Research Article
BibTex RIS Cite

Effect of natural perlite on mechanical properties of light-weight aggregate composites by alkali-silica reaction

Year 2024, , 1009 - 1019, 15.07.2024
https://doi.org/10.28948/ngumuh.1451305

Abstract

This study was performed in order to examine the behavior of natural perlite aggregate composites against durability problems caused by alkali silica reaction (ASR). Mortars containing 5%, 10%, 25%, 50%, 75% and 100% natural perlite were subjected to the ASR test. Mechanical tests were also performed on mortar samples. In addition, scanning electron microscope (SEM) analyzes were also applied. The expansion value of the 25% natural perlite substituted mortar with the highest ASR expansion increased by 145% as compared with the control mortar. When the natural perlite ratio increased from 25% to 100%, the expansion values decreased dramatically. 5% natural perlite substituted mortar had the highest compressive and flexural strengths. The SEM analysis results were obtained to be consistent with the ASR expansion results. Experimental results proved that mortars produced from 100% natural perlite can be used effectively to reduce the durability problems caused by ASR.

References

  • M. F. Junaid, Z. Rehman, M. Kuruc, I. Medveď, D. Bačinskas, J. Čurpek, M. Čekon, N. Ijaz and W. S. Ansari, Lightweight concrete from a perspective of sustainable reuse of waste byproducts. Construction and Building Materials, 319, 126061, 2022. https://doi.org/10.1016/j.conbuildmat.2021.126061.
  • L. Li, W. Liu, Q. You, M. Chen and Q. Zeng, Waste ceramic powder as a pozzolanic supplementary filler of cement for developing sustainable building materials. Journal of Cleaner Production, 259, 120853, 2020. https://doi.org/10.1016/j.jclepro.2020.120853.
  • R. Zulcão, J. L. Calmon, T. A. Rebello and D. R. Vieira, Life cycle assessment of the ornamental stone processing waste use in cement-based building materials. Construction and Building Materials, 257, 119523, 2020. https://doi.org/10.1016/ j.conbuildmat.2020.119523.
  • E. Ekinci, Y. Kazancoglu and S. K. Mangla, Using system dynamics to assess the environmental management of cement industry in streaming data context. Science of The Total Environment, 715, 136948, 2020. https://doi.org/10.1016/ j.scitotenv.2020.136948.
  • J. O. Ighalo and A. G. Adeniyi, A perspective on environmental sustainability in the cement industry. Waste Disposal & Sustainable Energy, 2, 161-164, 2020. https://doi.org/10.1007/s42768-020-00043-y.
  • K. Ostrowski, D. Stefaniuk, L. Sadowski, K. Krzywiński, M. Gicala and M. Różańska, Potential use of granite waste sourced from rock processing for the application as coarse aggregate in high-performance self-compacting concrete. Construction and Building Materials, 238, 117794, 2020. https://doi.org/10.1016/ j.conbuildmat.2019.117794.
  • E. R. Castillo, N. Almesfer, O. Saggi and J. M. Ingham, Light-weight concrete with artificial aggregate manufactured from plastic waste. Construction and Building Materials, 265, 120199, 2020. https://doi.org/10.1016/j.conbuildmat.2020.120199.
  • P. Sikora, T. Rucinska, D. Stephan, S. Chung and M. A. Elrahman, Evaluating the effects of nanosilica on the material properties of lightweight and ultra-lightweight concrete using image-based approaches. Construction and Building Materials, 264, 120241, 2020. https://doi.org/10.1016/j.conbuildmat.2020.120241.
  • W. Zhai, J. Ding, X. An and Z. Wang, An optimization model of sand and gravel mining quantity considering healthy ecosystem in Yangtze River, China. Journal of Cleaner Production, 242, 118385, 2020. https://doi.org/10.1016/j.jclepro.2019.118385.
  • R. A. Assaggaf, M. R. Ali, S. U. Al-Dulaijan and M. Maslehuddin, Properties of concrete with untreated and treated crumb rubber – A review. Journal of Materials Research and Technology, 11, 1753-1798, 2021. https://doi.org/10.1016/j.jmrt.2021.02.019.
  • A. R. G. Azevedo, D. Cecchin, D. F. Carmo, F. C. Silva, C. M. O. Campos, T. G. Shtrucka, M. T. Marvila and S. N. Monteiro, Analysis of the compactness and properties of the hardened state of mortars with recycling of construction and demolition waste (CDW). Journal of Materials Research and Technology, 9 (3), 5942-5952, 2020. https://doi.org/10.1016/ j.jmrt.2020.03.122.
  • K. A. A. Al-Sodani, M. M. Al-Zahrani, M. Maslehuddin, O. S. B. Al-Amoudi and S. U. Al-Dulaijan, Chloride diffusion models for Type I and fly ash cement concrete exposed to field and laboratory conditions. Marine Structures, 76, 102900, 2021. https://doi.org/10.1016/j.marstruc.2020.102900.
  • M. T. Marvila, J. Alexandre, A. R. G. Azevedo and E. B. Zanelato, Evaluation of the use of marble waste in hydrated lime cement mortar based. Journal of Material Cycles and Waste Management, 21, 1250-1261, 2019. https://doi.org/10.1007/s10163-019-00878-6.
  • M. U. Khan, M. Nasir, O. S. B. Al-Amoudi and M. Maslehuddin, Influence of in-situ casting temperature and curing regime on the properties of blended cement concretes under hot climatic conditions. Construction and Building Materials, 272, 121865, 2021. https://doi.org/10.1016/j.conbuildmat.2020.121865.
  • M. T. Marvila, A. R. G. Azevedo, D. Cecchin, J. M. Costa, G. C. Xavier, D. F. Carmo, S. N. Monteiro, Durability of coating mortars containing açaí fibers. Case Studies in Construction Materials, 13, e00406, 2020. https://doi.org/10.1016/j.cscm.2020.e00406.
  • A. R. G. Azevedo, J. Alexandre, E. B. Zanelato and M. T. Marvila, Influence of incorporation of glass waste on the rheological properties of adhesive mortar. Construction and Building Materials, 148, 359-368, 2017.https://doi.org/10.1016/j.conbuildmat.2017.04.208.
  • A. AlKhatib, M. Maslehuddin and S. U. Al-Dulaijan, Development of high performance concrete using industrial waste materials and nano-silica. Journal of Materials Research and Technology, 9 (3), 6696-6711, 2020. https://doi.org/10.1016/j.jmrt.2020.04.067.
  • P. S. Oliveira, M. L. P. Antunes, N. C. Cruz, E. C. Rangel, A. R. G. Azevedo and S. F. Durrant, Use of waste collected from wind turbine blade production as an eco-friendly ingredient in mortars for civil construction. Journal of Cleaner Production, 274, 122948, 2020. https://doi.org/10.1016/ j.jclepro.2020.122948.
  • F. K. Alqahtani, I. Zafar, Plastic-based sustainable synthetic aggregate in Green Lightweight concrete – A review. Construction and Building Materials, 292, 123321, 2021. https://doi.org/10.1016/ j.conbuildmat.2021.123321.
  • B. Strnadel, M. Ma, X. He, H. Tan, Y. Wang, Y. Su, T. Zheng and R. Zhao, A comparative study on concrete slurry waste: performance optimization from the wet-milling process. Materials and Structures, 54, 1-15, 2021. https://doi.org/10.1617/s11527-021-01771-1.
  • H. A. Numan, M. H. Yaseen and H. A. M. S. Al-Juboori, Comparison mechanical properties of two types of light weight aggregate concrete. Civil Engineering Journal, 5 (5), 1105-1118, 2019. https://doi.org/10.28991/cej-2019-03091315.
  • M. Ibrahim, A. Ahmad, M. S. Barry, L. M. Alhems and A. C. M. Suhoothi, Durability of structural lightweight concrete containing expanded perlite aggregate. International Journal of Concrete Structures and Materials, 14 (50), 1-15, 2020. https://doi.org/10.1186/ s40069-020-00425-w.
  • Q. L. Yu, P. Spiesz and H. J. H. Brouwers, Ultra-lightweight concrete: Conceptual design and performance evaluation. Cement and Concrete Composites, 61, 18-28, 2015. https://doi.org/10.1016/ j.cemconcomp.2015.04.012.
  • N. H. Balam, D. Mostofinejad, M. Eftekhar, Use of carbonate precipitating bacteria to reduce water absorption of aggregates. Construction and Building Materials, 141, 565-577, 2017. https://doi.org/10.1016/j.conbuildmat.2017.03.042.
  • G. W. Leong, K. H. Mo, Z. P. Loh and Z. Ibrahim, Mechanical properties and drying shrinkage of lightweight cementitious composite incorporating perlite microspheres and polypropylene fibers. Construction and Building Materials, 246, 118410, 2020.https://doi.org/10.1016/j.conbuildmat.2020.118410.
  • Y. A. Dolatabad, R. Kamgar and M. A. J. Tazangi, Effects of perlite, leca, and scoria as lightweight aggregates on properties of fresh and hard self-compacting concretes. Journal of Advanced Concrete Technology, 18 (10), 633-647, 2020. https://doi.org/10.3151/jact.18.633.
  • T. Z. H. Ting, M. E. Rahman, H. H. Lau and M. Z. Y. Ting, Recent development and perspective of lightweight aggregates based self-compacting concrete. Construction and Building Materials, 201, 763-777, 2019.https://doi.org/10.1016/j.conbuildmat.2018.12.128.
  • ACI, Guide for Structural Lightweight-aggregate Concrete (213R-14), American Concrete Institute, USA, 2014.
  • M. Aslam, P. Shafigh and M. Z. Jumaat, Oil-palm by-products as lightweight aggregate in concrete mixture: a review. Journal of Cleaner Production, 126, 56-73, 2016. https://doi.org/10.1016/j.jclepro.2016.03.100.
  • P. Shafigh, Z. Jumaat and H. Mahmud, Mix design and mechanical properties of oil palm shell lightweight aggregate concrete: A review. International Journal of the Physical Sciences, 5 (14), 2127-2134, 2010.
  • C. Li, M. D. A. Thomas and J. H. Ideker, A mechanistic study on mitigation of alkali-silica reaction by fine lightweight aggregates. Cement and Concrete Research, 104, 13-24, 2018. https://doi.org/10.1016/ j.cemconres.2017.10.006.
  • M. Lopez, L. F. Kahn and K. E. Kurtis, Creep and shrinkage of high-performance lightweight concrete. ACI Materials Journal, 101 (5), 391-399, 2004.
  • E. Papa, V. Medri, A. N. Murri, L. Laghi, G. D. Aloysio, S. Bandini and E. Landi, Characterization of alkali bonded expanded perlite. Construction and Building Materials, 191, 1139-1147, 2018. https://doi.org/10.1016/j.conbuildmat.2018.10.086.
  • K. H. Mo, T. Ling, T. H. Tan, G. W. Leong, C. W. Yuen and S. N. Shah, Alkali-silica reactivity of lightweight aggregate: A brief overview. Construction and Building Materials, 270, 121444, 2021. https://doi.org/10.1016/j.conbuildmat.2020.121444.
  • M. Kasai, Y. Kobayashi, M. Togo and A. Nakahira, Synthesis of zeolite-surface-modified perlite and their heavy metal adsorption capability. Materials Today: Proceedings, 16 (Part 1), 232-238, 2019. https://doi.org/10.1016/j.matpr.2019.05.247.
  • L. D. Maxim, R. Niebo and E. E. McConnell, Perlite toxicology and epidemiology-a review. Inhalation Toxicology, 26 (5), 259-270, 2014. https://doi.org/10.3109/08958378.2014.881940.
  • A.M. Rashad, A synopsis about perlite as building material-A best practice guide for Civil Engineer. Construction and Building Materials, 121, 338-353, 2016.https://doi.org/10.1016/j.conbuildmat.2016.06.001.
  • A. Sayadi, T. R. Neitzert and G. C. Clifton, Influence of poly-lactic acid on the properties of perlite concrete. Construction and Building Materials, 189, 660-675, 2018.https://doi.org/10.1016/j.conbuildmat.2018.09.029.
  • D. Sun, L. Wang and C. Li, Preparation and thermal properties of paraffin/expanded perlite composite as form-stable phase change material. Materials Letters, 108, 247-249, 2013. https://doi.org/10.1016/ j.matlet.2013.06.105.
  • M. Davraz, M. Koru, A. E. Akdağ, Ş. Kılınçarslan, Y. E. Delikanlı and M. Çabuk, Investigating the use of raw perlite to produce monolithic thermal insulation material. Construction and Building Materials, 263, 120674, 2020. https://doi.org/10.1016/ j.conbuildmat.2020.120674.
  • V. Pachta, F. Papadopoulos and M. Stefanidou, Development and testing of grouts based on perlite by-products and lime. Construction and Building Materials, 207, 338-344, 2019. https://doi.org/10.1016/j.conbuildmat.2019.02.157.
  • A. Różycka and W. Pichór, Effect of perlite waste addition on the properties of autoclaved aerated concrete. Construction and Building Materials, 120, 65-71, 2016. https://doi.org/10.1016/ j.conbuildmat.2016.05.019.
  • D. Fodil and M. Mohamed, Compressive strength and corrosion evaluation of concretes containing pozzolana and perlite immersed in aggressive environments. Construction and Building Materials, 179, 25-34, 2018. https://doi.org/10.1016/j.conbuildmat.2018.05.190.
  • L. Wang, P. Liu, Q. Jing, Y. Liu, W. Wang, Y. Zhang and Z. Li, Strength properties and thermal conductivity of concrete with the addition of expanded perlite filled with aerogel. Construction and Building Materials, 188, 747-757, 2018. https://doi.org/10.1016/ j.conbuildmat.2018.08.054.
  • L. Kotwica, W. Pichór, E. Kapeluszna and A. Różycka, Utilization of waste expanded perlite as new effective supplementary cementitious material. Journal of Cleaner Production, 140 (Part 3), 1344-1352, 2017. https://doi.org/10.1016/j.jclepro.2016.10.018.
  • I. Palomar and G. Barluenga, A multiscale model for pervious lime-cement mortar with perlite and cellulose fibers. Construction and Building Materials, 160, 136-144, 2018. https://doi.org/10.1016/ j.conbuildmat.2017.11.032.
  • D. S. L. Yim Wan, F. Aslani and G. Ma, Lightweight self-compacting concrete incorporating perlite, scoria, and polystyrene aggregates. Journal of Materials in Civil Engineering, 30 (8), 04018178, 2018. https://doi.org/10.1061/(ASCE)MT.19435533.0002350.
  • M. Y. Vahabi, B. Tahmouresi, H. Mosavi and S. F. Aval, Effect of pre-coating lightweight aggregates on the self-compacting concrete. Structural Concrete, 1–12, 2021. https://doi.org/10.1002/suco.202000744.
  • D. Barnat-Hunek, J. Góra, W. Andrzejuk and G. Łagód, The microstructure-mechanical properties of hybrid fibres-reinforced self-compacting lightweight concrete with perlite aggregate. Materials, 11 (7), 1093, 2018. https://doi.org/10.3390/ma11071093.
  • F. Tajra, M. A. Elrahman and D. Stephan, The production and properties of cold-bonded aggregate and its applications in concrete: A review. Construction and Building Materials, 225, 29-43, 2019. https://doi.org/10.1016/j.conbuildmat.2019.07.219.
  • K. Pasupathy, S. Ramakrishnan and J. Sanjayan, Enhancing the properties of foam concrete 3D printing using porous aggregates. Cement and Concrete Composites, 133, 104687, 2022. https://doi.org/10.1016/j.cemconcomp.2022.104687.
  • F. Hamidi, A. Valizadeh and F. Aslani, The effect of scoria, perlite and crumb rubber aggregates on the fresh and mechanical properties of geopolymer concrete. Structures, 38, 895-909, 2022. https://doi.org/10.1016/ j.istruc.2022.02.031.
  • R. Chihaoui, H. Siad, Y. Senhadji, M. Mouli, A. M. Nefoussi and M. Lachemi, Efficiency of natural pozzolan and natural perlite in controlling the alkali-silica reaction of cementitious materials. Case Studies in Construction Materials, 17, e01246, 2022. https://doi.org/10.1016/j.cscm.2022.e01246.
  • S. Diamond, A review of alkali-silica reaction and expansion mechanisms 1. Alkalies in cements and in concrete pore solutions. Cement and Concrete Research, 5 (4), 329-345, 1975. https://doi.org/ 10.1016/0008-8846(75)90089-7.
  • S. Diamond, A review of alkali-silica reaction and expansion mechanisms 2. Reactive aggregates. Cement and Concrete Research, 6 (4), 549-560, 1976. https://doi.org/10.1016/0008-8846(76)90083-1.
  • T. Kim, J. Olek and H. Jeong, Alkali–silica reaction: Kinetics of chemistry of pore solution and calcium hydroxide content in cementitious system. Cement and Concrete Research, 71, 36-45, 2015. https://doi.org/10.1016/j.cemconres.2015.01.017.
  • F. Rajabipour, E. Giannini, C. Dunant, J. H. Ideker and M. D. A. Thomas, Alkali–silica reaction: Current understanding of the reaction mechanisms and the knowledge gaps. Cement and Concrete Research, 76, 130-146, 2015. https://doi.org/10.1016/ j.cemconres.2015.05.024.
  • R. B. Figueira, R. Sousa, L. Coelho, M. Azenha, J. M. Almeida, P. A. S. Jorge and C. J. R. Silva, Alkali-silica reaction in concrete: Mechanisms, mitigation and test methods. Construction and Building Materials, 222, 903-931, 2019. https://doi.org/10.1016/ j.conbuildmat.2019.07.230.
  • D. Luo, A. Sinha, M. Adhikari and J. Wei, Mitigating alkali-silica reaction through metakaolin-based internal conditioning: New insights into property evolution and mitigation mechanism. Cement and Concrete Research, 159, 106888, 2022. https://doi.org/10.1016/j.cemconres.2022.106888.
  • I. Offei, A. Guo, Z. Sun, C. Qi and N. Sathitsuksanoh, Preventing ASR-induced deteriorations with hydrophobic aggregates- a feasibility study. Construction and Building Materials, 394, 132277, 2023.https://doi.org/10.1016/j.conbuildmat.2023.132277.
  • M. Zeidan and A. M. Said, Effect of colloidal nano-silica on alkali–silica mitigation. Journal of Sustainable Cement-Based Materials, 6 (2), 126-138, 2017. https://doi.org/10.1080/21650373.2016.1191387.
  • L. Kalina, V. B. Jr, L. Bradová and L. Topolář, Blastfurnace hybrid cement with waste water glass activator: Alkali-silica reaction study. Materials, 13 (16), 3646, 2020. https://doi.org/10.3390/ma13163646.
  • M. Zhang, W. Zhang and F. Xie, Experimental study on ASR performance of concrete with nano-particles. Journal of Asian Architecture and Building Engineering, 18 (1), 2-8, 2019. https://doi.org/ 10.1080/13467581.2019.1582420.
  • K. Schumacher, N. Saßmannshausen, C. Pritzel and R. Trettin, Lightweight aggregate concrete with an open structure and a porous matrix with an improved ratio of compressive strength to dry density. Construction and Building Materials, 264, 120167, 2020. https://doi.org/10.1016/j.conbuildmat.2020.120167.
  • TS EN 196-1, Methods of testing cement - Part 1: Determination of strength. Turkish Standards Institution, Ankara, Turkey (Turkish Codes), 2016.
  • ASTM C1260, Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method). ASTM International, West Conshohocken, PA, USA, 2021.
  • S. K. Adhikary, D. K. Ashish, H. Sharma, J. Patel, Ž. Rudžionis, M. Al-Ajamee, B. S. Thomas and J. M. Khatib, Lightweight self-compacting concrete: A review. Resources, Conservation & Recycling Advances, 15, 200107, 2022. https://doi.org/ 10.1016/j.rcradv.2022.200107.
  • S. Urhan, Alkali silica and pozzolanic reactions in concrete. Part 2: Observations on expanded perlite aggregate concretes. Cement and Concrete Research, 17 (3), 465-477, 1987. https://doi.org/10.1016/0008-8846(87)90010-X.
  • A. Mladenovič, J. S. Šuput, V. Ducman and A. S. Škapin, Alkali–silica reactivity of some frequently used lightweight aggregates. Cement and Concrete Research, 34 (10), 1809-1816, 2004. https://doi.org/10.1016/j.cemconres.2004.01.017.
  • N. Bouzoubaâ and B. Fournier, Current situation with the production and use of supplementary cementitious materials (SCMs) in concrete construction in Canada. Canadian Journal of Civil Engineering, 32 (1), 129-143, 2005. https://doi.org/10.1139/l04-109.
  • E. Ghafari, D. Feys and K. Khayat, Feasibility of using natural SCMs in concrete for infrastructure applications. Construction and Building Materials, 127, 724-732, 2016. https://doi.org/ 10.1016/j.conbuildmat.2016.10.070.
  • B. Işıkdağ, Characterization of lightweight ferrocement panels containing expanded perlite-based mortar. Construction and Building Materials, 81, 15-23, 2015. https://doi.org/10.1016/j.conbuildmat.2015.02.009.
  • D. Altalabani, S. Linsel and D. K. H. Bzeni, Rheological properties and strength of polypropylene fiber-reinforced self-compacting lightweight concrete produced with ground limestone. Arabian Journal for Science and Engineering, 45, 4171-4185, 2020. https://doi.org/10.1007/s13369-020-04410-z.
  • O. Sengul, S. Azizi, F. Karaosmanoglu and M. A. Tasdemir, Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete. Energy and Buildings, 43 (2-3), 671-676, 2011. https://doi.org/10.1016/j.enbuild.2010.11.008.
  • M. Kurt, T. Kotan, M. S. Gül, R. Gül and A. C. Aydın, The effect of blast furnace slag on the self-compactability of pumice aggregate lightweight concrete. Sadhana, 41, 253-264, 2016. https://doi.org/10.1007/s12046-016-0462-2.
  • İ. B. Topçu and T. Uygunoğlu, Effect of aggregate type on properties of hardened self-consolidating lightweight concrete (SCLC). Construction and Building Materials, 24 (7), 1286-1295, 2010. https://doi.org/10.1016/j.conbuildmat.2009.12.007.
  • R. Ashtiani, A. Saeed and M. Hammons, Mechanistic characterization and performance evaluation of recycled aggregate systems. Journal of Materials in Civil Engineering, 26 (1), 99-106, 2014. https://doi.org/10.1061/(ASCE)MT.19435533.0000798.
  • M. Lanzón and P. A. García-Ruiz, Lightweight cement mortars: Advantages and inconveniences of expanded perlite and its influence on fresh and hardened state and durability. Construction and Building Materials, 22 (8), 1798-1806, 2008. https://doi.org/10.1016/ j.conbuildmat.2007.05.006.
  • H. Shoukry, M. F. Kotkata, S. A. Abo-EL-Enein, M. S. Morsy and S. S. Shebl, Thermo-physical properties of nanostructured lightweight fiber reinforced cementitious composites. Construction and Building Materials, 102 (Part 1), 167-174, 2016. https://doi.org/10.1016/j.conbuildmat.2015.10.188.
  • S. Yang, J. Lu and C. S. Poon, Recycling of waste glass in dry-mixed concrete blocks: Evaluation of alkali-silica reaction (ASR) by accelerated laboratory tests and long-term field monitoring. Construction and Building Materials, 262, 120865, 2020. https://doi.org/10.1016/j.conbuildmat.2020.120865.
  • T. Iskhakov, C. Giebson, J. J. Timothy, H. M. Ludwig and G. Meschke, Deterioration of concrete due to ASR: Experiments and multiscale modeling. Cement and Concrete Research, 149, 106575, 2021. https://doi.org/10.1016/j.cemconres.2021.106575.
  • J. Luo, S. Asamoto and K. Nagai, An analytical investigation of bond deterioration between rebar and ASR/DEF-damaged concrete with and without stirrup confinement using 3D RBSM. Construction and Building Materials, 351, 128923, 2022. https://doi.org/10.1016/j.conbuildmat.2022.128923.
  • M. Shakoorioskooie, M. Griffa, A. Leemann, R. Zboray and P. Lura, Quantitative analysis of the evolution of ASR products and crack networks in the context of the concrete mesostructure. Cement and Concrete Research, 162, 106992, 2022. https://doi.org/10.1016/j.cemconres.2022.106992.
  • A. Antolik and D. Jóźwiak-Niedźwiedzka, ASR induced by chloride- and formate-based deicers in concrete with non-reactive aggregates. Construction and Building Materials, 400, 132811, 2023. https://doi.org/10.1016/j.conbuildmat.2023.132811.
  • D. J. D. Souza and L. F. M. Sanchez, Evaluating the efficiency of SCMs to avoid or mitigate ASR-induced expansion and deterioration through a multi-level assessment. Cement and Concrete Research, 173, 107262, 2023. https://doi.org/10.1016/ j.cemconres.2023.107262.
  • X. Qiu, Z. Chang, J. Chen, E. Schlangen, G. Ye and G. D. Schutter, ASR: Insights into the cracking process via lattice fracture simulation at mesoscale based on the chemical reactions at microscale. Materials & Design, 231, 111964, 2023. https://doi.org/10.1016/ j.matdes.2023.111964.

Ham perlitin hafif agregalı kompozitlerin alkali-silika reaksiyonu ile mekanik özellikleri üzerine etkisi

Year 2024, , 1009 - 1019, 15.07.2024
https://doi.org/10.28948/ngumuh.1451305

Abstract

Bu çalışma, ham perlit agregalı kompozitlerin alkali silika reaksiyonunun (ASR) neden olduğu dayanıklılık sorunlarına karşı davranışlarını incelemek amacıyla yapılmıştır. %5, %10, %25, %50, %75 ve %100 ham perlit içeren harçlar ASR deneyine tabi tutulmuştur. Harçlar üzerinde mekanik deneyler de yapılmıştır. Ayrıca taramalı elektron mikroskobu (SEM) analizleri de uygulanmıştır. En yüksek ASR genleşmesine sahip %25 ham perlit katkılı harcın genleşme değeri kontrol harcına göre %145 oranında artış göstermiştir. Ham perlit oranı %25’ten %100’e yükseldiğinde genleşme değerleri ciddi oranda azalmıştır. %5 ham perlit katkılı harç, en yüksek basınç ve eğilme dayanımına sahip olmuştur. SEM analiz sonuçlarının ASR genleşme sonuçlarıyla tutarlı olduğu görülmüştür. Deneysel sonuçlar, %100 ham perlitten üretilen harçların, ASR’nin neden olduğu dayanıklılık sorunlarını azaltmak için etkin bir şekilde kullanılabileceğini kanıtlamıştır.

References

  • M. F. Junaid, Z. Rehman, M. Kuruc, I. Medveď, D. Bačinskas, J. Čurpek, M. Čekon, N. Ijaz and W. S. Ansari, Lightweight concrete from a perspective of sustainable reuse of waste byproducts. Construction and Building Materials, 319, 126061, 2022. https://doi.org/10.1016/j.conbuildmat.2021.126061.
  • L. Li, W. Liu, Q. You, M. Chen and Q. Zeng, Waste ceramic powder as a pozzolanic supplementary filler of cement for developing sustainable building materials. Journal of Cleaner Production, 259, 120853, 2020. https://doi.org/10.1016/j.jclepro.2020.120853.
  • R. Zulcão, J. L. Calmon, T. A. Rebello and D. R. Vieira, Life cycle assessment of the ornamental stone processing waste use in cement-based building materials. Construction and Building Materials, 257, 119523, 2020. https://doi.org/10.1016/ j.conbuildmat.2020.119523.
  • E. Ekinci, Y. Kazancoglu and S. K. Mangla, Using system dynamics to assess the environmental management of cement industry in streaming data context. Science of The Total Environment, 715, 136948, 2020. https://doi.org/10.1016/ j.scitotenv.2020.136948.
  • J. O. Ighalo and A. G. Adeniyi, A perspective on environmental sustainability in the cement industry. Waste Disposal & Sustainable Energy, 2, 161-164, 2020. https://doi.org/10.1007/s42768-020-00043-y.
  • K. Ostrowski, D. Stefaniuk, L. Sadowski, K. Krzywiński, M. Gicala and M. Różańska, Potential use of granite waste sourced from rock processing for the application as coarse aggregate in high-performance self-compacting concrete. Construction and Building Materials, 238, 117794, 2020. https://doi.org/10.1016/ j.conbuildmat.2019.117794.
  • E. R. Castillo, N. Almesfer, O. Saggi and J. M. Ingham, Light-weight concrete with artificial aggregate manufactured from plastic waste. Construction and Building Materials, 265, 120199, 2020. https://doi.org/10.1016/j.conbuildmat.2020.120199.
  • P. Sikora, T. Rucinska, D. Stephan, S. Chung and M. A. Elrahman, Evaluating the effects of nanosilica on the material properties of lightweight and ultra-lightweight concrete using image-based approaches. Construction and Building Materials, 264, 120241, 2020. https://doi.org/10.1016/j.conbuildmat.2020.120241.
  • W. Zhai, J. Ding, X. An and Z. Wang, An optimization model of sand and gravel mining quantity considering healthy ecosystem in Yangtze River, China. Journal of Cleaner Production, 242, 118385, 2020. https://doi.org/10.1016/j.jclepro.2019.118385.
  • R. A. Assaggaf, M. R. Ali, S. U. Al-Dulaijan and M. Maslehuddin, Properties of concrete with untreated and treated crumb rubber – A review. Journal of Materials Research and Technology, 11, 1753-1798, 2021. https://doi.org/10.1016/j.jmrt.2021.02.019.
  • A. R. G. Azevedo, D. Cecchin, D. F. Carmo, F. C. Silva, C. M. O. Campos, T. G. Shtrucka, M. T. Marvila and S. N. Monteiro, Analysis of the compactness and properties of the hardened state of mortars with recycling of construction and demolition waste (CDW). Journal of Materials Research and Technology, 9 (3), 5942-5952, 2020. https://doi.org/10.1016/ j.jmrt.2020.03.122.
  • K. A. A. Al-Sodani, M. M. Al-Zahrani, M. Maslehuddin, O. S. B. Al-Amoudi and S. U. Al-Dulaijan, Chloride diffusion models for Type I and fly ash cement concrete exposed to field and laboratory conditions. Marine Structures, 76, 102900, 2021. https://doi.org/10.1016/j.marstruc.2020.102900.
  • M. T. Marvila, J. Alexandre, A. R. G. Azevedo and E. B. Zanelato, Evaluation of the use of marble waste in hydrated lime cement mortar based. Journal of Material Cycles and Waste Management, 21, 1250-1261, 2019. https://doi.org/10.1007/s10163-019-00878-6.
  • M. U. Khan, M. Nasir, O. S. B. Al-Amoudi and M. Maslehuddin, Influence of in-situ casting temperature and curing regime on the properties of blended cement concretes under hot climatic conditions. Construction and Building Materials, 272, 121865, 2021. https://doi.org/10.1016/j.conbuildmat.2020.121865.
  • M. T. Marvila, A. R. G. Azevedo, D. Cecchin, J. M. Costa, G. C. Xavier, D. F. Carmo, S. N. Monteiro, Durability of coating mortars containing açaí fibers. Case Studies in Construction Materials, 13, e00406, 2020. https://doi.org/10.1016/j.cscm.2020.e00406.
  • A. R. G. Azevedo, J. Alexandre, E. B. Zanelato and M. T. Marvila, Influence of incorporation of glass waste on the rheological properties of adhesive mortar. Construction and Building Materials, 148, 359-368, 2017.https://doi.org/10.1016/j.conbuildmat.2017.04.208.
  • A. AlKhatib, M. Maslehuddin and S. U. Al-Dulaijan, Development of high performance concrete using industrial waste materials and nano-silica. Journal of Materials Research and Technology, 9 (3), 6696-6711, 2020. https://doi.org/10.1016/j.jmrt.2020.04.067.
  • P. S. Oliveira, M. L. P. Antunes, N. C. Cruz, E. C. Rangel, A. R. G. Azevedo and S. F. Durrant, Use of waste collected from wind turbine blade production as an eco-friendly ingredient in mortars for civil construction. Journal of Cleaner Production, 274, 122948, 2020. https://doi.org/10.1016/ j.jclepro.2020.122948.
  • F. K. Alqahtani, I. Zafar, Plastic-based sustainable synthetic aggregate in Green Lightweight concrete – A review. Construction and Building Materials, 292, 123321, 2021. https://doi.org/10.1016/ j.conbuildmat.2021.123321.
  • B. Strnadel, M. Ma, X. He, H. Tan, Y. Wang, Y. Su, T. Zheng and R. Zhao, A comparative study on concrete slurry waste: performance optimization from the wet-milling process. Materials and Structures, 54, 1-15, 2021. https://doi.org/10.1617/s11527-021-01771-1.
  • H. A. Numan, M. H. Yaseen and H. A. M. S. Al-Juboori, Comparison mechanical properties of two types of light weight aggregate concrete. Civil Engineering Journal, 5 (5), 1105-1118, 2019. https://doi.org/10.28991/cej-2019-03091315.
  • M. Ibrahim, A. Ahmad, M. S. Barry, L. M. Alhems and A. C. M. Suhoothi, Durability of structural lightweight concrete containing expanded perlite aggregate. International Journal of Concrete Structures and Materials, 14 (50), 1-15, 2020. https://doi.org/10.1186/ s40069-020-00425-w.
  • Q. L. Yu, P. Spiesz and H. J. H. Brouwers, Ultra-lightweight concrete: Conceptual design and performance evaluation. Cement and Concrete Composites, 61, 18-28, 2015. https://doi.org/10.1016/ j.cemconcomp.2015.04.012.
  • N. H. Balam, D. Mostofinejad, M. Eftekhar, Use of carbonate precipitating bacteria to reduce water absorption of aggregates. Construction and Building Materials, 141, 565-577, 2017. https://doi.org/10.1016/j.conbuildmat.2017.03.042.
  • G. W. Leong, K. H. Mo, Z. P. Loh and Z. Ibrahim, Mechanical properties and drying shrinkage of lightweight cementitious composite incorporating perlite microspheres and polypropylene fibers. Construction and Building Materials, 246, 118410, 2020.https://doi.org/10.1016/j.conbuildmat.2020.118410.
  • Y. A. Dolatabad, R. Kamgar and M. A. J. Tazangi, Effects of perlite, leca, and scoria as lightweight aggregates on properties of fresh and hard self-compacting concretes. Journal of Advanced Concrete Technology, 18 (10), 633-647, 2020. https://doi.org/10.3151/jact.18.633.
  • T. Z. H. Ting, M. E. Rahman, H. H. Lau and M. Z. Y. Ting, Recent development and perspective of lightweight aggregates based self-compacting concrete. Construction and Building Materials, 201, 763-777, 2019.https://doi.org/10.1016/j.conbuildmat.2018.12.128.
  • ACI, Guide for Structural Lightweight-aggregate Concrete (213R-14), American Concrete Institute, USA, 2014.
  • M. Aslam, P. Shafigh and M. Z. Jumaat, Oil-palm by-products as lightweight aggregate in concrete mixture: a review. Journal of Cleaner Production, 126, 56-73, 2016. https://doi.org/10.1016/j.jclepro.2016.03.100.
  • P. Shafigh, Z. Jumaat and H. Mahmud, Mix design and mechanical properties of oil palm shell lightweight aggregate concrete: A review. International Journal of the Physical Sciences, 5 (14), 2127-2134, 2010.
  • C. Li, M. D. A. Thomas and J. H. Ideker, A mechanistic study on mitigation of alkali-silica reaction by fine lightweight aggregates. Cement and Concrete Research, 104, 13-24, 2018. https://doi.org/10.1016/ j.cemconres.2017.10.006.
  • M. Lopez, L. F. Kahn and K. E. Kurtis, Creep and shrinkage of high-performance lightweight concrete. ACI Materials Journal, 101 (5), 391-399, 2004.
  • E. Papa, V. Medri, A. N. Murri, L. Laghi, G. D. Aloysio, S. Bandini and E. Landi, Characterization of alkali bonded expanded perlite. Construction and Building Materials, 191, 1139-1147, 2018. https://doi.org/10.1016/j.conbuildmat.2018.10.086.
  • K. H. Mo, T. Ling, T. H. Tan, G. W. Leong, C. W. Yuen and S. N. Shah, Alkali-silica reactivity of lightweight aggregate: A brief overview. Construction and Building Materials, 270, 121444, 2021. https://doi.org/10.1016/j.conbuildmat.2020.121444.
  • M. Kasai, Y. Kobayashi, M. Togo and A. Nakahira, Synthesis of zeolite-surface-modified perlite and their heavy metal adsorption capability. Materials Today: Proceedings, 16 (Part 1), 232-238, 2019. https://doi.org/10.1016/j.matpr.2019.05.247.
  • L. D. Maxim, R. Niebo and E. E. McConnell, Perlite toxicology and epidemiology-a review. Inhalation Toxicology, 26 (5), 259-270, 2014. https://doi.org/10.3109/08958378.2014.881940.
  • A.M. Rashad, A synopsis about perlite as building material-A best practice guide for Civil Engineer. Construction and Building Materials, 121, 338-353, 2016.https://doi.org/10.1016/j.conbuildmat.2016.06.001.
  • A. Sayadi, T. R. Neitzert and G. C. Clifton, Influence of poly-lactic acid on the properties of perlite concrete. Construction and Building Materials, 189, 660-675, 2018.https://doi.org/10.1016/j.conbuildmat.2018.09.029.
  • D. Sun, L. Wang and C. Li, Preparation and thermal properties of paraffin/expanded perlite composite as form-stable phase change material. Materials Letters, 108, 247-249, 2013. https://doi.org/10.1016/ j.matlet.2013.06.105.
  • M. Davraz, M. Koru, A. E. Akdağ, Ş. Kılınçarslan, Y. E. Delikanlı and M. Çabuk, Investigating the use of raw perlite to produce monolithic thermal insulation material. Construction and Building Materials, 263, 120674, 2020. https://doi.org/10.1016/ j.conbuildmat.2020.120674.
  • V. Pachta, F. Papadopoulos and M. Stefanidou, Development and testing of grouts based on perlite by-products and lime. Construction and Building Materials, 207, 338-344, 2019. https://doi.org/10.1016/j.conbuildmat.2019.02.157.
  • A. Różycka and W. Pichór, Effect of perlite waste addition on the properties of autoclaved aerated concrete. Construction and Building Materials, 120, 65-71, 2016. https://doi.org/10.1016/ j.conbuildmat.2016.05.019.
  • D. Fodil and M. Mohamed, Compressive strength and corrosion evaluation of concretes containing pozzolana and perlite immersed in aggressive environments. Construction and Building Materials, 179, 25-34, 2018. https://doi.org/10.1016/j.conbuildmat.2018.05.190.
  • L. Wang, P. Liu, Q. Jing, Y. Liu, W. Wang, Y. Zhang and Z. Li, Strength properties and thermal conductivity of concrete with the addition of expanded perlite filled with aerogel. Construction and Building Materials, 188, 747-757, 2018. https://doi.org/10.1016/ j.conbuildmat.2018.08.054.
  • L. Kotwica, W. Pichór, E. Kapeluszna and A. Różycka, Utilization of waste expanded perlite as new effective supplementary cementitious material. Journal of Cleaner Production, 140 (Part 3), 1344-1352, 2017. https://doi.org/10.1016/j.jclepro.2016.10.018.
  • I. Palomar and G. Barluenga, A multiscale model for pervious lime-cement mortar with perlite and cellulose fibers. Construction and Building Materials, 160, 136-144, 2018. https://doi.org/10.1016/ j.conbuildmat.2017.11.032.
  • D. S. L. Yim Wan, F. Aslani and G. Ma, Lightweight self-compacting concrete incorporating perlite, scoria, and polystyrene aggregates. Journal of Materials in Civil Engineering, 30 (8), 04018178, 2018. https://doi.org/10.1061/(ASCE)MT.19435533.0002350.
  • M. Y. Vahabi, B. Tahmouresi, H. Mosavi and S. F. Aval, Effect of pre-coating lightweight aggregates on the self-compacting concrete. Structural Concrete, 1–12, 2021. https://doi.org/10.1002/suco.202000744.
  • D. Barnat-Hunek, J. Góra, W. Andrzejuk and G. Łagód, The microstructure-mechanical properties of hybrid fibres-reinforced self-compacting lightweight concrete with perlite aggregate. Materials, 11 (7), 1093, 2018. https://doi.org/10.3390/ma11071093.
  • F. Tajra, M. A. Elrahman and D. Stephan, The production and properties of cold-bonded aggregate and its applications in concrete: A review. Construction and Building Materials, 225, 29-43, 2019. https://doi.org/10.1016/j.conbuildmat.2019.07.219.
  • K. Pasupathy, S. Ramakrishnan and J. Sanjayan, Enhancing the properties of foam concrete 3D printing using porous aggregates. Cement and Concrete Composites, 133, 104687, 2022. https://doi.org/10.1016/j.cemconcomp.2022.104687.
  • F. Hamidi, A. Valizadeh and F. Aslani, The effect of scoria, perlite and crumb rubber aggregates on the fresh and mechanical properties of geopolymer concrete. Structures, 38, 895-909, 2022. https://doi.org/10.1016/ j.istruc.2022.02.031.
  • R. Chihaoui, H. Siad, Y. Senhadji, M. Mouli, A. M. Nefoussi and M. Lachemi, Efficiency of natural pozzolan and natural perlite in controlling the alkali-silica reaction of cementitious materials. Case Studies in Construction Materials, 17, e01246, 2022. https://doi.org/10.1016/j.cscm.2022.e01246.
  • S. Diamond, A review of alkali-silica reaction and expansion mechanisms 1. Alkalies in cements and in concrete pore solutions. Cement and Concrete Research, 5 (4), 329-345, 1975. https://doi.org/ 10.1016/0008-8846(75)90089-7.
  • S. Diamond, A review of alkali-silica reaction and expansion mechanisms 2. Reactive aggregates. Cement and Concrete Research, 6 (4), 549-560, 1976. https://doi.org/10.1016/0008-8846(76)90083-1.
  • T. Kim, J. Olek and H. Jeong, Alkali–silica reaction: Kinetics of chemistry of pore solution and calcium hydroxide content in cementitious system. Cement and Concrete Research, 71, 36-45, 2015. https://doi.org/10.1016/j.cemconres.2015.01.017.
  • F. Rajabipour, E. Giannini, C. Dunant, J. H. Ideker and M. D. A. Thomas, Alkali–silica reaction: Current understanding of the reaction mechanisms and the knowledge gaps. Cement and Concrete Research, 76, 130-146, 2015. https://doi.org/10.1016/ j.cemconres.2015.05.024.
  • R. B. Figueira, R. Sousa, L. Coelho, M. Azenha, J. M. Almeida, P. A. S. Jorge and C. J. R. Silva, Alkali-silica reaction in concrete: Mechanisms, mitigation and test methods. Construction and Building Materials, 222, 903-931, 2019. https://doi.org/10.1016/ j.conbuildmat.2019.07.230.
  • D. Luo, A. Sinha, M. Adhikari and J. Wei, Mitigating alkali-silica reaction through metakaolin-based internal conditioning: New insights into property evolution and mitigation mechanism. Cement and Concrete Research, 159, 106888, 2022. https://doi.org/10.1016/j.cemconres.2022.106888.
  • I. Offei, A. Guo, Z. Sun, C. Qi and N. Sathitsuksanoh, Preventing ASR-induced deteriorations with hydrophobic aggregates- a feasibility study. Construction and Building Materials, 394, 132277, 2023.https://doi.org/10.1016/j.conbuildmat.2023.132277.
  • M. Zeidan and A. M. Said, Effect of colloidal nano-silica on alkali–silica mitigation. Journal of Sustainable Cement-Based Materials, 6 (2), 126-138, 2017. https://doi.org/10.1080/21650373.2016.1191387.
  • L. Kalina, V. B. Jr, L. Bradová and L. Topolář, Blastfurnace hybrid cement with waste water glass activator: Alkali-silica reaction study. Materials, 13 (16), 3646, 2020. https://doi.org/10.3390/ma13163646.
  • M. Zhang, W. Zhang and F. Xie, Experimental study on ASR performance of concrete with nano-particles. Journal of Asian Architecture and Building Engineering, 18 (1), 2-8, 2019. https://doi.org/ 10.1080/13467581.2019.1582420.
  • K. Schumacher, N. Saßmannshausen, C. Pritzel and R. Trettin, Lightweight aggregate concrete with an open structure and a porous matrix with an improved ratio of compressive strength to dry density. Construction and Building Materials, 264, 120167, 2020. https://doi.org/10.1016/j.conbuildmat.2020.120167.
  • TS EN 196-1, Methods of testing cement - Part 1: Determination of strength. Turkish Standards Institution, Ankara, Turkey (Turkish Codes), 2016.
  • ASTM C1260, Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method). ASTM International, West Conshohocken, PA, USA, 2021.
  • S. K. Adhikary, D. K. Ashish, H. Sharma, J. Patel, Ž. Rudžionis, M. Al-Ajamee, B. S. Thomas and J. M. Khatib, Lightweight self-compacting concrete: A review. Resources, Conservation & Recycling Advances, 15, 200107, 2022. https://doi.org/ 10.1016/j.rcradv.2022.200107.
  • S. Urhan, Alkali silica and pozzolanic reactions in concrete. Part 2: Observations on expanded perlite aggregate concretes. Cement and Concrete Research, 17 (3), 465-477, 1987. https://doi.org/10.1016/0008-8846(87)90010-X.
  • A. Mladenovič, J. S. Šuput, V. Ducman and A. S. Škapin, Alkali–silica reactivity of some frequently used lightweight aggregates. Cement and Concrete Research, 34 (10), 1809-1816, 2004. https://doi.org/10.1016/j.cemconres.2004.01.017.
  • N. Bouzoubaâ and B. Fournier, Current situation with the production and use of supplementary cementitious materials (SCMs) in concrete construction in Canada. Canadian Journal of Civil Engineering, 32 (1), 129-143, 2005. https://doi.org/10.1139/l04-109.
  • E. Ghafari, D. Feys and K. Khayat, Feasibility of using natural SCMs in concrete for infrastructure applications. Construction and Building Materials, 127, 724-732, 2016. https://doi.org/ 10.1016/j.conbuildmat.2016.10.070.
  • B. Işıkdağ, Characterization of lightweight ferrocement panels containing expanded perlite-based mortar. Construction and Building Materials, 81, 15-23, 2015. https://doi.org/10.1016/j.conbuildmat.2015.02.009.
  • D. Altalabani, S. Linsel and D. K. H. Bzeni, Rheological properties and strength of polypropylene fiber-reinforced self-compacting lightweight concrete produced with ground limestone. Arabian Journal for Science and Engineering, 45, 4171-4185, 2020. https://doi.org/10.1007/s13369-020-04410-z.
  • O. Sengul, S. Azizi, F. Karaosmanoglu and M. A. Tasdemir, Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete. Energy and Buildings, 43 (2-3), 671-676, 2011. https://doi.org/10.1016/j.enbuild.2010.11.008.
  • M. Kurt, T. Kotan, M. S. Gül, R. Gül and A. C. Aydın, The effect of blast furnace slag on the self-compactability of pumice aggregate lightweight concrete. Sadhana, 41, 253-264, 2016. https://doi.org/10.1007/s12046-016-0462-2.
  • İ. B. Topçu and T. Uygunoğlu, Effect of aggregate type on properties of hardened self-consolidating lightweight concrete (SCLC). Construction and Building Materials, 24 (7), 1286-1295, 2010. https://doi.org/10.1016/j.conbuildmat.2009.12.007.
  • R. Ashtiani, A. Saeed and M. Hammons, Mechanistic characterization and performance evaluation of recycled aggregate systems. Journal of Materials in Civil Engineering, 26 (1), 99-106, 2014. https://doi.org/10.1061/(ASCE)MT.19435533.0000798.
  • M. Lanzón and P. A. García-Ruiz, Lightweight cement mortars: Advantages and inconveniences of expanded perlite and its influence on fresh and hardened state and durability. Construction and Building Materials, 22 (8), 1798-1806, 2008. https://doi.org/10.1016/ j.conbuildmat.2007.05.006.
  • H. Shoukry, M. F. Kotkata, S. A. Abo-EL-Enein, M. S. Morsy and S. S. Shebl, Thermo-physical properties of nanostructured lightweight fiber reinforced cementitious composites. Construction and Building Materials, 102 (Part 1), 167-174, 2016. https://doi.org/10.1016/j.conbuildmat.2015.10.188.
  • S. Yang, J. Lu and C. S. Poon, Recycling of waste glass in dry-mixed concrete blocks: Evaluation of alkali-silica reaction (ASR) by accelerated laboratory tests and long-term field monitoring. Construction and Building Materials, 262, 120865, 2020. https://doi.org/10.1016/j.conbuildmat.2020.120865.
  • T. Iskhakov, C. Giebson, J. J. Timothy, H. M. Ludwig and G. Meschke, Deterioration of concrete due to ASR: Experiments and multiscale modeling. Cement and Concrete Research, 149, 106575, 2021. https://doi.org/10.1016/j.cemconres.2021.106575.
  • J. Luo, S. Asamoto and K. Nagai, An analytical investigation of bond deterioration between rebar and ASR/DEF-damaged concrete with and without stirrup confinement using 3D RBSM. Construction and Building Materials, 351, 128923, 2022. https://doi.org/10.1016/j.conbuildmat.2022.128923.
  • M. Shakoorioskooie, M. Griffa, A. Leemann, R. Zboray and P. Lura, Quantitative analysis of the evolution of ASR products and crack networks in the context of the concrete mesostructure. Cement and Concrete Research, 162, 106992, 2022. https://doi.org/10.1016/j.cemconres.2022.106992.
  • A. Antolik and D. Jóźwiak-Niedźwiedzka, ASR induced by chloride- and formate-based deicers in concrete with non-reactive aggregates. Construction and Building Materials, 400, 132811, 2023. https://doi.org/10.1016/j.conbuildmat.2023.132811.
  • D. J. D. Souza and L. F. M. Sanchez, Evaluating the efficiency of SCMs to avoid or mitigate ASR-induced expansion and deterioration through a multi-level assessment. Cement and Concrete Research, 173, 107262, 2023. https://doi.org/10.1016/ j.cemconres.2023.107262.
  • X. Qiu, Z. Chang, J. Chen, E. Schlangen, G. Ye and G. D. Schutter, ASR: Insights into the cracking process via lattice fracture simulation at mesoscale based on the chemical reactions at microscale. Materials & Design, 231, 111964, 2023. https://doi.org/10.1016/ j.matdes.2023.111964.
There are 86 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Research Articles
Authors

H. Alperen Bulut 0000-0002-1770-195X

Early Pub Date July 4, 2024
Publication Date July 15, 2024
Submission Date March 11, 2024
Acceptance Date June 11, 2024
Published in Issue Year 2024

Cite

APA Bulut, H. A. (2024). Effect of natural perlite on mechanical properties of light-weight aggregate composites by alkali-silica reaction. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(3), 1009-1019. https://doi.org/10.28948/ngumuh.1451305
AMA Bulut HA. Effect of natural perlite on mechanical properties of light-weight aggregate composites by alkali-silica reaction. NÖHÜ Müh. Bilim. Derg. July 2024;13(3):1009-1019. doi:10.28948/ngumuh.1451305
Chicago Bulut, H. Alperen. “Effect of Natural Perlite on Mechanical Properties of Light-Weight Aggregate Composites by Alkali-Silica Reaction”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, no. 3 (July 2024): 1009-19. https://doi.org/10.28948/ngumuh.1451305.
EndNote Bulut HA (July 1, 2024) Effect of natural perlite on mechanical properties of light-weight aggregate composites by alkali-silica reaction. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 3 1009–1019.
IEEE H. A. Bulut, “Effect of natural perlite on mechanical properties of light-weight aggregate composites by alkali-silica reaction”, NÖHÜ Müh. Bilim. Derg., vol. 13, no. 3, pp. 1009–1019, 2024, doi: 10.28948/ngumuh.1451305.
ISNAD Bulut, H. Alperen. “Effect of Natural Perlite on Mechanical Properties of Light-Weight Aggregate Composites by Alkali-Silica Reaction”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/3 (July 2024), 1009-1019. https://doi.org/10.28948/ngumuh.1451305.
JAMA Bulut HA. Effect of natural perlite on mechanical properties of light-weight aggregate composites by alkali-silica reaction. NÖHÜ Müh. Bilim. Derg. 2024;13:1009–1019.
MLA Bulut, H. Alperen. “Effect of Natural Perlite on Mechanical Properties of Light-Weight Aggregate Composites by Alkali-Silica Reaction”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 13, no. 3, 2024, pp. 1009-1, doi:10.28948/ngumuh.1451305.
Vancouver Bulut HA. Effect of natural perlite on mechanical properties of light-weight aggregate composites by alkali-silica reaction. NÖHÜ Müh. Bilim. Derg. 2024;13(3):1009-1.

download