Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 12 Sayı: 2, 26 - 33, 31.12.2023
https://doi.org/10.17100/nevbiltek.1336873

Öz

Kaynakça

  • [1]Klepzig K. D., Adams A. S., Handelsman J., Raffa K.F., “Symbioses: A key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans” Environmental Entomology, 38 (1), 67-77, 2009.
  • [2] Hosokawa T., Fukatsu, T., “Relevance of microbial symbiosis to insect behavior” Current Opinion in Insect Science, 39, 91-100, 2020.
  • [3] Zhao M., Lin X., Guo X., “The role of insect symbiotic bacteria in metabolizing phytochemicals and agrochemicals” Insects, 13(7), 583, 2022.
  • [4] Rupawate P.S., Roylawar P., Khandagale K., Gawande S., Ade A.B., Jaiswal D.K., Borgave S., “Role of gut symbionts of insect pests: A novel target for insect-pest control” Frontiers Microbiology, 14, 1146390, 2023.
  • [5] Correa C.C., Ballard J.W.O.,”Wolbachia associations with insects: Winning or losing against a master manipulator” Frontiers in Ecology and Evolution, 3, 153, 2016.
  • [6] Beard C.B., Durvasula R.V., Richards F.F., “Bacterial symbiosis in arthropods and the control of disease transmission” Emerging Infectious Diseases, 4, 581–591, 1998.
  • [7] Beard C.B., Mason P.W., Aksoy S., Tesh R.B., Richards F.F., “Transformation of an insect symbiont and expression of a foreign gene in the Chagas’ disease vector Rhodnius prolixus” American Journal of Tropical Medicine and Hygiene, 46, 195-200, 1992.
  • [8] Harada H., Ishikawa H. “Experimental pathogenicity of Erwinia aphidicola to pea aphid, Acyrthosiphon pisum” Journal of General and Applied Microbiology, 43, 363-367, 1997.
  • [9] Ishikawa H., “Insect symbiosis: An introduction” Edited by Bourtzis K., Miller T.A., Insect symbiosis, CRC Press, New York, 1-22, 2003.
  • 10] Zhong J., Jasinskas A., Barbour A.G., “Antibiotic treatment of the tick vector Amblyomma americanum reduced reproductive fitness” PLoS One, 2, e405, 2007.
  • [11] Gangwar P., Trivedi M., Tiwari R.K., “Entomopathogenic bacteria. Edited by Omkar., Microbial approaches for insect pest management., Springer, Singapore, 59-79, 2021
  • [12] Sevim A., Sevim E., “Lasiocampa trifolii (Denis & Schiffermüller, 1775)’nin dahili bakteriyel çeşitliliği: Yeni bir olası Okibacterium sp” Nevşehir Bilim ve Teknoloji Dergisi , 10 (1) , 44-55 .
  • [13] Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R., "DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates" Molecular Marine Biolology and Biotechnology, 3 (5), 294-299, 1994.
  • [14] Sambrook J.F.E., Maniatis T., "Molecular cloning" Cold Spring Harbor Laboratory Press, New York, USA, 1989.
  • [15] Sevim E., Çocar M., Sezgin F.M., Sevim A., “Aerobic gut bacterial flora of Cydia pomonella (L.) (Lepidoptera: Tortricidae) and their virulence to the host” Egyptian Journal of Biological Pest Control, 28, 30, 2018.
  • [16] Demirci M., Sevim E., Demir İ., Sevim A., “Culturable bacterial microbiota of Plagiodera versicolora (L.) (Coleoptera: Chrysomelidae) and virulence of the isolated strains” Folia Microbiologica, 58(3), 201-210, 2013.
  • [17] Hall T.A., “BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT” Nucleic Acids Symposium, 41, 95-98, 1999.
  • [18] Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. “Basic local alignment search tool” Journal of Molecular Biology, 215, 403-410, 1990.
  • [19] Benson D.A., Karsch-Mizrachi I., Clark K., Lipman D.J., Ostell J., Sayers E.W., “GenBank” Nucleic Acids Research, 40(Database issue): D48-D53, 2012.
  • [20] Thomson J.D., Higgins D.G., Gibson T.J., “Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice” Nucleic Acids Research, 22, 4673-4680, 1994.
  • [21] Tamura K., Stecher G., Kumar S., “MEGA11: Molecular Evolutionary Genetics Analysis Version 11” Molecular Biology and Evolution, 38(7), 3022-3027, 2021.
  • [22] Douglas A.E., “The molecular basis of bacterial-insect symbiosis” Journal of Molecular Biology, 426(23), 3830-7, 2014.
  • [23] Gherardi G., Di Bonaventura G., Savini V., “Staphylococcal Taxonomy” Edited by Savini V., Pet-To-Man Travelling Staphylococci, Academic Press, 1-10, 2018.
  • [24] Antelmann H., “Oxidative Stress Responses and Redox Signalling Mechanisms in Bacillus subtilis and Staphylococcus aureus” Edited by Tang Y.W., Sussman M., Liu D., Poxton I., Schwartzman J., Molecular Medical Microbiology, Academic Press, 249-274, 2015.
  • [25] Danışmazoğlu M., Demir İ., Sevim A., Demirbağ Z., Nalçacıoğlu R., “An investigation on the bacterial flora of Agriotes lineatus (Coleoptera: Elateridae) and pathogenicity of the flora members” Crop Protection, 40, 1-7, 2012.
  • [26] Kocur M., Kloos W.E., Schleifer K.H., “The Genus Micrococcus” Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.H., Stackebrandt E., The Prokaryotes, Springer, New York, 2006.
  • [27] Nunez M., “Micrococcus” Edited by Batt C.A., Tortorello M.L., Encyclopedia of Food Microbiology, Academic Press, 627-633, 2014.
  • [28] Wang Q., Yin M., Yuan C., Liu X., Jiang H., Wang M., Zou Z., Hu Z., “The Micrococcus luteus infection activates a novel melanization pathway of cSP10, cSP4, and cSP8 in Helicoverpa armigera” Insect Biochemistry and Molecular Biology, 147, 103775, 2022.
  • [29] Sevim, A., Sevim, E., “Culturable bacterial communities related to different larval stages of Sanys irrosea (Guenee, 1852) (Lepidoptera: Noctuoidae)” Journal of Advanced Research in Natural and Applied Sciences, 8(4), 641-650, 2022.
  • [30] Majidzadeh M., Fatahi-Bafghi M., “Current taxonomy of Rhodococcus species and their role in infections” European Journal of Clinical Microbiology and Infectious Disease, 37(11), 2045-2062, 2018.
  • [31] Rodríguez, J., Pavía, P., Montilla, M., Puerta C.J., “Identifying triatomine symbiont Rhodococcus rhodnii as intestinal bacteria from Rhodnius ecuadoriensis (Hemiptera: Reduviidae) laboratory insects” International Journal of Tropical Insect Science, 31, 34-37, 2011.
  • [32] Biswas S., Paul D., “Isolation and characterization of Rhodococcus qingshengii, a cellulolytic bacterium from Cnaphalocrocis medinalis (Lepidoptera: Crambidae) gut” Environmental and Experimental Biology, 19(4), 203-208, 2022.
  • [33] Batista K.K.S., Vieira C.S., Figueiredo M.B., Costa-Latgé S.G., Azambuja P., Genta F.A., Castro D.P., “Influence of Serratia marcescens and Rhodococcus rhodnii on the humoral immunity of Rhodnius prolixus” International Journal of Molecular Science, 9(20), 10901, 2021.
  • [34] Dotson E.M., Plikaytis B., Shinnick T.M., Durvasula R.V., Beard C.B., “Transformation of Rhodococcus rhodnii, a symbiont of the Chagas disease vector Rhodnius prolixus, with integrative elements of the L1 mycobacteriophage” Infection, Genetics and Evolution, 3, 103-109, 2003.
  • [35] Gobbetti M., Rizzello C.G., “Arthrobacter” Edited by Batt C.A., Tortorello M.L., Encyclopedia of Food Microbiology, Academic Press, 69-76, 2014.
  • [36] Roy P., Kumar A., “Arthrobacter” Edited by Amaresan N., Kumar M.S., Annapurna K., Kumar K., Sankaranarayanan A., Beneficial Microbes in Agro-Ecology, Academic Press, 3-11, 2020.
  • [37] Baxi N.N., Patel S., Hansoti D., “An Arthrobacter citreus strain suitable for degrading ε-caprolactam in polyamide waste and accumulation of glutamic acid” AMB Express, 9, 161, 2019.
  • [38] Karigar C., Mahesh A., Nagenahalli M., Yun D.J., “Phenol degradation by immobilized cells of Arthrobacter citreus. Biodegradation, 17, 47-55, 2006.
  • [39] Çelik T., Sevim A., “Bacterial pathogens from Diprion pini L. (Hymenoptera: Diprionidae) and their biocontrol potential. Biologia 77, 3001-3013, 2022.
  • [40] Carter G.R., “Bacillus” Edited by Carter G.R., Cole J.R., Diagnostic Procedure in Veterinary Bacteriology and Mycology, Academic Press, 221-228, 1990.
  • [41] Stahly D.P., Andrews R.E., Yousten A.A., “The Genus Bacillus-Insect Pathogens” Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer KH., Stackebrandt E., The Prokaryotes, Springer, New York, 2006.
  • [42] Jouzani G.S., Valijanian E., Sharafi R., “Bacillus thuringiensis: A successful insecticide with new environmental features and tidings” Applied Microbiology and Biotechnology, 101, 2691-2711, 2017.
  • [43] Lalucat J., Gomila M., Mulet M., Zaruma A., García-Valdés E., “Past, present and future of the boundaries of the Pseudomonas genus: Proposal of Stutzerimonas gen. Nov” Systematic and Applied Microbiology, 45(1), 126289, 2022.
  • [44] Teoh M.C., Furusawa G., Veera Singham G., “Multifaceted interactions between the pseudomonads and insects: Mechanisms and prospects” Archives of Microbiology, 203, 1891-1915, 2021.

Malacosoma castrensis ile İlişkili Kültüre Edilebilir Bağırsak Bakteri Toplulukları: İzolasyon ve 16S rRNA Dizin Analizi ile Tanımlama

Yıl 2023, Cilt: 12 Sayı: 2, 26 - 33, 31.12.2023
https://doi.org/10.17100/nevbiltek.1336873

Öz

Pek çok hayvan ve bitki vücutlarının içerisinde simbiyotik mikroorganizmalara sahiptir ve bu ortaklar arasında yakın etkileşimler meydana gelmektedir. Böcekler ise en büyük hayvan grubu oluşturmaktadırlar ve zorunlu mutualizm’den fakültatif parazitizm’e kadar değişen çeşitli endosimbiyotik ilişkileri içermektedirler. Böceklerdeki endosimbiyotik bakterilerin beslenme, üreme, savunma, iletişim, davranış ve gelişim gibi pek çok farklı rolleri bulunmaktadır. Bu çalışmada böceklerdeki simbiyotik bakterileri tanımlamak için model organizma olarak Malacosoma castrensis seçilmiştir. Bu böceğin larvalarında yer alan bakteriler izole edilmiş ve 16S rRNA sekans analizi ile tanımlanmıştır. Toplam olarak 6 adet bakteri izole edilmiş ve bunlar Staphylococcus sp. MM-1, Micrococcus sp. MM-2, Rhodococcus sp. MM-3, Arthrobacter citreus MM-4, Bacillus sp. MM-5 ve Pseudomonas sp. MM-6 olarak tanımlanmıştır. Elde edilen sonuçların böcek-bakteri ilişkilerinin belirlenmesinde ve böceklerdeki endosimbiyotik bakterilerinin rollerinin aydınlatılmasında faydalı olacağı düşünülmektedir.

Kaynakça

  • [1]Klepzig K. D., Adams A. S., Handelsman J., Raffa K.F., “Symbioses: A key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans” Environmental Entomology, 38 (1), 67-77, 2009.
  • [2] Hosokawa T., Fukatsu, T., “Relevance of microbial symbiosis to insect behavior” Current Opinion in Insect Science, 39, 91-100, 2020.
  • [3] Zhao M., Lin X., Guo X., “The role of insect symbiotic bacteria in metabolizing phytochemicals and agrochemicals” Insects, 13(7), 583, 2022.
  • [4] Rupawate P.S., Roylawar P., Khandagale K., Gawande S., Ade A.B., Jaiswal D.K., Borgave S., “Role of gut symbionts of insect pests: A novel target for insect-pest control” Frontiers Microbiology, 14, 1146390, 2023.
  • [5] Correa C.C., Ballard J.W.O.,”Wolbachia associations with insects: Winning or losing against a master manipulator” Frontiers in Ecology and Evolution, 3, 153, 2016.
  • [6] Beard C.B., Durvasula R.V., Richards F.F., “Bacterial symbiosis in arthropods and the control of disease transmission” Emerging Infectious Diseases, 4, 581–591, 1998.
  • [7] Beard C.B., Mason P.W., Aksoy S., Tesh R.B., Richards F.F., “Transformation of an insect symbiont and expression of a foreign gene in the Chagas’ disease vector Rhodnius prolixus” American Journal of Tropical Medicine and Hygiene, 46, 195-200, 1992.
  • [8] Harada H., Ishikawa H. “Experimental pathogenicity of Erwinia aphidicola to pea aphid, Acyrthosiphon pisum” Journal of General and Applied Microbiology, 43, 363-367, 1997.
  • [9] Ishikawa H., “Insect symbiosis: An introduction” Edited by Bourtzis K., Miller T.A., Insect symbiosis, CRC Press, New York, 1-22, 2003.
  • 10] Zhong J., Jasinskas A., Barbour A.G., “Antibiotic treatment of the tick vector Amblyomma americanum reduced reproductive fitness” PLoS One, 2, e405, 2007.
  • [11] Gangwar P., Trivedi M., Tiwari R.K., “Entomopathogenic bacteria. Edited by Omkar., Microbial approaches for insect pest management., Springer, Singapore, 59-79, 2021
  • [12] Sevim A., Sevim E., “Lasiocampa trifolii (Denis & Schiffermüller, 1775)’nin dahili bakteriyel çeşitliliği: Yeni bir olası Okibacterium sp” Nevşehir Bilim ve Teknoloji Dergisi , 10 (1) , 44-55 .
  • [13] Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R., "DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates" Molecular Marine Biolology and Biotechnology, 3 (5), 294-299, 1994.
  • [14] Sambrook J.F.E., Maniatis T., "Molecular cloning" Cold Spring Harbor Laboratory Press, New York, USA, 1989.
  • [15] Sevim E., Çocar M., Sezgin F.M., Sevim A., “Aerobic gut bacterial flora of Cydia pomonella (L.) (Lepidoptera: Tortricidae) and their virulence to the host” Egyptian Journal of Biological Pest Control, 28, 30, 2018.
  • [16] Demirci M., Sevim E., Demir İ., Sevim A., “Culturable bacterial microbiota of Plagiodera versicolora (L.) (Coleoptera: Chrysomelidae) and virulence of the isolated strains” Folia Microbiologica, 58(3), 201-210, 2013.
  • [17] Hall T.A., “BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT” Nucleic Acids Symposium, 41, 95-98, 1999.
  • [18] Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. “Basic local alignment search tool” Journal of Molecular Biology, 215, 403-410, 1990.
  • [19] Benson D.A., Karsch-Mizrachi I., Clark K., Lipman D.J., Ostell J., Sayers E.W., “GenBank” Nucleic Acids Research, 40(Database issue): D48-D53, 2012.
  • [20] Thomson J.D., Higgins D.G., Gibson T.J., “Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice” Nucleic Acids Research, 22, 4673-4680, 1994.
  • [21] Tamura K., Stecher G., Kumar S., “MEGA11: Molecular Evolutionary Genetics Analysis Version 11” Molecular Biology and Evolution, 38(7), 3022-3027, 2021.
  • [22] Douglas A.E., “The molecular basis of bacterial-insect symbiosis” Journal of Molecular Biology, 426(23), 3830-7, 2014.
  • [23] Gherardi G., Di Bonaventura G., Savini V., “Staphylococcal Taxonomy” Edited by Savini V., Pet-To-Man Travelling Staphylococci, Academic Press, 1-10, 2018.
  • [24] Antelmann H., “Oxidative Stress Responses and Redox Signalling Mechanisms in Bacillus subtilis and Staphylococcus aureus” Edited by Tang Y.W., Sussman M., Liu D., Poxton I., Schwartzman J., Molecular Medical Microbiology, Academic Press, 249-274, 2015.
  • [25] Danışmazoğlu M., Demir İ., Sevim A., Demirbağ Z., Nalçacıoğlu R., “An investigation on the bacterial flora of Agriotes lineatus (Coleoptera: Elateridae) and pathogenicity of the flora members” Crop Protection, 40, 1-7, 2012.
  • [26] Kocur M., Kloos W.E., Schleifer K.H., “The Genus Micrococcus” Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.H., Stackebrandt E., The Prokaryotes, Springer, New York, 2006.
  • [27] Nunez M., “Micrococcus” Edited by Batt C.A., Tortorello M.L., Encyclopedia of Food Microbiology, Academic Press, 627-633, 2014.
  • [28] Wang Q., Yin M., Yuan C., Liu X., Jiang H., Wang M., Zou Z., Hu Z., “The Micrococcus luteus infection activates a novel melanization pathway of cSP10, cSP4, and cSP8 in Helicoverpa armigera” Insect Biochemistry and Molecular Biology, 147, 103775, 2022.
  • [29] Sevim, A., Sevim, E., “Culturable bacterial communities related to different larval stages of Sanys irrosea (Guenee, 1852) (Lepidoptera: Noctuoidae)” Journal of Advanced Research in Natural and Applied Sciences, 8(4), 641-650, 2022.
  • [30] Majidzadeh M., Fatahi-Bafghi M., “Current taxonomy of Rhodococcus species and their role in infections” European Journal of Clinical Microbiology and Infectious Disease, 37(11), 2045-2062, 2018.
  • [31] Rodríguez, J., Pavía, P., Montilla, M., Puerta C.J., “Identifying triatomine symbiont Rhodococcus rhodnii as intestinal bacteria from Rhodnius ecuadoriensis (Hemiptera: Reduviidae) laboratory insects” International Journal of Tropical Insect Science, 31, 34-37, 2011.
  • [32] Biswas S., Paul D., “Isolation and characterization of Rhodococcus qingshengii, a cellulolytic bacterium from Cnaphalocrocis medinalis (Lepidoptera: Crambidae) gut” Environmental and Experimental Biology, 19(4), 203-208, 2022.
  • [33] Batista K.K.S., Vieira C.S., Figueiredo M.B., Costa-Latgé S.G., Azambuja P., Genta F.A., Castro D.P., “Influence of Serratia marcescens and Rhodococcus rhodnii on the humoral immunity of Rhodnius prolixus” International Journal of Molecular Science, 9(20), 10901, 2021.
  • [34] Dotson E.M., Plikaytis B., Shinnick T.M., Durvasula R.V., Beard C.B., “Transformation of Rhodococcus rhodnii, a symbiont of the Chagas disease vector Rhodnius prolixus, with integrative elements of the L1 mycobacteriophage” Infection, Genetics and Evolution, 3, 103-109, 2003.
  • [35] Gobbetti M., Rizzello C.G., “Arthrobacter” Edited by Batt C.A., Tortorello M.L., Encyclopedia of Food Microbiology, Academic Press, 69-76, 2014.
  • [36] Roy P., Kumar A., “Arthrobacter” Edited by Amaresan N., Kumar M.S., Annapurna K., Kumar K., Sankaranarayanan A., Beneficial Microbes in Agro-Ecology, Academic Press, 3-11, 2020.
  • [37] Baxi N.N., Patel S., Hansoti D., “An Arthrobacter citreus strain suitable for degrading ε-caprolactam in polyamide waste and accumulation of glutamic acid” AMB Express, 9, 161, 2019.
  • [38] Karigar C., Mahesh A., Nagenahalli M., Yun D.J., “Phenol degradation by immobilized cells of Arthrobacter citreus. Biodegradation, 17, 47-55, 2006.
  • [39] Çelik T., Sevim A., “Bacterial pathogens from Diprion pini L. (Hymenoptera: Diprionidae) and their biocontrol potential. Biologia 77, 3001-3013, 2022.
  • [40] Carter G.R., “Bacillus” Edited by Carter G.R., Cole J.R., Diagnostic Procedure in Veterinary Bacteriology and Mycology, Academic Press, 221-228, 1990.
  • [41] Stahly D.P., Andrews R.E., Yousten A.A., “The Genus Bacillus-Insect Pathogens” Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer KH., Stackebrandt E., The Prokaryotes, Springer, New York, 2006.
  • [42] Jouzani G.S., Valijanian E., Sharafi R., “Bacillus thuringiensis: A successful insecticide with new environmental features and tidings” Applied Microbiology and Biotechnology, 101, 2691-2711, 2017.
  • [43] Lalucat J., Gomila M., Mulet M., Zaruma A., García-Valdés E., “Past, present and future of the boundaries of the Pseudomonas genus: Proposal of Stutzerimonas gen. Nov” Systematic and Applied Microbiology, 45(1), 126289, 2022.
  • [44] Teoh M.C., Furusawa G., Veera Singham G., “Multifaceted interactions between the pseudomonads and insects: Mechanisms and prospects” Archives of Microbiology, 203, 1891-1915, 2021.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat Mühendisliği (Diğer)
Bölüm Biyoloji
Yazarlar

Ali Sevim 0000-0003-2472-599X

Yayımlanma Tarihi 31 Aralık 2023
Kabul Tarihi 5 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 12 Sayı: 2

Kaynak Göster

APA Sevim, A. (2023). Malacosoma castrensis ile İlişkili Kültüre Edilebilir Bağırsak Bakteri Toplulukları: İzolasyon ve 16S rRNA Dizin Analizi ile Tanımlama. Nevşehir Bilim Ve Teknoloji Dergisi, 12(2), 26-33. https://doi.org/10.17100/nevbiltek.1336873
AMA Sevim A. Malacosoma castrensis ile İlişkili Kültüre Edilebilir Bağırsak Bakteri Toplulukları: İzolasyon ve 16S rRNA Dizin Analizi ile Tanımlama. Nevşehir Bilim ve Teknoloji Dergisi. Aralık 2023;12(2):26-33. doi:10.17100/nevbiltek.1336873
Chicago Sevim, Ali. “Malacosoma Castrensis Ile İlişkili Kültüre Edilebilir Bağırsak Bakteri Toplulukları: İzolasyon Ve 16S RRNA Dizin Analizi Ile Tanımlama”. Nevşehir Bilim Ve Teknoloji Dergisi 12, sy. 2 (Aralık 2023): 26-33. https://doi.org/10.17100/nevbiltek.1336873.
EndNote Sevim A (01 Aralık 2023) Malacosoma castrensis ile İlişkili Kültüre Edilebilir Bağırsak Bakteri Toplulukları: İzolasyon ve 16S rRNA Dizin Analizi ile Tanımlama. Nevşehir Bilim ve Teknoloji Dergisi 12 2 26–33.
IEEE A. Sevim, “Malacosoma castrensis ile İlişkili Kültüre Edilebilir Bağırsak Bakteri Toplulukları: İzolasyon ve 16S rRNA Dizin Analizi ile Tanımlama”, Nevşehir Bilim ve Teknoloji Dergisi, c. 12, sy. 2, ss. 26–33, 2023, doi: 10.17100/nevbiltek.1336873.
ISNAD Sevim, Ali. “Malacosoma Castrensis Ile İlişkili Kültüre Edilebilir Bağırsak Bakteri Toplulukları: İzolasyon Ve 16S RRNA Dizin Analizi Ile Tanımlama”. Nevşehir Bilim ve Teknoloji Dergisi 12/2 (Aralık 2023), 26-33. https://doi.org/10.17100/nevbiltek.1336873.
JAMA Sevim A. Malacosoma castrensis ile İlişkili Kültüre Edilebilir Bağırsak Bakteri Toplulukları: İzolasyon ve 16S rRNA Dizin Analizi ile Tanımlama. Nevşehir Bilim ve Teknoloji Dergisi. 2023;12:26–33.
MLA Sevim, Ali. “Malacosoma Castrensis Ile İlişkili Kültüre Edilebilir Bağırsak Bakteri Toplulukları: İzolasyon Ve 16S RRNA Dizin Analizi Ile Tanımlama”. Nevşehir Bilim Ve Teknoloji Dergisi, c. 12, sy. 2, 2023, ss. 26-33, doi:10.17100/nevbiltek.1336873.
Vancouver Sevim A. Malacosoma castrensis ile İlişkili Kültüre Edilebilir Bağırsak Bakteri Toplulukları: İzolasyon ve 16S rRNA Dizin Analizi ile Tanımlama. Nevşehir Bilim ve Teknoloji Dergisi. 2023;12(2):26-33.

Dergimizin tarandığı indeksler


12300          20980     2097822081