembled Latex Particles and Tobacco Mosaic Viruses as Templates. Langmuir, 19, 6545–6552.
  • 37. Tsukamoto, R., M. Muraoka, M. Seki, H. Tabata and I. Yamashita. (2007). Synthesis of CoPt and FePt3 nanovires using the central channel of tobacco mosaic virus as a biotemplate. Chem. Mater.,19, 2389–2391.
  • 38. Tseng, R. J., C. Tsai, L. Ma, J. Ouyang, C. S. Ozkan and Y. Yang. (2006). Digital memory device based on tobacco mosaic virus conjugated with nanoparticles. Nat. Nanotechnol., 1, 72–75.
  • 39. Blum, A. S., C. M. Soto, C. D. Wilson, T. L. Brower, S. K. Pollack, T. L. et.al. (2005). An engineered virus as a scaffold for three-dimensional self-assembly on the nanoscale. Small, 1, 702–706.
  • 40. Peek, L.J., Middaugh, C.R., Berkland, C. (2008). Nanotecnology in vaccine delivery. Adv Drug Rev. 60, 915-928.
  • 41. McAleer WJ, Markus HZ, Wampler DE, Buynak EB, Miller WJ, Weibel RE, McLean AA, Hilleman MR. (1984). Vaccine against human hepatitis B virus prepared from antigen derived from human hepatoma cells in culture. Proc Soc Exp Biol Med., 175(3):314-9.
  • 42. Villa, L.L., Costa, R.L.R.,Petta, C.A., Andrade, R.P. Ault, K.A. et al. (2005). Prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in young women: a randomised double-blind placebo-controlled multicentre phase II efficacy trial. The Lancet Oncology, Volume 6, Issue 5, Pages 271–278.
  • 43. Edelstein,M.L., Abedi., M.R., Vixon, R.M., Edelstein, M. (2004). Gene therapy clinical trials worldwide 1989–2004—an overview. The Journal of Gene Medicine. Volume 6, Issue 6, Pages 597–602.
  • 44. Anonymous.,(2016).http://licensing.research.ncsu.edu/technologies/12018_plant-virus-and-non-woven-fiber-nanotechnology-delivery-system-for-agricultural-applications) (online access 29 nisan 2016).
  • 45. Ren, Y. And Chan L.W.U. (2007). Application of HCRSV protein cage for anticancer drug delivery. PhD thesis, Depatrtment of Pharmacy, National University of Singapore.
  • 46. Loo L, Guenther, RH, Lommel, SA.,Franzen S. (2007). Encapsidation of nanoparticles by red clover necrotic mosaic virus.J Am Chem Soc. 129(36):11111-7.
  • 47. Acosta-Ramirez E, Perez-Flores R, Majeau N, Pastelin-Palacios R, Gil-Cruz C. et al. (2008). Translating innate response into long-lasting antibody response by the intrinsic antigen-adjuvant properties of papaya mosaic virus. Immunology., 124(2):186–197.
  • 48. Brown WL, Mastico RA, Wu M, Heal KG, Adams CJ, et.al.(2002). RNA bacteriophage capsid-mediated drug delivery and epitope presentation. Intervirology.,45(4–6):371–380.Targeted drug-delivery using VNPs.]
  • 49. Steinmetz NF, Manchester M. (2009). PEGylated viral nanoparticles for biomedicine. the impact of PEG chain length on VNP cell interactions in vitro and ex vivo. Biomacromolecules.,10(4):784–792.
  • 50. Suci PA, Varpness Z, Gillitzer E, Douglas T, Young M. (2007). Targeting and photodynamic killing of a microbial pathogen using protein cage architectures functionalized with a photosensitizer. Langmuir., 23(24):12280–12286.VNPs as candidates for PDT.]
  • 51. Stephanopoulos N, Tong GJ, Hsiao SC, Francis MB. (2010). Dual-Surface Modified Virus Capsids for Targeted Delivery of Photodynamic Agents to Cancer Cells. Acs Nano.,4(10):6014–6020.VNPs as candidates for PDT.
  • 52. Luque A.P., Rubiales, D (2009). Nanotechnology for parasitic plant control. Pest Manag Sci.;65(5):540-5.
  • 53. Cao J, Guenther RH, Sit TL, Lommel SA, Opperman CH, Willoughby JA. (2015). Development of abamectin loaded plant virus nanoparticles for efficacious plant parasitic nematode control.ACS Appl Mater Interfaces.,13;7(18):9546-53.

Usage of Plant Pathogenic Viruses in Nanotechnology

Year 2017, Volume: 6 Issue: 2, 594 - 604, 30.12.2017
https://doi.org/10.17100/nevbiltek.335788

Abstract

Plant viruses are increasingly being
developed for applications in nanobiotechnology because of their potential for
producing large quantities of antigenic material in plant hosts. The obtained
biomaterials from plant viruses are used in the production of nanoscale devices
or in the preparation of methods in a sub-area of bionanosim. Plant pathogenic
viruses are used as templates for the production of new materials in
nanotechnology. Plant pathogenic viruses also utilize as viral nanoparticle in
medicine, are used as biocatalysts, and are also used in the control of plant
pathogens in agriculture.  In this review the opportunity of use of plant
virus particles in nanobiotechnology is highlighted. 

References

  • 1. Evans,, D.J. (2008). The bionanoscience of plant viruses: templates and synthons for new materials. United Kingdom. Journal of Materials. 18, 3746-3754.
  • 2. Wellink, J. (1998) From Virus Isolation to Transgenic Resistance. Methods in Molecular Biology. 81, 205–209.
  • 3. Brumfield, S., Willits, D., Tang, L., Johnson, J. E., Douglas, T. and Young, M. (2004). Heterologous expression of the modified coat protein of Cowpea chlorotic mottle bromovirus results in the assembly of protein cages with altered architectures and function. J. Gen. Virol.85, 1049–1053.
  • 4. Lucas, R. W., Larson, S. B. and McPherson, A. (2002). The crystallographic structure of brome mosaic virus. J. Mol. Biol.,317, 95–108.
  • 5. Speir, J. A., Munshi, S., Wang, G., Baker, T. S. and Johnson, J. E. (1995). Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. Structure. 3, 63–78.
  • 6. Smith TJ, Chase E, Schmidt T, Perry KL. (2000). The structure of cucumber mosaic virus and comparison to cowpea chlorotic mottle virus. J Virol.,74(16):7578-86. 7. Zhao, X., Fox, J. M., Olson, N. H., Baker, T. S. and Young, M. J.(1995). Virion swelling is not required for cotranslational disassembly of cowpea chlorotic mottle virus in vitro. Virology, 207, 486–494.
  • 8. Cuillel, M., Berthet-Colominas, C., Krop, B., Tardieu, A., Vachette, P. and Jacrot, B. (1983). J. Mol. Biol.164, 645–650.
  • 9. Schneemann, A. and Young, M. J. (2003). Viral assembly using heterologous expression systems and cell extracts. Adv. Protein Chem. 64, 1–36.
  • 10. Liepold, L. O., Revis, J., Allen, M., Oltrogge, L., Young M., and Douglas, T. (2005). Structural transitions in Cowpea chlorotic mottle virus (CCMV).Phys. Biol. 2, S166–172.
  • 11. Sit, T. L., Vaewhongs, A. A. and Lommel, S. A. (1998). RNA-mediated trans-activation of transcription from a viral RNA. Science. 281, 829–832 12. Lvov, Y., Haas, H., Decher, G., Möhwald, H., Mikhailov, A., Mtchedlishvily, B., Morgunova, E., and Vainshtein, B. (1994). Successive deposition of alternate layers of polyelectrolyds and a charged virus. Langmuir. 10, 4232–4236.
  • 13. Canady M. A., Larson, S. B., Day, J. and McPherson, A. (1996). Crystal structure of turnip yellow mosaic virus. Nat. Struct. Biol. 3, 771–781.
  • 14. Lin, T. and Johnson, J. E. ( 2003) Structures of picorna-like plant viruses: implications and applications. Adv. Virus Res. 62, 167–239.
  • 15. Lin, T., Chen, Z., Usha, R., Stauffacher, C. V., Dai, J. B., Schmidt, T. and Johnson, J.E. (1999). The refined crystal structure of cowpea mosaic virus at 2.8 A resolution. Virology. 265, 20–34.
  • 16. Caspar, D. L. D. (1963) Assembly and Stability of the Tobacco Mosiac Virus Particle. Adv. in Protein Chemistry, 18, 37-121.
  • 17. Gillitzer, E., Willits, D., Young, M. and Douglas,T. ( 2002) Chemical modification of a viral cage for multivalent presentation. Chem. Commun., 2002, 2390–2391. 18. Yıldız, İ., Shukla, S., Steinmetz, N.F. (2011). Applications of viral nanoparticles in medicine. Curr Opin Biotechnol. 22, 901-908.
  • 19. Wang, Q., Lin, T., Tang, L., Johnson, J.E. and Finn, M. G. ( 2002). Icosahedral virus particles as addressable nanoscale building blocks. Angew. Chem., Int. Ed. 41, 459–462
  • 20. Russell, J. T., Lin, Y., Böker, A., Su, L., Carl, P., et.al. ( 2005). Self-assembly and cross-linking of bionanoparticles at liquid-liquid interfaces. Angew. Chem., Int. Ed. 44, 2420–2426.
  • 21. Kuncicky, D. M., Naik, R. R. and Velev, O. D. (2006). Rapid Deposition and Long-Range Alignment of Nanocoatings and Arrays of Electrically Conductive Wires from Tobacco Mosaic Virus. Small. 2, 1462–1466.
  • 22. Klem, M. T., Willits, D., Young, M. and Douglas, T. ( 2003). 2-D Array Formation of Genetically Engineered Viral Cages on Au Surfaces and Imaging by Atomic Force Microscopy. J. Am. Chem. Soc. 125, 10806–10807.
  • 23. Smith, J. C., Lee, K.-B., Wang, Q., Finn, M. G., Johnson, J. E., Mrksich, M. and Mirkin, C. A. (2003). Nanopatterning the Chemospecific Immobilization of Cowpea Mosaic Virus Capsid. Nano Lett. 3, 883–886.
  • 24. Cheung, C. L., Camarero, J. A., Woods, B. W., Li, T., Johnson, J. E. and De Yoreo, J. J. (2003). Fabrication of assembled virus nanostructures on templates of chemoselective linkers formed by scanning probe nanolithography. J.Am. Chem. Soc. 125, 6848–6849. 25. Steinmetz, N. F., Lomonossoff, G. P. and Evans, D. J. (2006). Cowpea mosaic virus for material fabrication: addressable carboxylate groups on a programmable nanoscaffold. Langmuir. 22, 10032–10037.
  • 26. Shenton W., Douglas, T., Young, M., Stubbs, G. and Mann, S. (1999). Inorganic–Organic Nanotube Composites from Template Mineralization of Tobacco Mosaic Virus. Adv. Mater. 11, 253–256.
  • 27. Balci, S., A. M. Bittner, K. Hahn, C. Scheu, M. Knez, A. Kadri, C. Wege, H. Jeske and K. Kern. (2006). Copper nanowires within the central channel of tobacco mosaic virus paricles. Electrochim. Acta, 51, 6251–6357.
  • 28. Dujardin, E., C. Peet, G. Stubbs, J. N. Culver and S. Mann. (2003). Organization of Metallic Nanoparticles Using Tobacco Mosaic Virus Templates. Nano Lett., 3, 413–417.
  • 29. Knez, M., A. M. Bittner, F. Boes, C. Wege, H. Jeske, E. Maiß and K. Kern. (2003). Biotemplate Synthesis of 3-nm Nickel and Cobalt Nanowires. Nano Lett., 3, 1079–1082.
  • 30. Knez, M., A. Kadri, C. Wege, U. Gosele, H. Jeske and K. Nielsch. (2006) Atomic Layer Deposition on Biological Macromolecules:  Metal Oxide Coating of Tobacco Mosaic Virus and Ferritin. Nano Lett., 6, 1172–1177.
  • 31. Knez, M., M. Sumser, A. M. Bittner, C. Wege, H. Jeske, S. Kooi, M. Burghard and K. Kern. (2002) Electrochemical modification of individual nano-objects. J. Electroanal. Chem.,522, 70–74.
  • 32. Knez, M., M. Sumser, A. M. Bittner, C. Wege, H. Jeske, T. P. Martin and K. Kern. (2004). Spatially selective nucleation of metal clusters on the tobacco mosaic virus. Adv. Funct. Mater, 14, 116–124.
  • 33. Lee, S. Y, J. Choi, E. Royston, D. B. Janes, J. N. Culver and M. T. Harris. (2006). Deposition of platinum clusters on surface-modified tobacco mosaic virus. J. Nanosci. Nanotechnol., 6, 974–981.
  • 34. Lee S. Y, E. Royston, J. N. Culver and M. T. Harris. (2005). Improved metal cluster deposition on a genetically engineered tobacco mosaic template. Nanotechnology, 16, 435–441.
  • 35. Royston, E., S. Y. Lee, J. N. Culver and M. T. Harris. (2006). Characterization of silica-coated tobacco mosaic virus. J. Colloid Interface Sci., 298, 706–712. 36. Fujikawa, S. and T. Kunitake. (2003). Surface Fabrication of Hollow Nanoarchitectures of Ultrathin Titania Layers from Assembled Latex Particles and Tobacco Mosaic Viruses as Templates. Langmuir, 19, 6545–6552.
  • 37. Tsukamoto, R., M. Muraoka, M. Seki, H. Tabata and I. Yamashita. (2007). Synthesis of CoPt and FePt3 nanovires using the central channel of tobacco mosaic virus as a biotemplate. Chem. Mater.,19, 2389–2391.
  • 38. Tseng, R. J., C. Tsai, L. Ma, J. Ouyang, C. S. Ozkan and Y. Yang. (2006). Digital memory device based on tobacco mosaic virus conjugated with nanoparticles. Nat. Nanotechnol., 1, 72–75.
  • 39. Blum, A. S., C. M. Soto, C. D. Wilson, T. L. Brower, S. K. Pollack, T. L. et.al. (2005). An engineered virus as a scaffold for three-dimensional self-assembly on the nanoscale. Small, 1, 702–706.
  • 40. Peek, L.J., Middaugh, C.R., Berkland, C. (2008). Nanotecnology in vaccine delivery. Adv Drug Rev. 60, 915-928.
  • 41. McAleer WJ, Markus HZ, Wampler DE, Buynak EB, Miller WJ, Weibel RE, McLean AA, Hilleman MR. (1984). Vaccine against human hepatitis B virus prepared from antigen derived from human hepatoma cells in culture. Proc Soc Exp Biol Med., 175(3):314-9.
  • 42. Villa, L.L., Costa, R.L.R.,Petta, C.A., Andrade, R.P. Ault, K.A. et al. (2005). Prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in young women: a randomised double-blind placebo-controlled multicentre phase II efficacy trial. The Lancet Oncology, Volume 6, Issue 5, Pages 271–278.
  • 43. Edelstein,M.L., Abedi., M.R., Vixon, R.M., Edelstein, M. (2004). Gene therapy clinical trials worldwide 1989–2004—an overview. The Journal of Gene Medicine. Volume 6, Issue 6, Pages 597–602.
  • 44. Anonymous.,(2016).http://licensing.research.ncsu.edu/technologies/12018_plant-virus-and-non-woven-fiber-nanotechnology-delivery-system-for-agricultural-applications) (online access 29 nisan 2016).
  • 45. Ren, Y. And Chan L.W.U. (2007). Application of HCRSV protein cage for anticancer drug delivery. PhD thesis, Depatrtment of Pharmacy, National University of Singapore.
  • 46. Loo L, Guenther, RH, Lommel, SA.,Franzen S. (2007). Encapsidation of nanoparticles by red clover necrotic mosaic virus.J Am Chem Soc. 129(36):11111-7.
  • 47. Acosta-Ramirez E, Perez-Flores R, Majeau N, Pastelin-Palacios R, Gil-Cruz C. et al. (2008). Translating innate response into long-lasting antibody response by the intrinsic antigen-adjuvant properties of papaya mosaic virus. Immunology., 124(2):186–197.
  • 48. Brown WL, Mastico RA, Wu M, Heal KG, Adams CJ, et.al.(2002). RNA bacteriophage capsid-mediated drug delivery and epitope presentation. Intervirology.,45(4–6):371–380.Targeted drug-delivery using VNPs.]
  • 49. Steinmetz NF, Manchester M. (2009). PEGylated viral nanoparticles for biomedicine. the impact of PEG chain length on VNP cell interactions in vitro and ex vivo. Biomacromolecules.,10(4):784–792.
  • 50. Suci PA, Varpness Z, Gillitzer E, Douglas T, Young M. (2007). Targeting and photodynamic killing of a microbial pathogen using protein cage architectures functionalized with a photosensitizer. Langmuir., 23(24):12280–12286.VNPs as candidates for PDT.]
  • 51. Stephanopoulos N, Tong GJ, Hsiao SC, Francis MB. (2010). Dual-Surface Modified Virus Capsids for Targeted Delivery of Photodynamic Agents to Cancer Cells. Acs Nano.,4(10):6014–6020.VNPs as candidates for PDT.
  • 52. Luque A.P., Rubiales, D (2009). Nanotechnology for parasitic plant control. Pest Manag Sci.;65(5):540-5.
  • 53. Cao J, Guenther RH, Sit TL, Lommel SA, Opperman CH, Willoughby JA. (2015). Development of abamectin loaded plant virus nanoparticles for efficacious plant parasitic nematode control.ACS Appl Mater Interfaces.,13;7(18):9546-53.
There are 48 citations in total.

Details

Subjects Engineering
Journal Section Ziraat Mühendisliği
Authors

Hatice Diğdem Oksal

Fatih Örs

Publication Date December 30, 2017
Acceptance Date December 11, 2017
Published in Issue Year 2017 Volume: 6 Issue: 2

Cite

APA Oksal, H. D., & Örs, F. (2017). Bitki Patojeni Virüslerin Nanoteknolojide Kullanımı. Nevşehir Bilim Ve Teknoloji Dergisi, 6(2), 594-604. https://doi.org/10.17100/nevbiltek.335788
AMA Oksal HD, Örs F. Bitki Patojeni Virüslerin Nanoteknolojide Kullanımı. Nevşehir Bilim ve Teknoloji Dergisi. December 2017;6(2):594-604. doi:10.17100/nevbiltek.335788
Chicago Oksal, Hatice Diğdem, and Fatih Örs. “Bitki Patojeni Virüslerin Nanoteknolojide Kullanımı”. Nevşehir Bilim Ve Teknoloji Dergisi 6, no. 2 (December 2017): 594-604. https://doi.org/10.17100/nevbiltek.335788.
EndNote Oksal HD, Örs F (December 1, 2017) Bitki Patojeni Virüslerin Nanoteknolojide Kullanımı. Nevşehir Bilim ve Teknoloji Dergisi 6 2 594–604.
IEEE H. D. Oksal and F. Örs, “Bitki Patojeni Virüslerin Nanoteknolojide Kullanımı”, Nevşehir Bilim ve Teknoloji Dergisi, vol. 6, no. 2, pp. 594–604, 2017, doi: 10.17100/nevbiltek.335788.
ISNAD Oksal, Hatice Diğdem - Örs, Fatih. “Bitki Patojeni Virüslerin Nanoteknolojide Kullanımı”. Nevşehir Bilim ve Teknoloji Dergisi 6/2 (December 2017), 594-604. https://doi.org/10.17100/nevbiltek.335788.
JAMA Oksal HD, Örs F. Bitki Patojeni Virüslerin Nanoteknolojide Kullanımı. Nevşehir Bilim ve Teknoloji Dergisi. 2017;6:594–604.
MLA Oksal, Hatice Diğdem and Fatih Örs. “Bitki Patojeni Virüslerin Nanoteknolojide Kullanımı”. Nevşehir Bilim Ve Teknoloji Dergisi, vol. 6, no. 2, 2017, pp. 594-0, doi:10.17100/nevbiltek.335788.
Vancouver Oksal HD, Örs F. Bitki Patojeni Virüslerin Nanoteknolojide Kullanımı. Nevşehir Bilim ve Teknoloji Dergisi. 2017;6(2):594-60.

Dergimizin tarandığı indeksler


12300          20980     2097822081