Research Article
BibTex RIS Cite

MICROSTRUCTURAL EVOLUTION AND MECHANICAL BEHAVIOR OF In–Bi–Cd EUTECTIC ALLOY

Year 2019, , 549 - 558, 28.01.2019
https://doi.org/10.28948/ngumuh.517188

Abstract

   In–30.8%Bi–7.5%Cd
(wt.) alloy was directional solidified at different growth rates (V=2.9–173.8 µm/s)
in a Bridgman type equipment. The microstructure of In–Bi–Cd alloy was
observed, which resulted lamellae of In2Bi phase, In–rich () phase, and Cd phase from quenched samples. The eutectic
spacing, microhardness
  and
ultimate tensile strength of alloy were measured from directionally solidified
samples, and the relationships between them were experimentally obtained using
both linear regression analysis and Hall–Petch type correlations. The local
lamellae and rod–like phase structures which were grown around primary In2Bi
phase have been observed in the microstructure of the solidified alloys larger
than 80 µm/s growth rate.
As growth rate increases, the volume percentage of
primary
In2Bi phases increase. And also it was
found that, a
s the growth rate increases from 2.9 to 173.8 µm/s, the
values of microhardness and ultimate
tensile
strength
increases about two times. The values of the eutectic
spacing, microhardness and ultimate tensile strength for In–Bi–Cd eutectic
alloys were compared with similar eutectic alloys.

References

  • [1] MANKO H.H., “Solders and Soldering Materials: Design Production, Analysis for Reliable Bonding”, (fourth ed.), McGraw–Hill, New York, 2001.
  • [2] NOOR E.E.M., SHARİF N.M., YEW C.K., ARİGA T., ISMAİL A.B., HUSSAİN Z., “Wettability and strength of In–Bi–Sn lead–free solder alloy on copper substrate.” Journal of Alloys and Compounds 507, 290–296, 2010.
  • [3] McCORMACK M., CHEN H.S., KAMMLOTT G.W., JİN S., “Significantly improved mechanical properties of Bi-Sn solder alloys by Ag-doping” Journal of Electronic Materials 26, 954–958, 1997.
  • [4] TAO D.P., “Prediction of activities of all components in the lead-free solder systems Bi-In-Sn and Bi-In-Sn-Zn” Journal of Alloys and Compounds 457, 124–130, 2008.
  • [5] JIN S., McCORMACK M., “Dispersoid Additions to a Pb-Free Solder for Suppression of Microstructural Coarsening” Journal of Electronic Materials 23, 735–739, 1994.
  • [6] ACOFF V.L., ARENAS M.F., “Contact angle measurements of Sn-Ag and Sn-Cu lead-free solders on copper substrates” Journal of Electronic Materials 22, 1452–1458, 2004.
  • [7] BANG W.H., MOON M.W., KİM C.U., KANG S.H., JUNG J.P., OH K.H., “Study of fracture mechanics in testing interfacial fracture of solder joints” Journal of Electronic Materials 37, 417–427, 2008.
  • [8] SEO S., KANG S.K., SHIH D., LEE H.M., “An investigation of microstructure and microhardness of Sn–Cu and Sn–Ag solders as functions of alloy composition and cooling rate” Journal of Electronic Materials 38, 257–265, 2009.
  • [9] SUGANUMA K., KIM S., KIM K., “High–temperature lead–free solders: properties and possibilities” JOM–J. Met. 61, 64–71, 2009.
  • [10] ÇADIRLI E., KAYA H., BOYUK U., MARAŞLI N., “Effects of solidification parameters on the microstructure of directionally solidifed Sn–Bi–Zn lead–free solder” Metals and Materials International, 18, 349–354, 2012.
  • [11] SHEN L., SEPTİWERDANİ P., CHEN Z., “Elastic modulus, hardness and creep performance of SnBi alloys using nanoindentation” Materials Science and Engineering A– Struct. 558, 253–258, 2012.
  • [12] SANTOS W.L.R., BRİTO C., QUARESMA J.M.V., SPİNELLİ J.E., GARCİA A., “Plate–like cell growth during directional solidification of a Zn–20 wt% Sn high–temperature lead–free solder alloy” Materials Science and Engineering, B 182, 29–36, 2014.
  • [13] DİAS M., COSTA T., ROCHA O., SPİNELLİ J.E., CHEUNG N., GARCİA A., “Interconnection of thermal parameters, microstructure and mechanical properties in directionally solidified Sn–Sb lead–free solder alloys” Materials Characterization,106, 52–61, 2015.
  • [14] SİLVA B.L., GARCİA A., SPİNELLİ J.E., “Cooling thermal parameters and microstructure features of directionally solidified ternary Sn–Bi–(Cu,Ag) solder alloys” Materials Characterization, 114, 30–42, 2016.
  • [15] MOON K., BOETTİNGER W.J., KATTNER U.R., Handwerker C.A., Lee D., “The effect of Pb contamination on the solidification behavior of Sn–Bi solders” Journal of Electronic Materials 30, 45–52, 2001.
  • [16] SİLVA B.L., BERTELLİ F., CHEUNG N., GARCİA A., “Solder/substrate interfacial thermal conductance and wetting angles of Bi–Ag solder alloys” J. Mater. Sci.– Mater. El. 27, 1994–2003, 2015.
  • [17] SEPTİMİO R.S., COSTA T.A., VİDA T.A., GARCİA A., CHEUNG N., “Interrelationship of thermal parameters, microstructure and microhardness of directionally solidified Bi–Zn solder alloys” Microelectronics Reliability 78, 100–110, 2017.
  • [18] CHRİAˇSTEL’OV´A J., OˇZVOLD M., “Properties of solders with low melting point” Journal of Alloys and Compounds 457, 323–328. 2008.
  • [19] SİLVA B.L., XAVİER M.G.C., GARCİA A., SPİNELLİ J., “Cu and Ag additions affecting the solidification microstructure and tensile properties of Sn–Bi lead–free solder alloys” Materials Science & Engineering A 705, 325–334, 2017.
  • [20] SILVA B.L., SILVA V.C.E., GARCIA A., and SPINELLI J.E., “Effects of Solidification Thermal Parameters on Microstructure and Mechanical Properties of Sn–Bi Solder Alloys” Journal of ELECTRONIC MATERIALS, 46, (3), 1754-1769, 2017.
  • [21] MOKHTARİ O., NİSHİKAWA H., “Correlation between microstructure and mechanical properties of Sn–Bi–X solders” Materials Science & Engineering A 651, 831–839, 2016.
  • [22] MEI Z. and MORRIS J.W., “Superplastic Creep of Low Melting Point Solder Joints” Journal of Electronic Materials, Vol. 21, (4), 401-407, 1992.
  • [23] KAYA H., ÇADIRLI E., GÜNDÜZ M., “Eutectic growth of unidirectionally solidified bismuth-cadmium alloy” J Mater Process Tech, 183, 310-320, 2007.
  • [24] HUANG M.L., ZHOU Q., ZHAO N., CHEN L.D., “Interfacial microstructure and mechanical properties of In–Bi–Sn lead–free solder” J Mater Sci: Mater Electron 24, 2624–2629, 2013.
  • [25] ÇADIRLI E., BÖYÜK U., KAYA H., MARAŞLI N., KEŞLİOĞLU K., AKBULUT S., OCAK Y., “The effect of growth rate on microstructure and microindentation hardness in the In–Bi–Sn ternary alloy at low melting point” Journal of Alloys and Compounds 470, 150–156, 2009.
  • [26] NOOR E.E.M., ZUHAİLAWATİ H., RADZALİ O., “Low temperature In–Bi–Zn solder alloy on copper substrate” J Mater Sci: Mater Electron, 27,1408–1415, 2016.
  • [27] ENGİN S., “Kontrollü Katılaştırılan Çok Bileşenli Ötektik Alaşımların, Mekanik ve Elektriksel Özelliklerinin Katılaştırma Parametrelerine Bağlılığının İncelenmesi”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Katıhal Fiziği, Kayseri, 2013..
  • [28] OURDJİNİ A., LİU J. and ELLİOTT R., “Eutectic Spacing Selection in Al–Cu System”, Mater Sci Tech–Lond 10, 312, 1994.
  • [29] PERETTI E.A.J., “The ternary system cadmium-bismuth-indiyum”, Trans Am Soc Met, 53, 95-107, 1961.
  • [30] SNUGOVSKY L., PEROVİC D.D., RUTTER J.W., “Microstructures formed by directional solidification of two ternary eutectic alloys of Bi-Cd-In system”, Mater Sci Tech-Lond 16, 979-983, 2000.
  • [31] JACKSON K.A., and HUNT J.D., Lamellar and Rod Eutectic Growth, Trans. Metall. Soc. A.I.M.E. 236, 1129, 1966.
  • [32] KAYA H., ÇADIRLI E., GÜNDÜZ M., UZUN O., “Effect of growth rate and lamellar spacing on microhardness in the directionally solidified Pb–Cd, Sn–Zn and Bi–Cd eutectic alloys”, J Mat Sci 39, 6571–6576, 2004.
  • [33] MEİ., HOLDER H.A., AND VANDER PLAS H.A., “Low-Temperature Solders”, Hewlett-Packard Journal (Artical 10) 1-10, 1996

In-Bi-Cd ÖTEKTİK ALAŞIMININ MİKROYAPISAL DEĞERLENDİRİLMESİ VE MEKANİK DAVRANIŞI

Year 2019, , 549 - 558, 28.01.2019
https://doi.org/10.28948/ngumuh.517188

Abstract

   In–%30.8Bi–7.5Cd (ağ.) ötektik alaşımı Bridgman tipi
kontrollü katılaştırma fırınında farklı katılaştırma hızlarında (V=2.9–173.8
µm/s) tek yönlü katılaştırılmıştır. Yapılan deneyler neticesinde
In–Bi–Cd ötektik alaşımının mikroyapısında;
In2Bi lamelsel, In–esaslı (ε) ve Cd fazları gözlenmiştir. Kontrollü
katılaştırma deneyleri yapılan her bir numune için gözlenen mikroyapılar arası
mesafeler, mikrosertlikleri ve maksimum çekme–dayanım değerleri ölçülmüştür.
Deneysel olarak elde edilen değerler arasındaki ilişkileri ortaya koyabilmek
için ise lineer regrasyon analizi ve Hall–Petch tipi bağıntılar kullanılmıştır.
Kontrollü katılaştırma deneylerinde 80 µm/s’nin üzerinde katılaştırma hızına
sahip numunelerde birincil In2Bi fazları etrafında bölgesel olarak
lamelsel ve çubuksal fazların oluştuğu gözlenmiştir. Çünkü katılaştırma hızı
arttıkça In2Bi fazının hacim yüzdesi de artmıştır. Ayrıca
katılaştırma hızı 2.9 µm/s’den 173.8 µm/s’e kadar artırıldığında mikrosertlik
ve maksimum çekme–dayanım değerlerinin yaklaşık iki kat arttığı belirlenmiştir.
In–Bi–Cd alaşımı için elde edilen mikroyapılar arası mesafeler, mikrosertlik ve
maksimum çekme–dayanım değerleri benzer deneysel çalışmalar ile kıyaslanmıştır.

References

  • [1] MANKO H.H., “Solders and Soldering Materials: Design Production, Analysis for Reliable Bonding”, (fourth ed.), McGraw–Hill, New York, 2001.
  • [2] NOOR E.E.M., SHARİF N.M., YEW C.K., ARİGA T., ISMAİL A.B., HUSSAİN Z., “Wettability and strength of In–Bi–Sn lead–free solder alloy on copper substrate.” Journal of Alloys and Compounds 507, 290–296, 2010.
  • [3] McCORMACK M., CHEN H.S., KAMMLOTT G.W., JİN S., “Significantly improved mechanical properties of Bi-Sn solder alloys by Ag-doping” Journal of Electronic Materials 26, 954–958, 1997.
  • [4] TAO D.P., “Prediction of activities of all components in the lead-free solder systems Bi-In-Sn and Bi-In-Sn-Zn” Journal of Alloys and Compounds 457, 124–130, 2008.
  • [5] JIN S., McCORMACK M., “Dispersoid Additions to a Pb-Free Solder for Suppression of Microstructural Coarsening” Journal of Electronic Materials 23, 735–739, 1994.
  • [6] ACOFF V.L., ARENAS M.F., “Contact angle measurements of Sn-Ag and Sn-Cu lead-free solders on copper substrates” Journal of Electronic Materials 22, 1452–1458, 2004.
  • [7] BANG W.H., MOON M.W., KİM C.U., KANG S.H., JUNG J.P., OH K.H., “Study of fracture mechanics in testing interfacial fracture of solder joints” Journal of Electronic Materials 37, 417–427, 2008.
  • [8] SEO S., KANG S.K., SHIH D., LEE H.M., “An investigation of microstructure and microhardness of Sn–Cu and Sn–Ag solders as functions of alloy composition and cooling rate” Journal of Electronic Materials 38, 257–265, 2009.
  • [9] SUGANUMA K., KIM S., KIM K., “High–temperature lead–free solders: properties and possibilities” JOM–J. Met. 61, 64–71, 2009.
  • [10] ÇADIRLI E., KAYA H., BOYUK U., MARAŞLI N., “Effects of solidification parameters on the microstructure of directionally solidifed Sn–Bi–Zn lead–free solder” Metals and Materials International, 18, 349–354, 2012.
  • [11] SHEN L., SEPTİWERDANİ P., CHEN Z., “Elastic modulus, hardness and creep performance of SnBi alloys using nanoindentation” Materials Science and Engineering A– Struct. 558, 253–258, 2012.
  • [12] SANTOS W.L.R., BRİTO C., QUARESMA J.M.V., SPİNELLİ J.E., GARCİA A., “Plate–like cell growth during directional solidification of a Zn–20 wt% Sn high–temperature lead–free solder alloy” Materials Science and Engineering, B 182, 29–36, 2014.
  • [13] DİAS M., COSTA T., ROCHA O., SPİNELLİ J.E., CHEUNG N., GARCİA A., “Interconnection of thermal parameters, microstructure and mechanical properties in directionally solidified Sn–Sb lead–free solder alloys” Materials Characterization,106, 52–61, 2015.
  • [14] SİLVA B.L., GARCİA A., SPİNELLİ J.E., “Cooling thermal parameters and microstructure features of directionally solidified ternary Sn–Bi–(Cu,Ag) solder alloys” Materials Characterization, 114, 30–42, 2016.
  • [15] MOON K., BOETTİNGER W.J., KATTNER U.R., Handwerker C.A., Lee D., “The effect of Pb contamination on the solidification behavior of Sn–Bi solders” Journal of Electronic Materials 30, 45–52, 2001.
  • [16] SİLVA B.L., BERTELLİ F., CHEUNG N., GARCİA A., “Solder/substrate interfacial thermal conductance and wetting angles of Bi–Ag solder alloys” J. Mater. Sci.– Mater. El. 27, 1994–2003, 2015.
  • [17] SEPTİMİO R.S., COSTA T.A., VİDA T.A., GARCİA A., CHEUNG N., “Interrelationship of thermal parameters, microstructure and microhardness of directionally solidified Bi–Zn solder alloys” Microelectronics Reliability 78, 100–110, 2017.
  • [18] CHRİAˇSTEL’OV´A J., OˇZVOLD M., “Properties of solders with low melting point” Journal of Alloys and Compounds 457, 323–328. 2008.
  • [19] SİLVA B.L., XAVİER M.G.C., GARCİA A., SPİNELLİ J., “Cu and Ag additions affecting the solidification microstructure and tensile properties of Sn–Bi lead–free solder alloys” Materials Science & Engineering A 705, 325–334, 2017.
  • [20] SILVA B.L., SILVA V.C.E., GARCIA A., and SPINELLI J.E., “Effects of Solidification Thermal Parameters on Microstructure and Mechanical Properties of Sn–Bi Solder Alloys” Journal of ELECTRONIC MATERIALS, 46, (3), 1754-1769, 2017.
  • [21] MOKHTARİ O., NİSHİKAWA H., “Correlation between microstructure and mechanical properties of Sn–Bi–X solders” Materials Science & Engineering A 651, 831–839, 2016.
  • [22] MEI Z. and MORRIS J.W., “Superplastic Creep of Low Melting Point Solder Joints” Journal of Electronic Materials, Vol. 21, (4), 401-407, 1992.
  • [23] KAYA H., ÇADIRLI E., GÜNDÜZ M., “Eutectic growth of unidirectionally solidified bismuth-cadmium alloy” J Mater Process Tech, 183, 310-320, 2007.
  • [24] HUANG M.L., ZHOU Q., ZHAO N., CHEN L.D., “Interfacial microstructure and mechanical properties of In–Bi–Sn lead–free solder” J Mater Sci: Mater Electron 24, 2624–2629, 2013.
  • [25] ÇADIRLI E., BÖYÜK U., KAYA H., MARAŞLI N., KEŞLİOĞLU K., AKBULUT S., OCAK Y., “The effect of growth rate on microstructure and microindentation hardness in the In–Bi–Sn ternary alloy at low melting point” Journal of Alloys and Compounds 470, 150–156, 2009.
  • [26] NOOR E.E.M., ZUHAİLAWATİ H., RADZALİ O., “Low temperature In–Bi–Zn solder alloy on copper substrate” J Mater Sci: Mater Electron, 27,1408–1415, 2016.
  • [27] ENGİN S., “Kontrollü Katılaştırılan Çok Bileşenli Ötektik Alaşımların, Mekanik ve Elektriksel Özelliklerinin Katılaştırma Parametrelerine Bağlılığının İncelenmesi”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Katıhal Fiziği, Kayseri, 2013..
  • [28] OURDJİNİ A., LİU J. and ELLİOTT R., “Eutectic Spacing Selection in Al–Cu System”, Mater Sci Tech–Lond 10, 312, 1994.
  • [29] PERETTI E.A.J., “The ternary system cadmium-bismuth-indiyum”, Trans Am Soc Met, 53, 95-107, 1961.
  • [30] SNUGOVSKY L., PEROVİC D.D., RUTTER J.W., “Microstructures formed by directional solidification of two ternary eutectic alloys of Bi-Cd-In system”, Mater Sci Tech-Lond 16, 979-983, 2000.
  • [31] JACKSON K.A., and HUNT J.D., Lamellar and Rod Eutectic Growth, Trans. Metall. Soc. A.I.M.E. 236, 1129, 1966.
  • [32] KAYA H., ÇADIRLI E., GÜNDÜZ M., UZUN O., “Effect of growth rate and lamellar spacing on microhardness in the directionally solidified Pb–Cd, Sn–Zn and Bi–Cd eutectic alloys”, J Mat Sci 39, 6571–6576, 2004.
  • [33] MEİ., HOLDER H.A., AND VANDER PLAS H.A., “Low-Temperature Solders”, Hewlett-Packard Journal (Artical 10) 1-10, 1996
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Materials and Metallurgical Engineering
Authors

Uğur Büyük 0000-0002-6830-8349

Sevda Engin 0000-0001-8746-8770

Semra Durmuş Acer This is me 0000-0002-6790-2792

Aynur Aker This is me 0000-0001-5932-5449

Necmetttin Maraşlı This is me 0000-0002-1993-2655

Publication Date January 28, 2019
Submission Date April 2, 2018
Acceptance Date October 17, 2018
Published in Issue Year 2019

Cite

APA Büyük, U., Engin, S., Durmuş Acer, S., Aker, A., et al. (2019). In-Bi-Cd ÖTEKTİK ALAŞIMININ MİKROYAPISAL DEĞERLENDİRİLMESİ VE MEKANİK DAVRANIŞI. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 8(1), 549-558. https://doi.org/10.28948/ngumuh.517188
AMA Büyük U, Engin S, Durmuş Acer S, Aker A, Maraşlı N. In-Bi-Cd ÖTEKTİK ALAŞIMININ MİKROYAPISAL DEĞERLENDİRİLMESİ VE MEKANİK DAVRANIŞI. NÖHÜ Müh. Bilim. Derg. January 2019;8(1):549-558. doi:10.28948/ngumuh.517188
Chicago Büyük, Uğur, Sevda Engin, Semra Durmuş Acer, Aynur Aker, and Necmetttin Maraşlı. “In-Bi-Cd ÖTEKTİK ALAŞIMININ MİKROYAPISAL DEĞERLENDİRİLMESİ VE MEKANİK DAVRANIŞI”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 8, no. 1 (January 2019): 549-58. https://doi.org/10.28948/ngumuh.517188.
EndNote Büyük U, Engin S, Durmuş Acer S, Aker A, Maraşlı N (January 1, 2019) In-Bi-Cd ÖTEKTİK ALAŞIMININ MİKROYAPISAL DEĞERLENDİRİLMESİ VE MEKANİK DAVRANIŞI. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 8 1 549–558.
IEEE U. Büyük, S. Engin, S. Durmuş Acer, A. Aker, and N. Maraşlı, “In-Bi-Cd ÖTEKTİK ALAŞIMININ MİKROYAPISAL DEĞERLENDİRİLMESİ VE MEKANİK DAVRANIŞI”, NÖHÜ Müh. Bilim. Derg., vol. 8, no. 1, pp. 549–558, 2019, doi: 10.28948/ngumuh.517188.
ISNAD Büyük, Uğur et al. “In-Bi-Cd ÖTEKTİK ALAŞIMININ MİKROYAPISAL DEĞERLENDİRİLMESİ VE MEKANİK DAVRANIŞI”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 8/1 (January 2019), 549-558. https://doi.org/10.28948/ngumuh.517188.
JAMA Büyük U, Engin S, Durmuş Acer S, Aker A, Maraşlı N. In-Bi-Cd ÖTEKTİK ALAŞIMININ MİKROYAPISAL DEĞERLENDİRİLMESİ VE MEKANİK DAVRANIŞI. NÖHÜ Müh. Bilim. Derg. 2019;8:549–558.
MLA Büyük, Uğur et al. “In-Bi-Cd ÖTEKTİK ALAŞIMININ MİKROYAPISAL DEĞERLENDİRİLMESİ VE MEKANİK DAVRANIŞI”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 8, no. 1, 2019, pp. 549-58, doi:10.28948/ngumuh.517188.
Vancouver Büyük U, Engin S, Durmuş Acer S, Aker A, Maraşlı N. In-Bi-Cd ÖTEKTİK ALAŞIMININ MİKROYAPISAL DEĞERLENDİRİLMESİ VE MEKANİK DAVRANIŞI. NÖHÜ Müh. Bilim. Derg. 2019;8(1):549-58.

download