NUMERICAL MODELING OF OPEN CHANNEL FLOW INTERACTING WITH RADIAL GATE
Yıl 2019,
, 965 - 978, 31.07.2019
Oğuz Şimşek
,
Mehmet Parmaksız
Veysel Gümüş
Öz
The surface
profiles of open channel flow controlled with radial gate are investigated
experimentally and numerically for different flow conditions. Basic equations
of the problem are solved by ANSYS-Fluent program package based on finite
volume method for the flow case having the same experimental condition. In the numerical
simulations, Renormalization group(RNG) k-ε, Shear
Stress Transport (SST) k-ω and Reynolds
Stress Model (RSM) based on the Reynolds Average Navier Stokes (RANS) equations
are used for the simulation of turbulence, and Volume of Fluid (VOF) method is used to determine the free surface
profile. Experimental surface profiles measurement by limnimeter are compared
with numerical surface profile obtained from different turbulence models. As a
result of the comparison, it was found that the open channel flow of the radial
gate control, Shear Stress Transport k-ω model was more successful than the
other models used in determining the water surface profiles.
Kaynakça
- [1] Ali, A.M., Mohamed, Y.A., “Effect of stilling basin shape on the hydraulic characteristics of the flow downstream radial gates”, Alexandria Engineering Journal, 49(4), 393-400, 2010.[2] Clemmens, A. J., Strelkoff, T. S., Replogle, J. A., “Calibration of submerged radial gates”, Journal of Hydraulic Engineering, 129(9), 680-687, 2003.[3] Shahrokhnia, M. A., Javan, M., “Dimensionless stage–discharge relationship in radial gates”, Journal of Irrigation and Drainage Engineering, 132(2), 180-184, 2006.[4] Zheng, H., Lei, X., Shang, Y., Cai, S., Kong, L., Wang, H., “Parameter identification for discharge formulas of radial gates based on measured data”, Flow Measurement and Instrumentation, 58, 62-73, 2017.[5] Soydan, N. G., Şimşek, O., Aköz, M. S., “Köprü ayağı etrafındaki türbülanslı akımın sayısal ve deneysel analizi”, Politeknik Dergisi, 21(1), 137-147, 2018.[6] Aköz, M. S., Soydan, N. G., Şimşek, O., “Kritik üstü açık kanal akımının detached eddy ve large eddy simülasyon ile sayısal modellenmesi”, Gazi Üniversitesi Fen Bilimleri Dergisi Part:C, Tasarım ve Teknoloji, 4(4), 213-224, 2016.[7] Şimşek, O., Soydan, N.G., Gümüş, V., Aköz, M.S., Kırkgöz, M.S., “Ani Bir Düşüdeki B-tipi Hidrolik Sıçramanın Sayısal Modellenmesi”, İMO Teknik Dergi, 26(4), 7215-7240, 2015.[8] Şimşek, O., Akoz, M.S., Soydan, N.G., “Numerical validation of open channel flow over a curvilinear broad-crested weir”, Progress in Computational Fluid Dynamics, an International Journal, 16(6), 364-378, 2016.[9] Gümüş, V., Şimşek, O., Soydan, N. G., Aköz, M.S., Kirkgöz, M.S., “Numerical modeling of submerged hydraulic jump from a sluice gate”, Journal of Irrigation and Drainage Engineering, 142(1), 04015037, 2015.[10] Kirkgoz, M. S., Aköz, M. S., Öner, A.A., “Numerical modeling of flow over a chute spillway”, Journal of Hydraulic Research, 47(6), 790-797, 2009.[11] Yakhot, V., Orszag, S. A., “Renormalization-group analysis of turbulence”. Physical Review Letters, 57(14), 1722-1724, 1986.[12] Menter, F. R., “Two-equation eddy-viscosity turbulence models for engineering applications”, AIAA Journal, 32 (8), 1598–1605, 1994.[13] Launder, B.E., Spalding, D., “Lectures in Mathematical Models of Turbulence”, London. Academic Press, 1972.[14] Launder, B.E., Reece, G.J., Rodi, W., “Progress in the development of a Reynolds-stress turbulence closure”, Journal of Fluid Mechanics, 68(3), 537–566, 1975.[15] Hirt, C.W., Nichols, B.D., “Volume of fluid (VOF) method for the dynamics of free boundaries”, Journal of Computational Physics. 39(1), 201-225, 1981.[16] ANSYS, “FLUENT Theory Guide”. USA: ANSYS Inc., 2012.[17] Çelik, I.B., Ghia, U., Roache, P.J., Freitas, C.J., “Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications”, Journal of Fluids Engineering-Transactions of the ASME, 130(7), 2008.[18] Roache, P.J., "Verification of codes and calculations", AIAA Journal, 36(5), 696-702, 1998.
RADYAL KAPAK İLE ETKİLEŞİMDE BULUNAN AÇIK KANAL AKIMININ SAYISAL MODELLENMESİ
Yıl 2019,
, 965 - 978, 31.07.2019
Oğuz Şimşek
,
Mehmet Parmaksız
Veysel Gümüş
Öz
Radyal kapak
kontrollü açık kanal akımının su yüzü profilleri farklı akım koşulları için
deneysel ve sayısal olarak incelenmiştir. Deneyler ile aynı koşullardaki akım
için temel denklemler, sonlu hacimler yöntemine dayalı ANSYS-Fluent paket
programıyla iki boyutlu olarak çözülmüştür. Sayısal hesaplamalarda, Reynolds
Ortalamalı Navier Stokes (RANS) denklemlerine dayalı çözüm yapan Renormalization
Group (RNG) k-ε, Kayma Gerilmesi Taşınım (Shear Stress Transport-SST) k-ω ve Reynolds
Gerilme Model (Reynolds Stress Model-RSM) türbülans modelleri ve serbest su
yüzü profilinin belirlenmesinde ise Akışkan Hacimleri Yöntemi (Volume of Fluid-VOF)
kullanılmıştır. Limnimetre ile ölçülen deneysel akım profilleri ile farklı
türbülans modelleri kullanılarak elde edilen sayısal su yüzü profilleri
karşılaştırılmıştır. Karşılaştırma sonucunda, radyal kapak kontrollü açık kanal
akımının su yüzü profillerini belirlemede, SST k-ω modelinin kullanılan diğer
türbülans modellerine kıyasla daha başarılı olduğu belirlenmiştir.
Kaynakça
- [1] Ali, A.M., Mohamed, Y.A., “Effect of stilling basin shape on the hydraulic characteristics of the flow downstream radial gates”, Alexandria Engineering Journal, 49(4), 393-400, 2010.[2] Clemmens, A. J., Strelkoff, T. S., Replogle, J. A., “Calibration of submerged radial gates”, Journal of Hydraulic Engineering, 129(9), 680-687, 2003.[3] Shahrokhnia, M. A., Javan, M., “Dimensionless stage–discharge relationship in radial gates”, Journal of Irrigation and Drainage Engineering, 132(2), 180-184, 2006.[4] Zheng, H., Lei, X., Shang, Y., Cai, S., Kong, L., Wang, H., “Parameter identification for discharge formulas of radial gates based on measured data”, Flow Measurement and Instrumentation, 58, 62-73, 2017.[5] Soydan, N. G., Şimşek, O., Aköz, M. S., “Köprü ayağı etrafındaki türbülanslı akımın sayısal ve deneysel analizi”, Politeknik Dergisi, 21(1), 137-147, 2018.[6] Aköz, M. S., Soydan, N. G., Şimşek, O., “Kritik üstü açık kanal akımının detached eddy ve large eddy simülasyon ile sayısal modellenmesi”, Gazi Üniversitesi Fen Bilimleri Dergisi Part:C, Tasarım ve Teknoloji, 4(4), 213-224, 2016.[7] Şimşek, O., Soydan, N.G., Gümüş, V., Aköz, M.S., Kırkgöz, M.S., “Ani Bir Düşüdeki B-tipi Hidrolik Sıçramanın Sayısal Modellenmesi”, İMO Teknik Dergi, 26(4), 7215-7240, 2015.[8] Şimşek, O., Akoz, M.S., Soydan, N.G., “Numerical validation of open channel flow over a curvilinear broad-crested weir”, Progress in Computational Fluid Dynamics, an International Journal, 16(6), 364-378, 2016.[9] Gümüş, V., Şimşek, O., Soydan, N. G., Aköz, M.S., Kirkgöz, M.S., “Numerical modeling of submerged hydraulic jump from a sluice gate”, Journal of Irrigation and Drainage Engineering, 142(1), 04015037, 2015.[10] Kirkgoz, M. S., Aköz, M. S., Öner, A.A., “Numerical modeling of flow over a chute spillway”, Journal of Hydraulic Research, 47(6), 790-797, 2009.[11] Yakhot, V., Orszag, S. A., “Renormalization-group analysis of turbulence”. Physical Review Letters, 57(14), 1722-1724, 1986.[12] Menter, F. R., “Two-equation eddy-viscosity turbulence models for engineering applications”, AIAA Journal, 32 (8), 1598–1605, 1994.[13] Launder, B.E., Spalding, D., “Lectures in Mathematical Models of Turbulence”, London. Academic Press, 1972.[14] Launder, B.E., Reece, G.J., Rodi, W., “Progress in the development of a Reynolds-stress turbulence closure”, Journal of Fluid Mechanics, 68(3), 537–566, 1975.[15] Hirt, C.W., Nichols, B.D., “Volume of fluid (VOF) method for the dynamics of free boundaries”, Journal of Computational Physics. 39(1), 201-225, 1981.[16] ANSYS, “FLUENT Theory Guide”. USA: ANSYS Inc., 2012.[17] Çelik, I.B., Ghia, U., Roache, P.J., Freitas, C.J., “Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications”, Journal of Fluids Engineering-Transactions of the ASME, 130(7), 2008.[18] Roache, P.J., "Verification of codes and calculations", AIAA Journal, 36(5), 696-702, 1998.