Research Article
BibTex RIS Cite

KARIŞIK SINIR KOŞULLARI ALTINDA FONKSİYONEL DERECELİ SİLİNDİRİK KABUKLARIN TİTREŞİM ANALİZİ

Year 2019, Volume: 8 Issue: 3, 1 - 15, 20.12.2019
https://doi.org/10.28948/ngumuh.617259

Abstract

Sunulan çalışmada, fonksiyonel
derecelendirilmiş silindirik kabukların (FDSK’ların) titreşim problemi klasik
kabuk teorisi (KKT) kullanılarak çözülmektedir. Fonksiyonel dereceli
malzemelerin (FDM’lerin) modelleri oluşturulduktan sonra gerilme-deformasyon
arasındaki temel bağıntılar oluşturulmakta ve bu bağıntılar kullanılarak KKT
kapsamında hareket ve deformasyon uygunluk denklemleri türetilmektedir. KKT
kapsamında, karışık sınır koşulları için kısmi türevli diferansiyel denklemler
Galerkin yöntemi uygulanarak çözüldükten sonra frekans için analitik formül
elde edilmektedir. Elde edilen ifade dalga sayılarına göre minimize edilerek,
frekansın minimum değeri bulunmaktadır. Elde edilen sayısal sonuçlar
literatürdeki mevcut sonuçlarla mukayese edilerek doğruluğu teyit edilmektedir.
FDM'lerin kritik parametreler üzerindeki etkilerini görmek için farklı
profiller için yeni ve özgün sayısal örnekler sunulmaktadır.

References

  • [1] Bever, M.B., Duwez, P.F., 1972. Gradients in composite materials. Materials Science and Engineering, 10, 1–8.
  • [2] Koizumi, M., 1997. FGM activities in Japan. Composites Part B: Engineering, 28, 1–4.
  • [3] Hirai, T., Materials Science and Technology. Brook, R.J., (Ed.), Vch Verlagsgesellschaft (292-341), Weinheim, Germany, 1996.
  • [4] Müller, E., Drašar, C., Schilz, J., Kaysser, W.A., 2003. Functionally graded materials for sensor and energy Applications. Materials Science Engineering A, 362, 1–2, 17–39.
  • [5] Kawasaki, A., Watanabe, R., 1997. Concept and P/M fabrication of functionally gradient materials. Ceramic International, 23(1), 73–83.
  • [6] Reddy, J.N., Chin, C.D., 1998. Thermo-mechanical analysis of functionally graded cylinders and plates. Journal of Thermal Stresses, 21, 593–626.
  • [7] Pitakthapanaphong, S., Busso, E.P., 2002. Self-consistent elastoplastic stress solutions for functionally graded material systems subjected to thermal transients. Journal of the Mechanics and Physics of Solids, 50, 695–716.
  • [8] Loy, C.T., Lam, K.Y., Reddy, J.N., 1999. Vibration of functionally graded cylindrical shells. International Journal of Mechanical Science, 41, 309–324.
  • [9] Sofiyev, A.H., 2003. Dynamic buckling of functionally graded cylindrical thin shells under non-periodic impulsive loading. Acta Mechanica, 165, 151–163.
  • [10] Tornabene, F., 2009. Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution. Computational Methods in Applied Mechanics and Engineering, 198, 2911–2935.
  • [11] Brischetto, S., 2016. Curvature approximation effects in the free vibration analysis of functionally graded shells. International Journal of Applied Mechanics, 1650079.
  • [12] Zghal, S., Frikha, A., Dammak, F., 2018. Free vibration analysis of carbon nanotube-reinforced functionally graded composite shell structures. Applied Mathematics Modeling, 53, 132-155.
  • [13] Pradhan, S.C., Loy, C.T., Reddy, J.N., 2000. Vibration characteristics of functionally graded cylindrical shells under various boundary conditions. Applied Acoustic, 61, 111–129.
  • [14] Haddadpour, H., Mahmoudkhani, S., Navazi, H.M., 2007. Free vibration analysis of functionally graded cylindrical shells ıncluding thermal effects. Thin-Walled Structures, 45, 591–599.
  • [15] Pandey, S., Pradyumna, S., 2015. A layerwise finite element formulation for free vibration analysis of functionally graded sandwich shells. Composite Structures, 133, 438-450.
  • [16] Agenosov, L.G., Sachenkov, A.V., Stability and Free Vibration of Thin Circular Cylindrical and Conical Shells with Different Boundary Conditions. Research on the Theory of Plates and Shells, Kazan State University, Kazan, USSR, 2, 111–126 (in Russian), 1964.
  • [17] Sofiyev, A.H., Kuruoglu, N., 2015. On a problem of the vibration of functionally graded conical shells with mixed boundary conditions. Composites Part B-Engineering, 70, 122-130.
  • [18] Sofiyev, A.H., Hui, D., 2019. On the vibration and stability of FGM cylindrical shells under external pressures with mixed boundary conditions by using FOSDT. Thin-Walled Structures, 134, 419-427.
  • [19] Shen, H.S., Functionally Graded Materials, Nonlinear Analysis of Plates and Shells, CRC Press, Florida, 2009.
  • [20] Volmir, A.S., Stability of Elastic Systems. Nauka, Moscow. English Translation: Foreign Tech. Division, Air Force Systems Command. Wright-Patterson Air Force Base, Ohio, AD628508, 1967.
  • [21] Leissa, A.W., Vibration of Shells. NASA SP–288, 1973.
  • [22] Reddy, J. N., Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC press, 2004.
  • [23] Amabili, M., Nonlinear Vibrations and Stability of Shells and Plates, Cambridge University Press, 2008.
Year 2019, Volume: 8 Issue: 3, 1 - 15, 20.12.2019
https://doi.org/10.28948/ngumuh.617259

Abstract

References

  • [1] Bever, M.B., Duwez, P.F., 1972. Gradients in composite materials. Materials Science and Engineering, 10, 1–8.
  • [2] Koizumi, M., 1997. FGM activities in Japan. Composites Part B: Engineering, 28, 1–4.
  • [3] Hirai, T., Materials Science and Technology. Brook, R.J., (Ed.), Vch Verlagsgesellschaft (292-341), Weinheim, Germany, 1996.
  • [4] Müller, E., Drašar, C., Schilz, J., Kaysser, W.A., 2003. Functionally graded materials for sensor and energy Applications. Materials Science Engineering A, 362, 1–2, 17–39.
  • [5] Kawasaki, A., Watanabe, R., 1997. Concept and P/M fabrication of functionally gradient materials. Ceramic International, 23(1), 73–83.
  • [6] Reddy, J.N., Chin, C.D., 1998. Thermo-mechanical analysis of functionally graded cylinders and plates. Journal of Thermal Stresses, 21, 593–626.
  • [7] Pitakthapanaphong, S., Busso, E.P., 2002. Self-consistent elastoplastic stress solutions for functionally graded material systems subjected to thermal transients. Journal of the Mechanics and Physics of Solids, 50, 695–716.
  • [8] Loy, C.T., Lam, K.Y., Reddy, J.N., 1999. Vibration of functionally graded cylindrical shells. International Journal of Mechanical Science, 41, 309–324.
  • [9] Sofiyev, A.H., 2003. Dynamic buckling of functionally graded cylindrical thin shells under non-periodic impulsive loading. Acta Mechanica, 165, 151–163.
  • [10] Tornabene, F., 2009. Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution. Computational Methods in Applied Mechanics and Engineering, 198, 2911–2935.
  • [11] Brischetto, S., 2016. Curvature approximation effects in the free vibration analysis of functionally graded shells. International Journal of Applied Mechanics, 1650079.
  • [12] Zghal, S., Frikha, A., Dammak, F., 2018. Free vibration analysis of carbon nanotube-reinforced functionally graded composite shell structures. Applied Mathematics Modeling, 53, 132-155.
  • [13] Pradhan, S.C., Loy, C.T., Reddy, J.N., 2000. Vibration characteristics of functionally graded cylindrical shells under various boundary conditions. Applied Acoustic, 61, 111–129.
  • [14] Haddadpour, H., Mahmoudkhani, S., Navazi, H.M., 2007. Free vibration analysis of functionally graded cylindrical shells ıncluding thermal effects. Thin-Walled Structures, 45, 591–599.
  • [15] Pandey, S., Pradyumna, S., 2015. A layerwise finite element formulation for free vibration analysis of functionally graded sandwich shells. Composite Structures, 133, 438-450.
  • [16] Agenosov, L.G., Sachenkov, A.V., Stability and Free Vibration of Thin Circular Cylindrical and Conical Shells with Different Boundary Conditions. Research on the Theory of Plates and Shells, Kazan State University, Kazan, USSR, 2, 111–126 (in Russian), 1964.
  • [17] Sofiyev, A.H., Kuruoglu, N., 2015. On a problem of the vibration of functionally graded conical shells with mixed boundary conditions. Composites Part B-Engineering, 70, 122-130.
  • [18] Sofiyev, A.H., Hui, D., 2019. On the vibration and stability of FGM cylindrical shells under external pressures with mixed boundary conditions by using FOSDT. Thin-Walled Structures, 134, 419-427.
  • [19] Shen, H.S., Functionally Graded Materials, Nonlinear Analysis of Plates and Shells, CRC Press, Florida, 2009.
  • [20] Volmir, A.S., Stability of Elastic Systems. Nauka, Moscow. English Translation: Foreign Tech. Division, Air Force Systems Command. Wright-Patterson Air Force Base, Ohio, AD628508, 1967.
  • [21] Leissa, A.W., Vibration of Shells. NASA SP–288, 1973.
  • [22] Reddy, J. N., Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC press, 2004.
  • [23] Amabili, M., Nonlinear Vibrations and Stability of Shells and Plates, Cambridge University Press, 2008.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Others
Authors

Abdullah Avey 0000-0001-7678-6351

Mustafa Süzer This is me 0000-0002-8578-7417

Publication Date December 20, 2019
Submission Date September 11, 2019
Acceptance Date November 4, 2019
Published in Issue Year 2019 Volume: 8 Issue: 3

Cite

APA Avey, A., & Süzer, M. (2019). KARIŞIK SINIR KOŞULLARI ALTINDA FONKSİYONEL DERECELİ SİLİNDİRİK KABUKLARIN TİTREŞİM ANALİZİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 8(3), 1-15. https://doi.org/10.28948/ngumuh.617259
AMA Avey A, Süzer M. KARIŞIK SINIR KOŞULLARI ALTINDA FONKSİYONEL DERECELİ SİLİNDİRİK KABUKLARIN TİTREŞİM ANALİZİ. NOHU J. Eng. Sci. December 2019;8(3):1-15. doi:10.28948/ngumuh.617259
Chicago Avey, Abdullah, and Mustafa Süzer. “KARIŞIK SINIR KOŞULLARI ALTINDA FONKSİYONEL DERECELİ SİLİNDİRİK KABUKLARIN TİTREŞİM ANALİZİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 8, no. 3 (December 2019): 1-15. https://doi.org/10.28948/ngumuh.617259.
EndNote Avey A, Süzer M (December 1, 2019) KARIŞIK SINIR KOŞULLARI ALTINDA FONKSİYONEL DERECELİ SİLİNDİRİK KABUKLARIN TİTREŞİM ANALİZİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 8 3 1–15.
IEEE A. Avey and M. Süzer, “KARIŞIK SINIR KOŞULLARI ALTINDA FONKSİYONEL DERECELİ SİLİNDİRİK KABUKLARIN TİTREŞİM ANALİZİ”, NOHU J. Eng. Sci., vol. 8, no. 3, pp. 1–15, 2019, doi: 10.28948/ngumuh.617259.
ISNAD Avey, Abdullah - Süzer, Mustafa. “KARIŞIK SINIR KOŞULLARI ALTINDA FONKSİYONEL DERECELİ SİLİNDİRİK KABUKLARIN TİTREŞİM ANALİZİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 8/3 (December 2019), 1-15. https://doi.org/10.28948/ngumuh.617259.
JAMA Avey A, Süzer M. KARIŞIK SINIR KOŞULLARI ALTINDA FONKSİYONEL DERECELİ SİLİNDİRİK KABUKLARIN TİTREŞİM ANALİZİ. NOHU J. Eng. Sci. 2019;8:1–15.
MLA Avey, Abdullah and Mustafa Süzer. “KARIŞIK SINIR KOŞULLARI ALTINDA FONKSİYONEL DERECELİ SİLİNDİRİK KABUKLARIN TİTREŞİM ANALİZİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 8, no. 3, 2019, pp. 1-15, doi:10.28948/ngumuh.617259.
Vancouver Avey A, Süzer M. KARIŞIK SINIR KOŞULLARI ALTINDA FONKSİYONEL DERECELİ SİLİNDİRİK KABUKLARIN TİTREŞİM ANALİZİ. NOHU J. Eng. Sci. 2019;8(3):1-15.

download