Research Article
BibTex RIS Cite

Östemperlenmiş Küresel Grafitli Dökme Demirlerde XRD Yöntemiyle Yüksek Karbonlu Östenit Faz Hacim Oranını Belirlemede Yüzey Koşullarının Etkisi

Year 2020, Volume: 9 Issue: 1, 52 - 62, 01.06.2020
https://doi.org/10.17100/nevbiltek.644118

Abstract

Bu çalışmada XRD
(X-Işınları kırınımı) yöntemiyle yüksek karbonlu östenit faz hacim oranı belirlenmesinde
yüzey koşullarının yüksek karbonlu östenit faz hacim oranı üzerine etkisi
araştırılmıştır. Böylelikle XRD analizinde uygun yüzey koşulunun belirlenmesi
hedeflenmiştir. Bu amaç doğrultusunda, alaşımlı küresel grafitli dökme demire 900°C’de
2 saat östenitleme ve 375°C’deki tuz banyosunda 2 saat östemperleme ve ardından
oda sıcaklığına havada soğutma işlemi uygulanmıştır.



Isıl işlem
sonrası dört eşit parçaya ayrılarak farklı yüzey koşullarında hazırlanan numuneler
optik ve SEM ile incelenmiş, XRD analizleri yapılmış ve makro sertlik ölçümleri
gerçekleştirilmiştir.



XRD
yöntemiyle yüksek karbonlu östenit faz hacim oranı ölçümlerinde farklı yüzey
koşullarının östenit faz hacim oranı ölçümü üzerinde oldukça etkili olduğu
gözlemlenmiştir. XRD yöntemiyle faz hacim oranı belirlenmesinde polisaj+dağlama
işleminin yüzey pürüzlülüğünü azalttığı için oldukça etkili olduğu tespit
edilmiştir.

Thanks

XRD çalışmalarında yardımını esirgemeyen Dr. Meryem Polat Gönüllü’ye ve çalışmamızın gerçekleştirilmesinde kullanmış olduğumuz alt yapı ve laboratuvar imkânlarının kurulmasını sağlayan Gazi Üniversitesi Bilimsel Araştırma Projeleri birimine teşekkür ederiz.

References

  • S. Sabarudin, P. Pratikto, A. Suprapto, and Y. S. Irawan, “Effect of heat treatment and cryogenics on hardness of ductile cast iron microstructure (FCD­50),” Eastern-European J. Enterp. Technol., vol. 2, no. 12 (92), pp. 20–26, 2018.
  • A. D. Boccardo, P. M. Dardati, L. A. Godoy, and D. J. Celentano, “Sensitivity of Austempering Heat Treatment of Ductile Irons to Changes in Process Parameters,” Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., vol. 49, no. 3, pp. 1522–1536, 2018.
  • D. A. Colombo, R. C. Dommarco, and A. D. Basso, “Rolling contact fatigue behavior of dual-phase austempered ductile iron,” Wear, vol. 418–419, no. November 2018, pp. 208–214, 2019.
  • S. Samaddar, T. Das, A. K. Chowdhury, and M. Singh, “Manufacturing of Engineering components with Austempered Ductile Iron - A Review,” Mater. Today Proc., vol. 5, no. 11, pp. 25615–25624, 2018.
  • C. Wang et al., “Effect of austempering temperature on microstructure of ausferrite in austempered ductile iron,” Mater. Sci. Technol. (United Kingdom), vol. 0836, 2019.
  • M. Witte and C. Lesch, “On the improvement of measurement accuracy of retained austenite in steel with X-ray diffraction,” Mater. Charact., vol. 139, no. November 2017, pp. 111–115, 2018.
  • Ovali I., Kilicli V., Erdogan M., Effect of microstructure on fatigue strength of intercritically austenitized and austempered ductile irons with dual matrix structures,ISIJ International, Volume 53, Issue 2, 2013, Pages 375-381.
  • M. E. Taşdelen and H. Yeşİlyurt, “AISI 4140 Çeliğinin Çeşitli Çift Fazlı Mikroyapılarında Mekanik Özellikleri İle Sürtünme Davranışı İlişkisinin İncelenmesi Investigation of the Relation Between Mechanical Properties and Frictional Behavior of Dual Phase AISI 4140 Steel,” vol. 4, no. 1, pp. 88–96, 2015.
  • Kilicli V and Erdogan M, ‘‘Tensile Properties of Partially Austenitized and Austempered Ductile Irons with Dual Matrix Structures’’, Materials Science and Technology Aug 2006, 22( 8): 919-928.
  • A. F. Mark, X. Wang, E. Essadiqi, J. D. Embury, and J. D. Boyd, “Development and characterisation of model TRIP steel microstructures,” Mater. Sci. Eng. A, vol. 576, pp. 108–117, 2013.
  • J. Lai, H. Huang, and W. Buising, “Effects of microstructure and surface roughness on the fatigue strength of high-strength steels,” Procedia Struct. Integr., vol. 2, pp. 1213–1220, 2016.
  • T. Dutta, D. Das, S. Banerjee, S. K. Saha, and S. Datta, “An automated morphological classification of ferrite-martensite dual-phase microstructures,” Meas. J. Int. Meas. Confed., vol. 137, pp. 595–603, 2019.
  • G. Azizi, H. Mirzadeh, and M. H. Parsa, “The effect of primary thermo-mechanical treatment on TRIP steel microstructure and mechanical properties,” Mater. Sci. Eng. A, vol. 639, pp. 402–406, 2015.
  • V. Dakre, D. R. Peshwe, S. U. Pathak, and A. Likhite, “Effect of austenitization temperature on microstructure and mechanical properties of low-carbon-equivalent carbidic austempered ductile iron,” Int. J. Miner. Metall. Mater., vol. 25, no. 7, pp. 770–778, 2018.
  • S. Panneerselvam, C. J. Martis, S. K. Putatunda, and J. M. Boileau, “An investigation on the stability of austenite in Austempered Ductile Cast Iron (ADI),” Mater. Sci. Eng. A, vol. 626, pp. 237–246, 2015.
  • M. X. Zhang, P. M. Kelly, L. K. Bekessy, and J. D. Gates, “Determination of retained austenite using an X-ray texture goniometer,” Mater. Charact., vol. 45, no. 1, pp. 39–49, 2000.
  • L. C. Chang, “Carbon content of austenite in austempered ductile iron,” Scr. Mater., vol. 39, no. 1, pp. 35–38, 1998.
  • R. Boschen, H. Bomas, P . Mayr, H. Vetters, Strength and fatigue of Austempered Ductile Iron(ADI), in: Proceedings of the 2nd International Conference on Austempered Ductile Cast Iron, Ann Arbor, MI, ASME, Gear Research Institute, Naperville, IL, 1986, pp 179–185.
  • J. J Vuorinen, Strain-hardening mechanism and characteristics of austempered ductile iron, AFSTrans. 86 (1983) 577–588.
  • P. Mayr, H. Vetters, J. Walla, Investigations on the stress induced martensite formation in Austempered Ductlile Cast Iron(ADI), in: Proceedings of the 2nd International Conference on Austempered Ductile Iron, Ann Arbor, MI, 1986, pp. 171–178.
  • K. L. Hayrynen, D. J. Moore, K. B. Rundman, Tensile properties and microstrusture of a clean austempered ductile iron, AFS Trans. 98 (1990) 471–480.[22] Y. tao Fu, J. Liu, J. Shi, W. quan Cao, and H. Dong, “Effects of Cold Rolling Reduction on Retained Austenite Fraction and Mechanical Properties of High-Si TRIP Steel,” J. Iron Steel Res. Int., vol. 20, no. 5, pp. 50–56, 2013.
  • Y. tao Fu, J. Liu, J. Shi, W. quan Cao, and H. Dong, “Effects of Cold Rolling Reduction on Retained Austenite Fraction and Mechanical Properties of High-Si TRIP Steel,” J. Iron Steel Res. Int., vol. 20, no. 5, pp. 50–56, 2013.
  • L. Sidjanin, R. E. Smallman, S. M. Boutorabi, Metallography of bainitic transformation in austempered ductile iron, Mater. Sci. Technol. 8 (1992)1095–2006.
  • L. Sidjanin, R. E. Smallman, S. M. Boutorabi, Microstructure and fracture of aluminum austempered ductile iron investigated using electronmicroscopy, Mater. Sci. Technol. 10 (1994) 711–723.
  • A. Varshney, S. Sangal, S. Kundu, and K. Mondal, “Super strong and highly ductile low alloy multiphase steels consisting of bainite, ferrite and retained austenite,” Mater. Des., vol. 95, pp. 75–88, 2016.
  • G. A. Jeffery, “Elements of x-ray diffraction (Cullity, B. D.),” J. Chem. Educ., vol. 34, no. 4, p. A178, 1957.
  • J. Epp, “X-ray diffraction (XRD) techniques for materials characterization,” Mater. Charact. Using Nondestruct. Eval. Methods, pp. 81–124, Jan. 2016.
  • A. Molkeri, F. Pahlevani, I. Emmanuelawati, and V. Sahajwalla, “Thermal and mechanical stability of retained austenite in high carbon steel: An in-situ investigation,” Mater. Lett., vol. 163, pp. 209–213, Jan. 2016.
  • ASTM. E975, “Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation 1,” Astm, vol. 03, no. Reapproved 2008, pp. 1–7, 2013.
  • X. Qiao, L. Han, W. Zhang, and J. Gu, “Nano-indentation investigation on the mechanical stability of individual austenite in high-carbon steel,” Mater. Charact., vol. 110, pp. 86–93, Dec. 2015.
  • S. Practice, “Microetching Metals and Alloys 1,” October, vol. 11, no. November, pp. 1–21, 1999.
  • Roberts C.S. (1953) Effect of carbon on the volume fractions and lattice parameters of retained austenite and martensite, Trans. AIME 197: 203-204.
  • Y. Kaynak and E. Tascioglu, “Finish machining-induced surface roughness, microhardness and XRD analysis of selective laser melted Inconel 718 alloy,” Procedia CIRP, vol. 71, pp. 500–504, 2018.
  • Pitschke, W., Hermann, H., & Mattern, N. (1993). The influence of surface roughness on diffracted X-ray intensities in Bragg–Brentano geometry and its effect on the structure determination by means of Rietveld analysis. Powder Diffraction, 8(2), 74-83.
  • Suortti, P. (1972), Effects of porosity and surface roughness on the X‐ray intensity reflected from a powder specimen. J. Appl. Cryst., 5: 325-331.
  • Y. Y. Sun et al., “The Influence of As-Built Surface Conditions on Mechanical Properties of Ti-6Al-4V Additively Manufactured by Selective Electron Beam Melting,” Jom, vol. 68, no. 3, pp. 791–798, 2016.
  • B. Kim, B. T. Lee, and J. G. Han, “Surface roughness of silicon oxynitride etching in C2F6 inductively coupled plasma,” Solid. State. Electron., vol. 51, no. 3, pp. 366–370, 2007.
  • C. Zhu, Q. Jiao, X. Tan, H. Hu, and Bayanheshig, “The effects of TMDD-PA concentration on roughness of Si <110> and etching rate ratio of Si <110>/<111> in alkaline KOH solution,” Chem. Phys., p. 110397, 2019.

The Effect of Surface Conditions in Determination of High Carbon Austenite Phase Volume Fraction by XRD Method in Austempered Ductile Iron

Year 2020, Volume: 9 Issue: 1, 52 - 62, 01.06.2020
https://doi.org/10.17100/nevbiltek.644118

Abstract

References

  • S. Sabarudin, P. Pratikto, A. Suprapto, and Y. S. Irawan, “Effect of heat treatment and cryogenics on hardness of ductile cast iron microstructure (FCD­50),” Eastern-European J. Enterp. Technol., vol. 2, no. 12 (92), pp. 20–26, 2018.
  • A. D. Boccardo, P. M. Dardati, L. A. Godoy, and D. J. Celentano, “Sensitivity of Austempering Heat Treatment of Ductile Irons to Changes in Process Parameters,” Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., vol. 49, no. 3, pp. 1522–1536, 2018.
  • D. A. Colombo, R. C. Dommarco, and A. D. Basso, “Rolling contact fatigue behavior of dual-phase austempered ductile iron,” Wear, vol. 418–419, no. November 2018, pp. 208–214, 2019.
  • S. Samaddar, T. Das, A. K. Chowdhury, and M. Singh, “Manufacturing of Engineering components with Austempered Ductile Iron - A Review,” Mater. Today Proc., vol. 5, no. 11, pp. 25615–25624, 2018.
  • C. Wang et al., “Effect of austempering temperature on microstructure of ausferrite in austempered ductile iron,” Mater. Sci. Technol. (United Kingdom), vol. 0836, 2019.
  • M. Witte and C. Lesch, “On the improvement of measurement accuracy of retained austenite in steel with X-ray diffraction,” Mater. Charact., vol. 139, no. November 2017, pp. 111–115, 2018.
  • Ovali I., Kilicli V., Erdogan M., Effect of microstructure on fatigue strength of intercritically austenitized and austempered ductile irons with dual matrix structures,ISIJ International, Volume 53, Issue 2, 2013, Pages 375-381.
  • M. E. Taşdelen and H. Yeşİlyurt, “AISI 4140 Çeliğinin Çeşitli Çift Fazlı Mikroyapılarında Mekanik Özellikleri İle Sürtünme Davranışı İlişkisinin İncelenmesi Investigation of the Relation Between Mechanical Properties and Frictional Behavior of Dual Phase AISI 4140 Steel,” vol. 4, no. 1, pp. 88–96, 2015.
  • Kilicli V and Erdogan M, ‘‘Tensile Properties of Partially Austenitized and Austempered Ductile Irons with Dual Matrix Structures’’, Materials Science and Technology Aug 2006, 22( 8): 919-928.
  • A. F. Mark, X. Wang, E. Essadiqi, J. D. Embury, and J. D. Boyd, “Development and characterisation of model TRIP steel microstructures,” Mater. Sci. Eng. A, vol. 576, pp. 108–117, 2013.
  • J. Lai, H. Huang, and W. Buising, “Effects of microstructure and surface roughness on the fatigue strength of high-strength steels,” Procedia Struct. Integr., vol. 2, pp. 1213–1220, 2016.
  • T. Dutta, D. Das, S. Banerjee, S. K. Saha, and S. Datta, “An automated morphological classification of ferrite-martensite dual-phase microstructures,” Meas. J. Int. Meas. Confed., vol. 137, pp. 595–603, 2019.
  • G. Azizi, H. Mirzadeh, and M. H. Parsa, “The effect of primary thermo-mechanical treatment on TRIP steel microstructure and mechanical properties,” Mater. Sci. Eng. A, vol. 639, pp. 402–406, 2015.
  • V. Dakre, D. R. Peshwe, S. U. Pathak, and A. Likhite, “Effect of austenitization temperature on microstructure and mechanical properties of low-carbon-equivalent carbidic austempered ductile iron,” Int. J. Miner. Metall. Mater., vol. 25, no. 7, pp. 770–778, 2018.
  • S. Panneerselvam, C. J. Martis, S. K. Putatunda, and J. M. Boileau, “An investigation on the stability of austenite in Austempered Ductile Cast Iron (ADI),” Mater. Sci. Eng. A, vol. 626, pp. 237–246, 2015.
  • M. X. Zhang, P. M. Kelly, L. K. Bekessy, and J. D. Gates, “Determination of retained austenite using an X-ray texture goniometer,” Mater. Charact., vol. 45, no. 1, pp. 39–49, 2000.
  • L. C. Chang, “Carbon content of austenite in austempered ductile iron,” Scr. Mater., vol. 39, no. 1, pp. 35–38, 1998.
  • R. Boschen, H. Bomas, P . Mayr, H. Vetters, Strength and fatigue of Austempered Ductile Iron(ADI), in: Proceedings of the 2nd International Conference on Austempered Ductile Cast Iron, Ann Arbor, MI, ASME, Gear Research Institute, Naperville, IL, 1986, pp 179–185.
  • J. J Vuorinen, Strain-hardening mechanism and characteristics of austempered ductile iron, AFSTrans. 86 (1983) 577–588.
  • P. Mayr, H. Vetters, J. Walla, Investigations on the stress induced martensite formation in Austempered Ductlile Cast Iron(ADI), in: Proceedings of the 2nd International Conference on Austempered Ductile Iron, Ann Arbor, MI, 1986, pp. 171–178.
  • K. L. Hayrynen, D. J. Moore, K. B. Rundman, Tensile properties and microstrusture of a clean austempered ductile iron, AFS Trans. 98 (1990) 471–480.[22] Y. tao Fu, J. Liu, J. Shi, W. quan Cao, and H. Dong, “Effects of Cold Rolling Reduction on Retained Austenite Fraction and Mechanical Properties of High-Si TRIP Steel,” J. Iron Steel Res. Int., vol. 20, no. 5, pp. 50–56, 2013.
  • Y. tao Fu, J. Liu, J. Shi, W. quan Cao, and H. Dong, “Effects of Cold Rolling Reduction on Retained Austenite Fraction and Mechanical Properties of High-Si TRIP Steel,” J. Iron Steel Res. Int., vol. 20, no. 5, pp. 50–56, 2013.
  • L. Sidjanin, R. E. Smallman, S. M. Boutorabi, Metallography of bainitic transformation in austempered ductile iron, Mater. Sci. Technol. 8 (1992)1095–2006.
  • L. Sidjanin, R. E. Smallman, S. M. Boutorabi, Microstructure and fracture of aluminum austempered ductile iron investigated using electronmicroscopy, Mater. Sci. Technol. 10 (1994) 711–723.
  • A. Varshney, S. Sangal, S. Kundu, and K. Mondal, “Super strong and highly ductile low alloy multiphase steels consisting of bainite, ferrite and retained austenite,” Mater. Des., vol. 95, pp. 75–88, 2016.
  • G. A. Jeffery, “Elements of x-ray diffraction (Cullity, B. D.),” J. Chem. Educ., vol. 34, no. 4, p. A178, 1957.
  • J. Epp, “X-ray diffraction (XRD) techniques for materials characterization,” Mater. Charact. Using Nondestruct. Eval. Methods, pp. 81–124, Jan. 2016.
  • A. Molkeri, F. Pahlevani, I. Emmanuelawati, and V. Sahajwalla, “Thermal and mechanical stability of retained austenite in high carbon steel: An in-situ investigation,” Mater. Lett., vol. 163, pp. 209–213, Jan. 2016.
  • ASTM. E975, “Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation 1,” Astm, vol. 03, no. Reapproved 2008, pp. 1–7, 2013.
  • X. Qiao, L. Han, W. Zhang, and J. Gu, “Nano-indentation investigation on the mechanical stability of individual austenite in high-carbon steel,” Mater. Charact., vol. 110, pp. 86–93, Dec. 2015.
  • S. Practice, “Microetching Metals and Alloys 1,” October, vol. 11, no. November, pp. 1–21, 1999.
  • Roberts C.S. (1953) Effect of carbon on the volume fractions and lattice parameters of retained austenite and martensite, Trans. AIME 197: 203-204.
  • Y. Kaynak and E. Tascioglu, “Finish machining-induced surface roughness, microhardness and XRD analysis of selective laser melted Inconel 718 alloy,” Procedia CIRP, vol. 71, pp. 500–504, 2018.
  • Pitschke, W., Hermann, H., & Mattern, N. (1993). The influence of surface roughness on diffracted X-ray intensities in Bragg–Brentano geometry and its effect on the structure determination by means of Rietveld analysis. Powder Diffraction, 8(2), 74-83.
  • Suortti, P. (1972), Effects of porosity and surface roughness on the X‐ray intensity reflected from a powder specimen. J. Appl. Cryst., 5: 325-331.
  • Y. Y. Sun et al., “The Influence of As-Built Surface Conditions on Mechanical Properties of Ti-6Al-4V Additively Manufactured by Selective Electron Beam Melting,” Jom, vol. 68, no. 3, pp. 791–798, 2016.
  • B. Kim, B. T. Lee, and J. G. Han, “Surface roughness of silicon oxynitride etching in C2F6 inductively coupled plasma,” Solid. State. Electron., vol. 51, no. 3, pp. 366–370, 2007.
  • C. Zhu, Q. Jiao, X. Tan, H. Hu, and Bayanheshig, “The effects of TMDD-PA concentration on roughness of Si <110> and etching rate ratio of Si <110>/<111> in alkaline KOH solution,” Chem. Phys., p. 110397, 2019.
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Burak Nalçacı 0000-0002-3919-7061

Volkan Kılıçlı 0000-0002-0456-5987

Mehmet Erdoğan 0000-0003-4430-9360

Publication Date June 1, 2020
Acceptance Date February 19, 2020
Published in Issue Year 2020 Volume: 9 Issue: 1

Cite

APA Nalçacı, B., Kılıçlı, V., & Erdoğan, M. (2020). Östemperlenmiş Küresel Grafitli Dökme Demirlerde XRD Yöntemiyle Yüksek Karbonlu Östenit Faz Hacim Oranını Belirlemede Yüzey Koşullarının Etkisi. Nevşehir Bilim Ve Teknoloji Dergisi, 9(1), 52-62. https://doi.org/10.17100/nevbiltek.644118
AMA Nalçacı B, Kılıçlı V, Erdoğan M. Östemperlenmiş Küresel Grafitli Dökme Demirlerde XRD Yöntemiyle Yüksek Karbonlu Östenit Faz Hacim Oranını Belirlemede Yüzey Koşullarının Etkisi. Nevşehir Bilim ve Teknoloji Dergisi. June 2020;9(1):52-62. doi:10.17100/nevbiltek.644118
Chicago Nalçacı, Burak, Volkan Kılıçlı, and Mehmet Erdoğan. “Östemperlenmiş Küresel Grafitli Dökme Demirlerde XRD Yöntemiyle Yüksek Karbonlu Östenit Faz Hacim Oranını Belirlemede Yüzey Koşullarının Etkisi”. Nevşehir Bilim Ve Teknoloji Dergisi 9, no. 1 (June 2020): 52-62. https://doi.org/10.17100/nevbiltek.644118.
EndNote Nalçacı B, Kılıçlı V, Erdoğan M (June 1, 2020) Östemperlenmiş Küresel Grafitli Dökme Demirlerde XRD Yöntemiyle Yüksek Karbonlu Östenit Faz Hacim Oranını Belirlemede Yüzey Koşullarının Etkisi. Nevşehir Bilim ve Teknoloji Dergisi 9 1 52–62.
IEEE B. Nalçacı, V. Kılıçlı, and M. Erdoğan, “Östemperlenmiş Küresel Grafitli Dökme Demirlerde XRD Yöntemiyle Yüksek Karbonlu Östenit Faz Hacim Oranını Belirlemede Yüzey Koşullarının Etkisi”, Nevşehir Bilim ve Teknoloji Dergisi, vol. 9, no. 1, pp. 52–62, 2020, doi: 10.17100/nevbiltek.644118.
ISNAD Nalçacı, Burak et al. “Östemperlenmiş Küresel Grafitli Dökme Demirlerde XRD Yöntemiyle Yüksek Karbonlu Östenit Faz Hacim Oranını Belirlemede Yüzey Koşullarının Etkisi”. Nevşehir Bilim ve Teknoloji Dergisi 9/1 (June 2020), 52-62. https://doi.org/10.17100/nevbiltek.644118.
JAMA Nalçacı B, Kılıçlı V, Erdoğan M. Östemperlenmiş Küresel Grafitli Dökme Demirlerde XRD Yöntemiyle Yüksek Karbonlu Östenit Faz Hacim Oranını Belirlemede Yüzey Koşullarının Etkisi. Nevşehir Bilim ve Teknoloji Dergisi. 2020;9:52–62.
MLA Nalçacı, Burak et al. “Östemperlenmiş Küresel Grafitli Dökme Demirlerde XRD Yöntemiyle Yüksek Karbonlu Östenit Faz Hacim Oranını Belirlemede Yüzey Koşullarının Etkisi”. Nevşehir Bilim Ve Teknoloji Dergisi, vol. 9, no. 1, 2020, pp. 52-62, doi:10.17100/nevbiltek.644118.
Vancouver Nalçacı B, Kılıçlı V, Erdoğan M. Östemperlenmiş Küresel Grafitli Dökme Demirlerde XRD Yöntemiyle Yüksek Karbonlu Östenit Faz Hacim Oranını Belirlemede Yüzey Koşullarının Etkisi. Nevşehir Bilim ve Teknoloji Dergisi. 2020;9(1):52-6.

Dergimizin tarandığı indeksler


12300          20980     2097822081