Research Article
BibTex RIS Cite

Bor Madeni Atık Suyundan Alüminyum Hidroksit ve Alüminyum Modifiye Edilmiş Ponza ile Bor Giderimi-Tam Faktöriyel Deneysel Tasarım

Year 2021, Volume: 10 Issue: 1, 1 - 13, 01.06.2021

Abstract

Türkiyedeki Bigadiç kolemanit madeni atıksuyundan bor giderimi ham ve alüminyumla modifiye edilmiş ponza minerali ile araştırılmıştır. Bigadiç madeninde kolemanit minerali yapışmış olan killerin şişmesi için havuzlarda bekletilmekte (382 mg Boron/L) ve yıkanmaktadır. Madenin genel atıksuyu Çam Köy barajında depolanmaktadır (608.1 mg Boron/L). pH (3-9), seyreltme oranı (1-10) ve adsorbent dozajı (1-5 g/ 50 mL) etkisi bekletme havuzu atıksuyu için çalışılmıştır. Bekletme havuzu atıksuyu için maksimum adsorpsiyon kapasiteleri modifiye edilmiş ve saf ponzalar için 1.06 mg/g and 0.607 mg/g olarak hesaplanmıştır. Deneysel tasarımda parametreler pH (3 ve 7), seyreltme oranı (1ve 10) and adsorbent dosajı (1ve 5 g/ 50 mL). Güvenilebilirlik katsayısına göre (p<0.1) (23 faktöriyel tasarım), istatistiksel olarak modifiye ponza için parameter sırası, model sabiti, adsorbent miktarı, seyreltme, adsorbent miktarı-seyreltme oranı, pH-seyreltme oranı, pH, pH-adsorbent miktarı olarak bulunmuştur. Yalancı ikinci mertebe reaksiyon modeli bor adsorpsiyonunu açıklamıştır. İzoterm verileri Freundlich izoterminden daha çok Langmuir izotermine uymuştur. Aluminyum ponzanın kapasitesi çok fazla yüksek olmadığı için, yerinde üretilmiş aluminyum hidroksit test edilmiştir ve %75.35 oranında Çam Köy barajı atıksuyunda bor giderimi sağlamıştır (608.1 mg Boron/L)

Supporting Institution

BALIKESİR ÜNİVERSİTESİ

Project Number

YOK

Thanks

BALIKESİR ÜNİVERSİTESİ BİLİMSEL ARAŞTIRMA PROJELERİ BİRİMİNE TEŞEKKÜRLER

References

  • Korkmaz M., Özmetin C., and Fil B.A., “Modelling of boron removal from solutions using Purolite S 108 in a batch reactor”, Clean Soil Air Water,44, 949–958, (2016).
  • Bayar D.,“Boron removal from aqueous solutions by adsorption and experimental design”, Osmangazi University, Institute Science and Technology, Master Thesis, 135 pp.,Eskişehir, Turkey, (2001).
  • Korkmaz M., Fil B.A., Özmetin C., Yaşar, Y.,“Full factorial design of experiments for boron removal from Colemanite mine wastewater using Purolite S 108 resin”, Bulgarian Chemical Communucation, 46, 594–601, (2014).
  • Özmetin C., Aydın Ö., Kocakerim M.M., Korkmaz M., Özmetin E., “An empirical kinetic model for calcium removal from calcium impurity-containing saturated boric acid solution by ion exchange technology using Amberlite IR–120 resin”, Chemical Engineering Journal, 148, 420–424, (2009).
  • Duman M.V., and Özmetin E., “Boron removal from wastewater originating in the open pit mines of Bigadic Boron Work by means of reverse osmosis”, International Journal of Global Warming, 6, 252-269, (2014).
  • Na J.W., Lee K.J., “Characteristics of boron adsorption on strong-base anion-exchange resin”, Annals of Nuclear Energy, 20, 455–462, (1993).
  • Yousefi M.,Arami S.M., Takallo H.,Hosseini M., Radfard M., Soleimani H.,Mohammadi, A.A.,“Modification of pumice with HCl and NaOH enhancing its fluoride adsorption capacity: Kinetic and isotherm studies”, Human and Ecological Risk Assesment, 25, 1508–1520, (2019).
  • Shokoohi R., Zolghadrnasab H., Azarian G., Mehdipous M., “Cadmium removal by using pumice modified with iron nanoparticles”, Global NEST Journal, 18, 426-436, (2016).
  • Sepehr M.N., Sivasankar V., Zarrabi M., Kumar M.S., “Surface modification of pumice enhancing its fluoride adsorption capacity: An insight into kinetic and thermodynamic studies”,Chemical Engineering Journal, 228, 192-204, (2013).
  • Rao K.V.S., Rachel A., Subrahmanyam M., Boule P., “Immobilization of TiO2 on pumice stone for the photocatalytic degradation of dyes and dye industry pollutants”, Applied Catalysis B: Environmental,46, 77–85, (2003).
  • Mahvi A.H., Heibati B., Mesdaghinia A.L., and Yari A.R., “Fluoride adsorption by pumice from aqueous solutions”, E-Journal of Chemistry, 9, 1843-1853, (2012).
  • Helard D., Indah S., Sari C.M., Mariesta H., “The adsorption and regeneration of natural pumice as low-cost adsorbent for nitrate removal from water”, Journal of Geoscience, Engineering, Environment, and Technology, 3, 86-93, (2018).
  • Öztürk D., Şahan T., Dişli E., Aktaş N., “Optimization with response surface methodology (RSM) of adsorption conditions of Cd(II) ions from aqueous solutions by pumice”, Hacettepe Journal of Biology and Chemistry, 42, 183-192, (2014).
  • Turan D., Kocahakimoğlu C., Boyacı E., Sofuoglu S.C., Eroğlu A.E., “Chitosan-immobilized pumice for the removal of As(V) from waters”, Water Air Soil Pollution,225, 1931-1942, (2014).
  • Asgari G., Ebrahimi A., Mohammadi A.S., Ghanizadeh G., “The investigation of humic acid adsorption from aqueous solutions onto modified pumice with hexadecyl trimethyl ammonium bromide”, International Journal of Environmental Health Engineering, 1, 1-7, (2012),.
  • Shokoohi R., Torkshavand Z., Bajalan S., Zolghadnasab H., and Khodayari Z., “Efficient phenol removal from aqueous solution using iron-coated pumice and leca as an available adsorbents: evalution of kinetics and isotherm studies”, Global NEST Journal, 21, 91-97, (2019).
  • Ersoy B., Sariisik A., Dikmen S., Sariisik G., “Characterization of acidic pumice and determination of its electrokinetic properties in water”, Powder Technology, 197, 129–135, (2010).
  • Farizoğlu B., Nuhoğlu A., Yıldız E., Keskinler B., “The performance of pumice as a filter bed material under rapid filtration conditions”, Filtration Separation, 40, 41-47, (2003).
  • Çiftçi E., Earth Sciences Technical Terms Dictionary, Hambe Offset, Niğde, Turkey, (2003).
  • Sapcı N., Gündüz L., Ulusoy M., “Karaman and vicinity pumice formation of lightweight concrete aggregate sector role and importance”, 5th Symposium on Industrial Raw Materials, Izmir, Turkey, 138-148, (2004).
  • Tunç S., and Duman O., “Effects of electrolytes on the electrokinetic properties of pumice suspensions”, Journal of Dispersion Science and Technology, 30, 548–555, (2009).
  • Öztürk N., and Kavak D., “Adsorption of boron from aqueous solutions using fly ash: Batch and column studies”, Journal of Hazardous Materials, 127, 81–88, (2005).
  • Cengeloglu Y., Tor A., Arslan G., Ersoz M., Gezgin S., “Removal of boron from aqueous solution by using neutralized red mud”, Journal of Hazardous Materials,142, 412-417, (2007).
  • Kavak D., “Removal of boron from aqueous solutions by batch adsorption on calcined alunite using experimental design”, Journal of Hazardous Materials, 163, 308-314, (2009).
  • Lagergren S., “Zur theorie der sogenannten adsorption gelöster stoffe”, Kungliga Svenska Vetenskapsakademiens Handlingar, 24, 1-39, (1898).
  • Ho Y.S., “Adsorption of heavy metals from waste streams by peat,”University of Birmingham, Ph.D. Thesis, 356 pp., Birmingham UK, (1995).
  • Alguacil F.J., Alonso M., Lozano L.J., “Chromium (III) recovery from waste acid solution by ion exchange processing using Amberlite IR-120 resin: batch and continuous ion exchange modelling”,Chemosphere, 57, 789-793, (2004).
  • Kartikaningsih D., Shih Y.J., Huang Y.H., “Boron removal from boric acid wastewater by electrocoagulation using aluminum as sacrificial anode”, Sustainable Environmental Research,26, 150-155, (2016).

Boron Removal by Aluminum Modified Pumice and Aluminum Hydroxide from Boron Mine Wastewater¬-Full Factorial Experimental Design

Year 2021, Volume: 10 Issue: 1, 1 - 13, 01.06.2021

Abstract

Boron removal by raw and aluminum modified pumice from Bigadiç colemanite mine wastewaters in Turkey were investigated. At Bigadiç mine, the colemanite ore is waited in water pools for swelling of attached clays (382 mg Boron/L) and then washed. The general wastewater of mine is stored in Çam Köy dam (608.1 mg Boron/L). The influence of pH (3-9), dilution ratio (1-10) and adsorbent dosage (1-05 g/50 mL) was studied for waiting pool wastewater. The maximum adsorption capacities of modified and raw pumice were calculated as 1.06 mg/g and 0.607 mg/g for waiting pool wastewater. In the experimental design for waiting pool wastewater, low and high parameter levels were pH (3 and 7), dilution fold (1 and 10) and adsorbent dosage (1 and 5 g/50 mL). According to confidence level (p<0.1) (23 factorial design), the statistically important sequence of factors for modified pumice were model constant, adsorbent amount, dilution, adsorbent amount-dilution ratio, pH-dilution ratio, pH, pH-adsorbent amount. The pseudo second order kinetic model described the boron adsorption. The isotherm data of study fitted to the Langmuir isotherm than Freundlich isotherm. As the adsorption capacity of aluminum modified pumice was not so high, the in-situ formed aluminum hydroxide was tested and provided about %75.35 boron removal from Çam Köy dam wastewater (608.1 mg Boron/L). 

Project Number

YOK

References

  • Korkmaz M., Özmetin C., and Fil B.A., “Modelling of boron removal from solutions using Purolite S 108 in a batch reactor”, Clean Soil Air Water,44, 949–958, (2016).
  • Bayar D.,“Boron removal from aqueous solutions by adsorption and experimental design”, Osmangazi University, Institute Science and Technology, Master Thesis, 135 pp.,Eskişehir, Turkey, (2001).
  • Korkmaz M., Fil B.A., Özmetin C., Yaşar, Y.,“Full factorial design of experiments for boron removal from Colemanite mine wastewater using Purolite S 108 resin”, Bulgarian Chemical Communucation, 46, 594–601, (2014).
  • Özmetin C., Aydın Ö., Kocakerim M.M., Korkmaz M., Özmetin E., “An empirical kinetic model for calcium removal from calcium impurity-containing saturated boric acid solution by ion exchange technology using Amberlite IR–120 resin”, Chemical Engineering Journal, 148, 420–424, (2009).
  • Duman M.V., and Özmetin E., “Boron removal from wastewater originating in the open pit mines of Bigadic Boron Work by means of reverse osmosis”, International Journal of Global Warming, 6, 252-269, (2014).
  • Na J.W., Lee K.J., “Characteristics of boron adsorption on strong-base anion-exchange resin”, Annals of Nuclear Energy, 20, 455–462, (1993).
  • Yousefi M.,Arami S.M., Takallo H.,Hosseini M., Radfard M., Soleimani H.,Mohammadi, A.A.,“Modification of pumice with HCl and NaOH enhancing its fluoride adsorption capacity: Kinetic and isotherm studies”, Human and Ecological Risk Assesment, 25, 1508–1520, (2019).
  • Shokoohi R., Zolghadrnasab H., Azarian G., Mehdipous M., “Cadmium removal by using pumice modified with iron nanoparticles”, Global NEST Journal, 18, 426-436, (2016).
  • Sepehr M.N., Sivasankar V., Zarrabi M., Kumar M.S., “Surface modification of pumice enhancing its fluoride adsorption capacity: An insight into kinetic and thermodynamic studies”,Chemical Engineering Journal, 228, 192-204, (2013).
  • Rao K.V.S., Rachel A., Subrahmanyam M., Boule P., “Immobilization of TiO2 on pumice stone for the photocatalytic degradation of dyes and dye industry pollutants”, Applied Catalysis B: Environmental,46, 77–85, (2003).
  • Mahvi A.H., Heibati B., Mesdaghinia A.L., and Yari A.R., “Fluoride adsorption by pumice from aqueous solutions”, E-Journal of Chemistry, 9, 1843-1853, (2012).
  • Helard D., Indah S., Sari C.M., Mariesta H., “The adsorption and regeneration of natural pumice as low-cost adsorbent for nitrate removal from water”, Journal of Geoscience, Engineering, Environment, and Technology, 3, 86-93, (2018).
  • Öztürk D., Şahan T., Dişli E., Aktaş N., “Optimization with response surface methodology (RSM) of adsorption conditions of Cd(II) ions from aqueous solutions by pumice”, Hacettepe Journal of Biology and Chemistry, 42, 183-192, (2014).
  • Turan D., Kocahakimoğlu C., Boyacı E., Sofuoglu S.C., Eroğlu A.E., “Chitosan-immobilized pumice for the removal of As(V) from waters”, Water Air Soil Pollution,225, 1931-1942, (2014).
  • Asgari G., Ebrahimi A., Mohammadi A.S., Ghanizadeh G., “The investigation of humic acid adsorption from aqueous solutions onto modified pumice with hexadecyl trimethyl ammonium bromide”, International Journal of Environmental Health Engineering, 1, 1-7, (2012),.
  • Shokoohi R., Torkshavand Z., Bajalan S., Zolghadnasab H., and Khodayari Z., “Efficient phenol removal from aqueous solution using iron-coated pumice and leca as an available adsorbents: evalution of kinetics and isotherm studies”, Global NEST Journal, 21, 91-97, (2019).
  • Ersoy B., Sariisik A., Dikmen S., Sariisik G., “Characterization of acidic pumice and determination of its electrokinetic properties in water”, Powder Technology, 197, 129–135, (2010).
  • Farizoğlu B., Nuhoğlu A., Yıldız E., Keskinler B., “The performance of pumice as a filter bed material under rapid filtration conditions”, Filtration Separation, 40, 41-47, (2003).
  • Çiftçi E., Earth Sciences Technical Terms Dictionary, Hambe Offset, Niğde, Turkey, (2003).
  • Sapcı N., Gündüz L., Ulusoy M., “Karaman and vicinity pumice formation of lightweight concrete aggregate sector role and importance”, 5th Symposium on Industrial Raw Materials, Izmir, Turkey, 138-148, (2004).
  • Tunç S., and Duman O., “Effects of electrolytes on the electrokinetic properties of pumice suspensions”, Journal of Dispersion Science and Technology, 30, 548–555, (2009).
  • Öztürk N., and Kavak D., “Adsorption of boron from aqueous solutions using fly ash: Batch and column studies”, Journal of Hazardous Materials, 127, 81–88, (2005).
  • Cengeloglu Y., Tor A., Arslan G., Ersoz M., Gezgin S., “Removal of boron from aqueous solution by using neutralized red mud”, Journal of Hazardous Materials,142, 412-417, (2007).
  • Kavak D., “Removal of boron from aqueous solutions by batch adsorption on calcined alunite using experimental design”, Journal of Hazardous Materials, 163, 308-314, (2009).
  • Lagergren S., “Zur theorie der sogenannten adsorption gelöster stoffe”, Kungliga Svenska Vetenskapsakademiens Handlingar, 24, 1-39, (1898).
  • Ho Y.S., “Adsorption of heavy metals from waste streams by peat,”University of Birmingham, Ph.D. Thesis, 356 pp., Birmingham UK, (1995).
  • Alguacil F.J., Alonso M., Lozano L.J., “Chromium (III) recovery from waste acid solution by ion exchange processing using Amberlite IR-120 resin: batch and continuous ion exchange modelling”,Chemosphere, 57, 789-793, (2004).
  • Kartikaningsih D., Shih Y.J., Huang Y.H., “Boron removal from boric acid wastewater by electrocoagulation using aluminum as sacrificial anode”, Sustainable Environmental Research,26, 150-155, (2016).
There are 28 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Mustafa Korkmaz 0000-0001-8424-6339

Cengiz Özmetin 0000-0003-3962-9255

Elif Ozmetin 0000-0002-3318-4083

Elif Çalgan 0000-0002-6794-1863

Yeliz Süzen 0000-0003-4059-4643

Project Number YOK
Publication Date June 1, 2021
Acceptance Date May 30, 2021
Published in Issue Year 2021 Volume: 10 Issue: 1

Cite

APA Korkmaz, M., Özmetin, C., Ozmetin, E., Çalgan, E., et al. (2021). Boron Removal by Aluminum Modified Pumice and Aluminum Hydroxide from Boron Mine Wastewater¬-Full Factorial Experimental Design. Nevşehir Bilim Ve Teknoloji Dergisi, 10(1), 1-13. https://doi.org/10.17100/nevbiltek.828753
AMA Korkmaz M, Özmetin C, Ozmetin E, Çalgan E, Süzen Y. Boron Removal by Aluminum Modified Pumice and Aluminum Hydroxide from Boron Mine Wastewater¬-Full Factorial Experimental Design. Nevşehir Bilim ve Teknoloji Dergisi. June 2021;10(1):1-13. doi:10.17100/nevbiltek.828753
Chicago Korkmaz, Mustafa, Cengiz Özmetin, Elif Ozmetin, Elif Çalgan, and Yeliz Süzen. “Boron Removal by Aluminum Modified Pumice and Aluminum Hydroxide from Boron Mine Wastewater¬-Full Factorial Experimental Design”. Nevşehir Bilim Ve Teknoloji Dergisi 10, no. 1 (June 2021): 1-13. https://doi.org/10.17100/nevbiltek.828753.
EndNote Korkmaz M, Özmetin C, Ozmetin E, Çalgan E, Süzen Y (June 1, 2021) Boron Removal by Aluminum Modified Pumice and Aluminum Hydroxide from Boron Mine Wastewater¬-Full Factorial Experimental Design. Nevşehir Bilim ve Teknoloji Dergisi 10 1 1–13.
IEEE M. Korkmaz, C. Özmetin, E. Ozmetin, E. Çalgan, and Y. Süzen, “Boron Removal by Aluminum Modified Pumice and Aluminum Hydroxide from Boron Mine Wastewater¬-Full Factorial Experimental Design”, Nevşehir Bilim ve Teknoloji Dergisi, vol. 10, no. 1, pp. 1–13, 2021, doi: 10.17100/nevbiltek.828753.
ISNAD Korkmaz, Mustafa et al. “Boron Removal by Aluminum Modified Pumice and Aluminum Hydroxide from Boron Mine Wastewater¬-Full Factorial Experimental Design”. Nevşehir Bilim ve Teknoloji Dergisi 10/1 (June 2021), 1-13. https://doi.org/10.17100/nevbiltek.828753.
JAMA Korkmaz M, Özmetin C, Ozmetin E, Çalgan E, Süzen Y. Boron Removal by Aluminum Modified Pumice and Aluminum Hydroxide from Boron Mine Wastewater¬-Full Factorial Experimental Design. Nevşehir Bilim ve Teknoloji Dergisi. 2021;10:1–13.
MLA Korkmaz, Mustafa et al. “Boron Removal by Aluminum Modified Pumice and Aluminum Hydroxide from Boron Mine Wastewater¬-Full Factorial Experimental Design”. Nevşehir Bilim Ve Teknoloji Dergisi, vol. 10, no. 1, 2021, pp. 1-13, doi:10.17100/nevbiltek.828753.
Vancouver Korkmaz M, Özmetin C, Ozmetin E, Çalgan E, Süzen Y. Boron Removal by Aluminum Modified Pumice and Aluminum Hydroxide from Boron Mine Wastewater¬-Full Factorial Experimental Design. Nevşehir Bilim ve Teknoloji Dergisi. 2021;10(1):1-13.

Dergimizin tarandığı indeksler


12300          20980     2097822081