Research Article
BibTex RIS Cite

CAT 6A U/FTP Data Kablosunun Yüksek Frekans Parametrelerinin YSA ile Tahmin Modeli

Year 2020, 4. International Conference on Material Science and Technology (IMSTEC 2019) özel sayı, 16 - 30, 01.07.2020
https://doi.org/10.17100/nevbiltek.728791

Abstract

Data kablolarının modellenmesi frekans bağımlı parametrelerinden dolayı zordur. İstenilen kablo parametrelerini elde etmek için üretimde yaygınca deneme ve yanılma yöntemleri kullanılır ve her bir deneme için buna karşılık gelen bir maliyet ve üretim zamanı gerekmektedir. Kablo parametreleri fiziksel boyutların ve üretim parametrelerinin nonlinear fonksiyonudur. Bu problemin üstesinden gelmek için tahmin yeteneklerinden dolayı Yapay Sinir Ağları (YSA) kullanılabilir. Bu çalışmada, YSA’ların, CAT 6A U/FTP data kablolarının karakteristik empedans, yakın-uç çapraz-atlama gürültüsü (NEXT), Uzak-uç çapraz-atlama gürültüsü (FEXT) ve Dönüş Kaybı (RL) gibi parametrelerini iyi bir şekilde tahmin edebildikleri MATLABTM’in NNTool paket programı kullanılarak gösterilmiştir.

Thanks

Bu makaledeki tüm fotoğraflar Reçber Kablo’nun izni ile kullanılmıştır ve tüm veriler Reçber Kablo’nun desteği ile toplanmıştır. Reçber Kablo’ya ve çalışanlarına destekleri için teşekkür ederiz. YSA kullanımında öğretmenlikleri için Prof. Dr. Pelin Gürkan Ünal’a, Dr. Öğr. Üye. İsmail Devecioğlu ve Ar. Gör. Dr. Özkan Arslan’a teşekkür ederiz.

References

  • Haykin, S, Network, N, "Neural networks-A Comprehensive Foundation”, 2004.
  • Bose, N. K., Liang, P, “Neural Network Fundamentals with Graphs, Algorithms, and Applications, McGraw-Hill Series in Electrical Computer Engineering”,1996.
  • Cho H.S., Leu M.C., “Artificial Neural Networks in Manufacturing Processes Monitoring and Control, IFAC Proceedings Volumes”, 1998.
  • Monostori L., Prohaszka J, “A step towards intelligent manufacturing: Modelling and monitoring of manufacturing processes through artificial neural networks, CIRP Annals-Manufacturing Technology”, 42(1), 485-488, 1993.
  • Rajagopalan R., Rajagopalan P., “Applications of Neural Network in Manufacturing, in Proceedings of the 29th Annual Hawaii International Conference on System Sciences”, 1999.
  • Nevosad M., Lafata P, “Modelling of Propagation Constant of Twisted Pairs and Its Temperature Dependence at G. fast Frequencies. Elektronika ir Elektrotechnika”, 22(2), 107-113, 2016.
  • Lafata, P., “Simple Attenauation Models of Metallic Cables Suitable for G. fast Frequencies. Advances in Electrical and Electronic Engineering”, 13(2), 147-155, 2015.
  • Cecchi, V., Leger, A. S., Miu, K., Nwankpa, C. O., “Incorporating temperature variations into transmission-line models. IEEE Transactions on Power Delivery”, 26(4), 2189-2196, 2011.
  • Hoshmeh, A., Schmidt, U., “A full frequency-dependent cable model for the calculation of fast transients. Energies”, 10(8), 1158, 2017.
  • Kirawanich, P., Islam, N. E., Yakura, S. J., “An electromagnetic topology approach: Crosstalk characterizations of the unshielded twisted-pair cable. Progress In Electromagnetics Research”, 58, 285-299, 2006.
  • Nevosad, M., Lafata, P., Jares, P., “Modeling of telecommunication cables for gigabit DSL application. Advances in Electrical and Electronic Engineering”, 11(5), 336-341, 2013.
  • Celozzi, S., Feliziani, M., EMP-coupling to twisted-wire cables, in IEEE International Symposium on Electromagnetic Compatibility” pp. 85-89, 1990
  • Komisarek, K. S., Chamerberlin, K. A., Sivaprasad, K., “A method of moment analysis of a twisted-pair transmission line, in Proceedings of IEEE Antennas and Propagation Society International Symposium”, pp. 64-67, 1993.
  • Joffe, E. B., Axelrod, A., “On the benefits (if any) of pair twisting in reducing radiated emissions from two-wire cables, in Proceedings of IEEE Symposium on Electromagnetic Compatibility”, pp. 474-478, 1994.
  • Im, G. H., Werner, J., “Bandwidth-efficient digital transmission up to 155 Mb/s over unshielded twisted pair wiring, in Proceedings of ICC'93-IEEE International Conference on Communications”, vol. 3, pp. 1797-1803, 1993.
  • Diakun, P. C., Derewiany, C. F. “Magnetic field shielding effectiveness of a high-permeability shield on twisted pair and coaxial cables, in 1993 International Symposium on Electromagnetic Compatibility”, pp. 170-175,1993.
  • Piper, G. R., Prata, A., “Magnetic flux density produced by finite-length twisted-wire pairs, IEEE transactions on electromagnetic compatibility”, 38(1), 84-92, 1996.
  • Roden, J. A., Gedney, S. D., Paul, C. R., “A rigorous analysis of twisted pair transmission lines using non-orthogonal FDTD and the PML absorbing boundary condition, in Proceedings of Symposium on Electromagnetic Compatibility”, pp. 254-258, IEEE, 1996.
  • Poltz, J., Gleich, D., Josefsson, M., Lindstrom, M., “Electromagnetic modeling of twisted pair cables, In Proceedings of the 49th International Wire and Cable symposium”, 2000.
  • Shao, J., Nitta, S., Mutoh, A., “Study on the influence of ground on crosstalk reduction characteristics of twisted-pair-wire. The case of capacitive coupling, in 1999 International Symposium on Electromagnetic Compatibility” (IEEE Cat. No. 99EX147), pp. 730-733, 1999.
  • Umek, A., “Modeling the structural return loss in twisted pair cables, in 2000 10th Mediterranean Electrotechnical Conference. Information Technology and Electrotechnology for the Mediterranean Countries. Proceedings. MeleCon 2000 (Cat. No. 00CH37099)”, vol. 1, pp. 173-176, 2000.
  • Liu, X, “Low pressure partial discharge investigation with FEM modeling for a twisted pair of insulated conductors, in 2006 IEEE Conference on Electrical Insulation and Dielectric Phenomena”, pp. 611-614, 2006.
  • De Araujo, D. N., Pitner, G., Commens, M., Mutnury, B., Diepenbrock, J., Full-wave, “TwinAx, differential cable modeling, in 2008 58th Electronic Components and Technology Conference”, pp. 1684-1689, 2008.
  • Belkhelfa, S., Lefouili, M., Drissi, K. E. K, “Frequency domain analysis of EM crosstalk problem in a quad by the equivalent cable bundle method among twisted-wire pairs cable bundle. IEEE Transactions on Magnetics”, 51(11), 1-4, 2015.
  • Tatematsu, A., Rachidi, F., Rubinstein, M., “A technique for calculating voltages induced on twisted-wire pairs using the FDTD method, IEEE Transactions on Electromagnetic Compatibility”, 59(1), 301-304, 2017.
  • Shang, Y., Fei, W., Yu, H., “A fractional-order RLGC model for terahertz transmission line. in 2013 IEEE MTT-S International Microwave Symposium Digest (MTT)”, pp. 1-3, IEEE, 2013.
  • Limei Y., Yusong Z., Jianjun X., Weijian R., Qiong W., Zhigang S., “Transmission lines modeling method based on fractional order calculus theory, Transactions of China Electrotechnical Society”, 29, 260-268, 2014.
  • Liang, G., & Liu, X., “A reduction algorithm for fractional order transmission line modeling with skin effect, International Journal of u-and e-Service, Science and Technology”, 8(1), 239-250, 2015.
  • Pozar, D. “M., Mikrodalga mühendisliği”, Palme Yayıncılık, 2014.
  • Google, Reçber Kablo Datasheet, https://www.recber.com.tr , 2019.
  • Chauhan, N., Yadav, N., Arya, N., “Applications of Artificial Neural Network in Textiles, International Journal of Current Microbiology and Applied Sciences”, 7(4), 3134-3143, 2018.
  • Kumar, A., Chauhan, V., Bist, A. S., “Role of artificial neural network in welding technology: a survey network”, 67(1), 2013.
  • Smail M.K., Le Bihan Y., Pichon L., “Fast Diagnosis of Transmission Lines using Neural Networks and Principal Component Analysis, International Journal of Applied Electromagnetics and Mechanics”, IJAEM, Vol. 39, Issue: 1, 2012, pp. 435-441, 2012.
  • Devabhaktuni, V. K., Chattaraj, B., Yagoub, M. C.E., Zhang, Q., “Advanced microwave modeling framework exploiting automatic model generation, knowledge neural networks, and space mapping, IEEE Transactions on Microwave Theory and Techniques”, 51(7), 1822-1833, 2003.
  • Xu, J., Yagoub, M.C.E., Ding, R., Zhang, Q., “Neural-based dynamic modeling of nonlinear microwave circuits, IEEE Transactions on Microwave Theory and Techniques”, 50(12), 2769-2780, 2002.
  • Rayas-Sánchez, J. E., “EM-based optimization of microwave circuits using artificial neural networks: The state-of-the-art, IEEE transactions on microwave theory and techniques”, 52(1), 420-435, 2004.
  • Lewis, C. D., “Industrial and business forecasting methods: A practical guide to exponential smoothing and curve fitting, Butterworth-Heinemann”, 1982.
Year 2020, 4. International Conference on Material Science and Technology (IMSTEC 2019) özel sayı, 16 - 30, 01.07.2020
https://doi.org/10.17100/nevbiltek.728791

Abstract

References

  • Haykin, S, Network, N, "Neural networks-A Comprehensive Foundation”, 2004.
  • Bose, N. K., Liang, P, “Neural Network Fundamentals with Graphs, Algorithms, and Applications, McGraw-Hill Series in Electrical Computer Engineering”,1996.
  • Cho H.S., Leu M.C., “Artificial Neural Networks in Manufacturing Processes Monitoring and Control, IFAC Proceedings Volumes”, 1998.
  • Monostori L., Prohaszka J, “A step towards intelligent manufacturing: Modelling and monitoring of manufacturing processes through artificial neural networks, CIRP Annals-Manufacturing Technology”, 42(1), 485-488, 1993.
  • Rajagopalan R., Rajagopalan P., “Applications of Neural Network in Manufacturing, in Proceedings of the 29th Annual Hawaii International Conference on System Sciences”, 1999.
  • Nevosad M., Lafata P, “Modelling of Propagation Constant of Twisted Pairs and Its Temperature Dependence at G. fast Frequencies. Elektronika ir Elektrotechnika”, 22(2), 107-113, 2016.
  • Lafata, P., “Simple Attenauation Models of Metallic Cables Suitable for G. fast Frequencies. Advances in Electrical and Electronic Engineering”, 13(2), 147-155, 2015.
  • Cecchi, V., Leger, A. S., Miu, K., Nwankpa, C. O., “Incorporating temperature variations into transmission-line models. IEEE Transactions on Power Delivery”, 26(4), 2189-2196, 2011.
  • Hoshmeh, A., Schmidt, U., “A full frequency-dependent cable model for the calculation of fast transients. Energies”, 10(8), 1158, 2017.
  • Kirawanich, P., Islam, N. E., Yakura, S. J., “An electromagnetic topology approach: Crosstalk characterizations of the unshielded twisted-pair cable. Progress In Electromagnetics Research”, 58, 285-299, 2006.
  • Nevosad, M., Lafata, P., Jares, P., “Modeling of telecommunication cables for gigabit DSL application. Advances in Electrical and Electronic Engineering”, 11(5), 336-341, 2013.
  • Celozzi, S., Feliziani, M., EMP-coupling to twisted-wire cables, in IEEE International Symposium on Electromagnetic Compatibility” pp. 85-89, 1990
  • Komisarek, K. S., Chamerberlin, K. A., Sivaprasad, K., “A method of moment analysis of a twisted-pair transmission line, in Proceedings of IEEE Antennas and Propagation Society International Symposium”, pp. 64-67, 1993.
  • Joffe, E. B., Axelrod, A., “On the benefits (if any) of pair twisting in reducing radiated emissions from two-wire cables, in Proceedings of IEEE Symposium on Electromagnetic Compatibility”, pp. 474-478, 1994.
  • Im, G. H., Werner, J., “Bandwidth-efficient digital transmission up to 155 Mb/s over unshielded twisted pair wiring, in Proceedings of ICC'93-IEEE International Conference on Communications”, vol. 3, pp. 1797-1803, 1993.
  • Diakun, P. C., Derewiany, C. F. “Magnetic field shielding effectiveness of a high-permeability shield on twisted pair and coaxial cables, in 1993 International Symposium on Electromagnetic Compatibility”, pp. 170-175,1993.
  • Piper, G. R., Prata, A., “Magnetic flux density produced by finite-length twisted-wire pairs, IEEE transactions on electromagnetic compatibility”, 38(1), 84-92, 1996.
  • Roden, J. A., Gedney, S. D., Paul, C. R., “A rigorous analysis of twisted pair transmission lines using non-orthogonal FDTD and the PML absorbing boundary condition, in Proceedings of Symposium on Electromagnetic Compatibility”, pp. 254-258, IEEE, 1996.
  • Poltz, J., Gleich, D., Josefsson, M., Lindstrom, M., “Electromagnetic modeling of twisted pair cables, In Proceedings of the 49th International Wire and Cable symposium”, 2000.
  • Shao, J., Nitta, S., Mutoh, A., “Study on the influence of ground on crosstalk reduction characteristics of twisted-pair-wire. The case of capacitive coupling, in 1999 International Symposium on Electromagnetic Compatibility” (IEEE Cat. No. 99EX147), pp. 730-733, 1999.
  • Umek, A., “Modeling the structural return loss in twisted pair cables, in 2000 10th Mediterranean Electrotechnical Conference. Information Technology and Electrotechnology for the Mediterranean Countries. Proceedings. MeleCon 2000 (Cat. No. 00CH37099)”, vol. 1, pp. 173-176, 2000.
  • Liu, X, “Low pressure partial discharge investigation with FEM modeling for a twisted pair of insulated conductors, in 2006 IEEE Conference on Electrical Insulation and Dielectric Phenomena”, pp. 611-614, 2006.
  • De Araujo, D. N., Pitner, G., Commens, M., Mutnury, B., Diepenbrock, J., Full-wave, “TwinAx, differential cable modeling, in 2008 58th Electronic Components and Technology Conference”, pp. 1684-1689, 2008.
  • Belkhelfa, S., Lefouili, M., Drissi, K. E. K, “Frequency domain analysis of EM crosstalk problem in a quad by the equivalent cable bundle method among twisted-wire pairs cable bundle. IEEE Transactions on Magnetics”, 51(11), 1-4, 2015.
  • Tatematsu, A., Rachidi, F., Rubinstein, M., “A technique for calculating voltages induced on twisted-wire pairs using the FDTD method, IEEE Transactions on Electromagnetic Compatibility”, 59(1), 301-304, 2017.
  • Shang, Y., Fei, W., Yu, H., “A fractional-order RLGC model for terahertz transmission line. in 2013 IEEE MTT-S International Microwave Symposium Digest (MTT)”, pp. 1-3, IEEE, 2013.
  • Limei Y., Yusong Z., Jianjun X., Weijian R., Qiong W., Zhigang S., “Transmission lines modeling method based on fractional order calculus theory, Transactions of China Electrotechnical Society”, 29, 260-268, 2014.
  • Liang, G., & Liu, X., “A reduction algorithm for fractional order transmission line modeling with skin effect, International Journal of u-and e-Service, Science and Technology”, 8(1), 239-250, 2015.
  • Pozar, D. “M., Mikrodalga mühendisliği”, Palme Yayıncılık, 2014.
  • Google, Reçber Kablo Datasheet, https://www.recber.com.tr , 2019.
  • Chauhan, N., Yadav, N., Arya, N., “Applications of Artificial Neural Network in Textiles, International Journal of Current Microbiology and Applied Sciences”, 7(4), 3134-3143, 2018.
  • Kumar, A., Chauhan, V., Bist, A. S., “Role of artificial neural network in welding technology: a survey network”, 67(1), 2013.
  • Smail M.K., Le Bihan Y., Pichon L., “Fast Diagnosis of Transmission Lines using Neural Networks and Principal Component Analysis, International Journal of Applied Electromagnetics and Mechanics”, IJAEM, Vol. 39, Issue: 1, 2012, pp. 435-441, 2012.
  • Devabhaktuni, V. K., Chattaraj, B., Yagoub, M. C.E., Zhang, Q., “Advanced microwave modeling framework exploiting automatic model generation, knowledge neural networks, and space mapping, IEEE Transactions on Microwave Theory and Techniques”, 51(7), 1822-1833, 2003.
  • Xu, J., Yagoub, M.C.E., Ding, R., Zhang, Q., “Neural-based dynamic modeling of nonlinear microwave circuits, IEEE Transactions on Microwave Theory and Techniques”, 50(12), 2769-2780, 2002.
  • Rayas-Sánchez, J. E., “EM-based optimization of microwave circuits using artificial neural networks: The state-of-the-art, IEEE transactions on microwave theory and techniques”, 52(1), 420-435, 2004.
  • Lewis, C. D., “Industrial and business forecasting methods: A practical guide to exponential smoothing and curve fitting, Butterworth-Heinemann”, 1982.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Pelin Öztürk 0000-0002-9976-6617

Hafiz Alisoy 0000-0002-2758-3635

Reşat Mutlu 0000-0003-0030-7136

Publication Date July 1, 2020
Acceptance Date June 30, 2020
Published in Issue Year 2020 4. International Conference on Material Science and Technology (IMSTEC 2019) özel sayı

Cite

APA Öztürk, P., Alisoy, H., & Mutlu, R. (2020). CAT 6A U/FTP Data Kablosunun Yüksek Frekans Parametrelerinin YSA ile Tahmin Modeli. Nevşehir Bilim Ve Teknoloji Dergisi16-30. https://doi.org/10.17100/nevbiltek.728791
AMA Öztürk P, Alisoy H, Mutlu R. CAT 6A U/FTP Data Kablosunun Yüksek Frekans Parametrelerinin YSA ile Tahmin Modeli. Nevşehir Bilim ve Teknoloji Dergisi. Published online July 1, 2020:16-30. doi:10.17100/nevbiltek.728791
Chicago Öztürk, Pelin, Hafiz Alisoy, and Reşat Mutlu. “CAT 6A U/FTP Data Kablosunun Yüksek Frekans Parametrelerinin YSA Ile Tahmin Modeli”. Nevşehir Bilim Ve Teknoloji Dergisi, July (July 2020), 16-30. https://doi.org/10.17100/nevbiltek.728791.
EndNote Öztürk P, Alisoy H, Mutlu R (July 1, 2020) CAT 6A U/FTP Data Kablosunun Yüksek Frekans Parametrelerinin YSA ile Tahmin Modeli. Nevşehir Bilim ve Teknoloji Dergisi 16–30.
IEEE P. Öztürk, H. Alisoy, and R. Mutlu, “CAT 6A U/FTP Data Kablosunun Yüksek Frekans Parametrelerinin YSA ile Tahmin Modeli”, Nevşehir Bilim ve Teknoloji Dergisi, pp. 16–30, July 2020, doi: 10.17100/nevbiltek.728791.
ISNAD Öztürk, Pelin et al. “CAT 6A U/FTP Data Kablosunun Yüksek Frekans Parametrelerinin YSA Ile Tahmin Modeli”. Nevşehir Bilim ve Teknoloji Dergisi. July 2020. 16-30. https://doi.org/10.17100/nevbiltek.728791.
JAMA Öztürk P, Alisoy H, Mutlu R. CAT 6A U/FTP Data Kablosunun Yüksek Frekans Parametrelerinin YSA ile Tahmin Modeli. Nevşehir Bilim ve Teknoloji Dergisi. 2020;:16–30.
MLA Öztürk, Pelin et al. “CAT 6A U/FTP Data Kablosunun Yüksek Frekans Parametrelerinin YSA Ile Tahmin Modeli”. Nevşehir Bilim Ve Teknoloji Dergisi, 2020, pp. 16-30, doi:10.17100/nevbiltek.728791.
Vancouver Öztürk P, Alisoy H, Mutlu R. CAT 6A U/FTP Data Kablosunun Yüksek Frekans Parametrelerinin YSA ile Tahmin Modeli. Nevşehir Bilim ve Teknoloji Dergisi. 2020:16-30.

Dergimizin tarandığı indeksler


12300          20980     2097822081