KARIŞIK SINIR KOŞULLARI ALTINDA FONKSİYONEL DERECELİ SİLİNDİRİK KABUKLARIN TİTREŞİM ANALİZİ
Year 2019,
, 1 - 15, 20.12.2019
Abdullah Avey
,
Mustafa Süzer
Abstract
Sunulan çalışmada, fonksiyonel
derecelendirilmiş silindirik kabukların (FDSK’ların) titreşim problemi klasik
kabuk teorisi (KKT) kullanılarak çözülmektedir. Fonksiyonel dereceli
malzemelerin (FDM’lerin) modelleri oluşturulduktan sonra gerilme-deformasyon
arasındaki temel bağıntılar oluşturulmakta ve bu bağıntılar kullanılarak KKT
kapsamında hareket ve deformasyon uygunluk denklemleri türetilmektedir. KKT
kapsamında, karışık sınır koşulları için kısmi türevli diferansiyel denklemler
Galerkin yöntemi uygulanarak çözüldükten sonra frekans için analitik formül
elde edilmektedir. Elde edilen ifade dalga sayılarına göre minimize edilerek,
frekansın minimum değeri bulunmaktadır. Elde edilen sayısal sonuçlar
literatürdeki mevcut sonuçlarla mukayese edilerek doğruluğu teyit edilmektedir.
FDM'lerin kritik parametreler üzerindeki etkilerini görmek için farklı
profiller için yeni ve özgün sayısal örnekler sunulmaktadır.
References
- [1] Bever, M.B., Duwez, P.F., 1972. Gradients in composite materials. Materials Science and Engineering, 10, 1–8.
- [2] Koizumi, M., 1997. FGM activities in Japan. Composites Part B: Engineering, 28, 1–4.
- [3] Hirai, T., Materials Science and Technology. Brook, R.J., (Ed.), Vch Verlagsgesellschaft (292-341), Weinheim, Germany, 1996.
- [4] Müller, E., Drašar, C., Schilz, J., Kaysser, W.A., 2003. Functionally graded materials for sensor and energy Applications. Materials Science Engineering A, 362, 1–2, 17–39.
- [5] Kawasaki, A., Watanabe, R., 1997. Concept and P/M fabrication of functionally gradient materials. Ceramic International, 23(1), 73–83.
- [6] Reddy, J.N., Chin, C.D., 1998. Thermo-mechanical analysis of functionally graded cylinders and plates. Journal of Thermal Stresses, 21, 593–626.
- [7] Pitakthapanaphong, S., Busso, E.P., 2002. Self-consistent elastoplastic stress solutions for functionally graded material systems subjected to thermal transients. Journal of the Mechanics and Physics of Solids, 50, 695–716.
- [8] Loy, C.T., Lam, K.Y., Reddy, J.N., 1999. Vibration of functionally graded cylindrical shells. International Journal of Mechanical Science, 41, 309–324.
- [9] Sofiyev, A.H., 2003. Dynamic buckling of functionally graded cylindrical thin shells under non-periodic impulsive loading. Acta Mechanica, 165, 151–163.
- [10] Tornabene, F., 2009. Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution. Computational Methods in Applied Mechanics and Engineering, 198, 2911–2935.
- [11] Brischetto, S., 2016. Curvature approximation effects in the free vibration analysis of functionally graded shells. International Journal of Applied Mechanics, 1650079.
- [12] Zghal, S., Frikha, A., Dammak, F., 2018. Free vibration analysis of carbon nanotube-reinforced functionally graded composite shell structures. Applied Mathematics Modeling, 53, 132-155.
- [13] Pradhan, S.C., Loy, C.T., Reddy, J.N., 2000. Vibration characteristics of functionally graded cylindrical shells under various boundary conditions. Applied Acoustic, 61, 111–129.
- [14] Haddadpour, H., Mahmoudkhani, S., Navazi, H.M., 2007. Free vibration analysis of functionally graded cylindrical shells ıncluding thermal effects. Thin-Walled Structures, 45, 591–599.
- [15] Pandey, S., Pradyumna, S., 2015. A layerwise finite element formulation for free vibration analysis of functionally graded sandwich shells. Composite Structures, 133, 438-450.
- [16] Agenosov, L.G., Sachenkov, A.V., Stability and Free Vibration of Thin Circular Cylindrical and Conical Shells with Different Boundary Conditions. Research on the Theory of Plates and Shells, Kazan State University, Kazan, USSR, 2, 111–126 (in Russian), 1964.
- [17] Sofiyev, A.H., Kuruoglu, N., 2015. On a problem of the vibration of functionally graded conical shells with mixed boundary conditions. Composites Part B-Engineering, 70, 122-130.
- [18] Sofiyev, A.H., Hui, D., 2019. On the vibration and stability of FGM cylindrical shells under external pressures with mixed boundary conditions by using FOSDT. Thin-Walled Structures, 134, 419-427.
- [19] Shen, H.S., Functionally Graded Materials, Nonlinear Analysis of Plates and Shells, CRC Press, Florida, 2009.
- [20] Volmir, A.S., Stability of Elastic Systems. Nauka, Moscow. English Translation: Foreign Tech. Division, Air Force Systems Command. Wright-Patterson Air Force Base, Ohio, AD628508, 1967.
- [21] Leissa, A.W., Vibration of Shells. NASA SP–288, 1973.
- [22] Reddy, J. N., Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC press, 2004.
- [23] Amabili, M., Nonlinear Vibrations and Stability of Shells and Plates, Cambridge University Press, 2008.
Year 2019,
, 1 - 15, 20.12.2019
Abdullah Avey
,
Mustafa Süzer
References
- [1] Bever, M.B., Duwez, P.F., 1972. Gradients in composite materials. Materials Science and Engineering, 10, 1–8.
- [2] Koizumi, M., 1997. FGM activities in Japan. Composites Part B: Engineering, 28, 1–4.
- [3] Hirai, T., Materials Science and Technology. Brook, R.J., (Ed.), Vch Verlagsgesellschaft (292-341), Weinheim, Germany, 1996.
- [4] Müller, E., Drašar, C., Schilz, J., Kaysser, W.A., 2003. Functionally graded materials for sensor and energy Applications. Materials Science Engineering A, 362, 1–2, 17–39.
- [5] Kawasaki, A., Watanabe, R., 1997. Concept and P/M fabrication of functionally gradient materials. Ceramic International, 23(1), 73–83.
- [6] Reddy, J.N., Chin, C.D., 1998. Thermo-mechanical analysis of functionally graded cylinders and plates. Journal of Thermal Stresses, 21, 593–626.
- [7] Pitakthapanaphong, S., Busso, E.P., 2002. Self-consistent elastoplastic stress solutions for functionally graded material systems subjected to thermal transients. Journal of the Mechanics and Physics of Solids, 50, 695–716.
- [8] Loy, C.T., Lam, K.Y., Reddy, J.N., 1999. Vibration of functionally graded cylindrical shells. International Journal of Mechanical Science, 41, 309–324.
- [9] Sofiyev, A.H., 2003. Dynamic buckling of functionally graded cylindrical thin shells under non-periodic impulsive loading. Acta Mechanica, 165, 151–163.
- [10] Tornabene, F., 2009. Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution. Computational Methods in Applied Mechanics and Engineering, 198, 2911–2935.
- [11] Brischetto, S., 2016. Curvature approximation effects in the free vibration analysis of functionally graded shells. International Journal of Applied Mechanics, 1650079.
- [12] Zghal, S., Frikha, A., Dammak, F., 2018. Free vibration analysis of carbon nanotube-reinforced functionally graded composite shell structures. Applied Mathematics Modeling, 53, 132-155.
- [13] Pradhan, S.C., Loy, C.T., Reddy, J.N., 2000. Vibration characteristics of functionally graded cylindrical shells under various boundary conditions. Applied Acoustic, 61, 111–129.
- [14] Haddadpour, H., Mahmoudkhani, S., Navazi, H.M., 2007. Free vibration analysis of functionally graded cylindrical shells ıncluding thermal effects. Thin-Walled Structures, 45, 591–599.
- [15] Pandey, S., Pradyumna, S., 2015. A layerwise finite element formulation for free vibration analysis of functionally graded sandwich shells. Composite Structures, 133, 438-450.
- [16] Agenosov, L.G., Sachenkov, A.V., Stability and Free Vibration of Thin Circular Cylindrical and Conical Shells with Different Boundary Conditions. Research on the Theory of Plates and Shells, Kazan State University, Kazan, USSR, 2, 111–126 (in Russian), 1964.
- [17] Sofiyev, A.H., Kuruoglu, N., 2015. On a problem of the vibration of functionally graded conical shells with mixed boundary conditions. Composites Part B-Engineering, 70, 122-130.
- [18] Sofiyev, A.H., Hui, D., 2019. On the vibration and stability of FGM cylindrical shells under external pressures with mixed boundary conditions by using FOSDT. Thin-Walled Structures, 134, 419-427.
- [19] Shen, H.S., Functionally Graded Materials, Nonlinear Analysis of Plates and Shells, CRC Press, Florida, 2009.
- [20] Volmir, A.S., Stability of Elastic Systems. Nauka, Moscow. English Translation: Foreign Tech. Division, Air Force Systems Command. Wright-Patterson Air Force Base, Ohio, AD628508, 1967.
- [21] Leissa, A.W., Vibration of Shells. NASA SP–288, 1973.
- [22] Reddy, J. N., Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC press, 2004.
- [23] Amabili, M., Nonlinear Vibrations and Stability of Shells and Plates, Cambridge University Press, 2008.