Research Article
BibTex RIS Cite

Investigation of material models on deep drawing and ironing processes

Year 2022, Volume: 11 Issue: 2, 387 - 392, 15.04.2022
https://doi.org/10.28948/ngumuh.1034351

Abstract

Within the scope of this study, the effects of yield and hardening criteria used in forming simulations on part geometric dimensions were investigated. As material 0.8 mm thick DC04 material is used. In the study, the results were compared using the Hill-48 and Barlat-91 yield criteria and experimental flow curve, Hockett-Sherby, Ludwig and Hollomon flow curve models. The studies were carried out in Simufact Sheet Metal Form software. Although all the models studied because of dimensional evaluations estimated within tolerance values, the model in which the experimental data were used with Hill-48 gave the closest results to the nominal dimensions.

References

  • V. L. Hattalli and S. R. Srivatsa, Sheet metal forming processes–recent technological advances, Materials Today: Proceedings, 5, 2564-2574, 2018. https://doi.org/10.1016/j.matpr.2017.11.040
  • Y. Jia, Y. Qiao, H. Pan, E. Chu, and Y. Bai, A Comprehensive plasticity and fracture model for metal sheets under multi-axial stress and non-linear strain path, SAE International Journal of Engines, 10, 266-273, 2017. https://doi:10.4271/2017-01-0315
  • H. Zeng, Z. Huang, T. Wang, H. Sun, and L. Wang, Optimal design and forming analysis of the stamping process for front wall of automobile considering springback compensation technology, SAE Technical Paper, 0148-7191, 2021. https://doi.org/10.4271/2021-01-0269
  • Z. Wang, T. Hakoyama, Y. Endo, and K. Osakada, Application of flow model in metal cutting to cold forging of tubular products, CIRP Annals, 68, 273-276, 2019. https://doi.org/10.1016/j.cirp.2019.04.033
  • K. Zhao, L. Wang, Y. Chang, and J. Yan, Identification of post-necking stress–strain curve for sheet metals by inverse method, Mechanics of Materials, 92, 107-118, 2016. https://doi.org/10.1016/j.mechmat.2015.09.004
  • I. Mirandola, G. A. Berti, R. Caracciolo, S. Lee, N. Kim, and L. Quagliato, Machine learning-based models for the estimation of the energy consumption in metal forming processes, Metals, 11, 833, 2021. https://doi.org/10.3390/met11050833
  • Q.-F. Zhang, Z.-Y. Cai, Y. Zhang, and M.-Z. Li, Springback compensation method for doubly curved plate in multi-point forming, Materials & Design, 47, 377-385, 2013. https://doi.org/10.1016/j.matdes.2012. 12.005
  • J. Abu Qudeiri, A. Ziout, M. Alsayyed, A. Alzarooni, F. Safieh, A. Al Hatti, et al., Simulation study of deep drawing process, in Materials Science Forum, 2020, 139-147. https://doi.org/10.4028/www.scientific.net/ MSF.977.139
  • S. Tatipala, J. Pilthammar, M. Sigvant, J. Wall, and C. M. Johansson, Introductory study of sheet metal forming simulations to evaluate process robustness, in IOP Conference Series: Materials Science and Engineering, 2018, 012111. https://doi:10.1088/1757-899X/418/1/012111
  • A. Zabala, E. S. de Argandoña, D. Cañizares, I. Llavori, N. Otegi, and J. Mendiguren, Numerical study of advanced friction modelling for sheet metal forming: Influence of the die local roughness, Tribology International, 165, 107259, 2022. https://doi.org/10.1016/j.triboint.2021.107259
  • M. Ramezani and Z. Ripin, Introduction to sheet metal forming processes, Rubber-Pad Forming Processes—Technology and Applications, Elsevier, Amsterdam, 1-22, 2012.
  • Y. Qin, W. A. W. Nawang, and J. Zhao, Forming of micro sheet-metal components, in Micromanufacturing Engineering and Technology, ed, 2015, 299-322. https://doi.org/10.1016/B978-0-323-31149-6.00013-X
  • O. Çavuşoğlu, S. Toros, H. Gürün, and A. Güral, Warm deformation and fracture behaviour of DP1000 advanced high strength steel, Ironmaking & Steelmaking, 45, 618-625, 2018. https://doi.org/10. 1080/03019233.2017.1309168
  • J. Lian, F. Shen, X. Jia, D.-C. Ahn, D.-C. Chae, S. Münstermann, et al., An evolving non-associated Hill48 plasticity model accounting for anisotropic hardening and r-value evolution and its application to forming limit prediction, International Journal of Solids and Structures, 151, 20-44, 2018. https://doi.org/10.1016/j.ijsolstr.2017.04.007
  • D. Banabic, Sheet metal forming processes: constitutive modelling and numerical simulation: Springer Science & Business Media, 2010.
  • B. Şener, T. A. Akşen, and M. Fırat, On the effect of through-thickness integration for the blank thickness and ear formation in cup drawing FE analysis, European Mechanical Science, 5, 51-55, 2021. https://doi.org/10.26701/ems.781175

Derin çekme ve ütüleme proseslerinde malzeme modellerinin incelenmesi

Year 2022, Volume: 11 Issue: 2, 387 - 392, 15.04.2022
https://doi.org/10.28948/ngumuh.1034351

Abstract

Bu çalışma kapsamında, şekillendirme simülasyonlarında kullanılan akma ve pekleşme kriterlerinin parça geometrik boyutlarına etkisi incelenmiştir. Malzeme olarak 0.8 mm kalınlığındaki DC04 malzemesi kullanılmıştır. Çalışmada Hill-48 ve Barlat-91 akma kriterleri ile deneysel akma eğrisi, Hockett-Sherby, Ludwig ve Hollomon akma eğrisi modelleri kullanılarak sonuçlar karşılaştırılmıştır. Çalışmalar Simufact Sheet Metal Form yazılımda gerçekleştirilmiştir. Boyutsal değerlendirmeler neticesinde çalışılan bütün modeller her ne kadar tolerans değerleri içerisinde tahmin etmiş olsa da deneysel verilerinin Hill-48 ile kullanıldığı model nominal boyutlara en yakın sonuçları vermiştir.

References

  • V. L. Hattalli and S. R. Srivatsa, Sheet metal forming processes–recent technological advances, Materials Today: Proceedings, 5, 2564-2574, 2018. https://doi.org/10.1016/j.matpr.2017.11.040
  • Y. Jia, Y. Qiao, H. Pan, E. Chu, and Y. Bai, A Comprehensive plasticity and fracture model for metal sheets under multi-axial stress and non-linear strain path, SAE International Journal of Engines, 10, 266-273, 2017. https://doi:10.4271/2017-01-0315
  • H. Zeng, Z. Huang, T. Wang, H. Sun, and L. Wang, Optimal design and forming analysis of the stamping process for front wall of automobile considering springback compensation technology, SAE Technical Paper, 0148-7191, 2021. https://doi.org/10.4271/2021-01-0269
  • Z. Wang, T. Hakoyama, Y. Endo, and K. Osakada, Application of flow model in metal cutting to cold forging of tubular products, CIRP Annals, 68, 273-276, 2019. https://doi.org/10.1016/j.cirp.2019.04.033
  • K. Zhao, L. Wang, Y. Chang, and J. Yan, Identification of post-necking stress–strain curve for sheet metals by inverse method, Mechanics of Materials, 92, 107-118, 2016. https://doi.org/10.1016/j.mechmat.2015.09.004
  • I. Mirandola, G. A. Berti, R. Caracciolo, S. Lee, N. Kim, and L. Quagliato, Machine learning-based models for the estimation of the energy consumption in metal forming processes, Metals, 11, 833, 2021. https://doi.org/10.3390/met11050833
  • Q.-F. Zhang, Z.-Y. Cai, Y. Zhang, and M.-Z. Li, Springback compensation method for doubly curved plate in multi-point forming, Materials & Design, 47, 377-385, 2013. https://doi.org/10.1016/j.matdes.2012. 12.005
  • J. Abu Qudeiri, A. Ziout, M. Alsayyed, A. Alzarooni, F. Safieh, A. Al Hatti, et al., Simulation study of deep drawing process, in Materials Science Forum, 2020, 139-147. https://doi.org/10.4028/www.scientific.net/ MSF.977.139
  • S. Tatipala, J. Pilthammar, M. Sigvant, J. Wall, and C. M. Johansson, Introductory study of sheet metal forming simulations to evaluate process robustness, in IOP Conference Series: Materials Science and Engineering, 2018, 012111. https://doi:10.1088/1757-899X/418/1/012111
  • A. Zabala, E. S. de Argandoña, D. Cañizares, I. Llavori, N. Otegi, and J. Mendiguren, Numerical study of advanced friction modelling for sheet metal forming: Influence of the die local roughness, Tribology International, 165, 107259, 2022. https://doi.org/10.1016/j.triboint.2021.107259
  • M. Ramezani and Z. Ripin, Introduction to sheet metal forming processes, Rubber-Pad Forming Processes—Technology and Applications, Elsevier, Amsterdam, 1-22, 2012.
  • Y. Qin, W. A. W. Nawang, and J. Zhao, Forming of micro sheet-metal components, in Micromanufacturing Engineering and Technology, ed, 2015, 299-322. https://doi.org/10.1016/B978-0-323-31149-6.00013-X
  • O. Çavuşoğlu, S. Toros, H. Gürün, and A. Güral, Warm deformation and fracture behaviour of DP1000 advanced high strength steel, Ironmaking & Steelmaking, 45, 618-625, 2018. https://doi.org/10. 1080/03019233.2017.1309168
  • J. Lian, F. Shen, X. Jia, D.-C. Ahn, D.-C. Chae, S. Münstermann, et al., An evolving non-associated Hill48 plasticity model accounting for anisotropic hardening and r-value evolution and its application to forming limit prediction, International Journal of Solids and Structures, 151, 20-44, 2018. https://doi.org/10.1016/j.ijsolstr.2017.04.007
  • D. Banabic, Sheet metal forming processes: constitutive modelling and numerical simulation: Springer Science & Business Media, 2010.
  • B. Şener, T. A. Akşen, and M. Fırat, On the effect of through-thickness integration for the blank thickness and ear formation in cup drawing FE analysis, European Mechanical Science, 5, 51-55, 2021. https://doi.org/10.26701/ems.781175
There are 16 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Mechanical Engineering
Authors

Cihangir Kaplan 0000-0002-6972-7959

Cem Güleç 0000-0002-5612-6572

Mesut Arıkoğlu 0000-0002-7198-1905

Serkan Toros 0000-0003-0438-2862

Habip Gökay Korkmaz 0000-0003-2670-7912

Publication Date April 15, 2022
Submission Date December 14, 2021
Acceptance Date March 7, 2022
Published in Issue Year 2022 Volume: 11 Issue: 2

Cite

APA Kaplan, C., Güleç, C., Arıkoğlu, M., Toros, S., et al. (2022). Investigation of material models on deep drawing and ironing processes. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11(2), 387-392. https://doi.org/10.28948/ngumuh.1034351
AMA Kaplan C, Güleç C, Arıkoğlu M, Toros S, Korkmaz HG. Investigation of material models on deep drawing and ironing processes. NOHU J. Eng. Sci. April 2022;11(2):387-392. doi:10.28948/ngumuh.1034351
Chicago Kaplan, Cihangir, Cem Güleç, Mesut Arıkoğlu, Serkan Toros, and Habip Gökay Korkmaz. “Investigation of Material Models on Deep Drawing and Ironing Processes”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11, no. 2 (April 2022): 387-92. https://doi.org/10.28948/ngumuh.1034351.
EndNote Kaplan C, Güleç C, Arıkoğlu M, Toros S, Korkmaz HG (April 1, 2022) Investigation of material models on deep drawing and ironing processes. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11 2 387–392.
IEEE C. Kaplan, C. Güleç, M. Arıkoğlu, S. Toros, and H. G. Korkmaz, “Investigation of material models on deep drawing and ironing processes”, NOHU J. Eng. Sci., vol. 11, no. 2, pp. 387–392, 2022, doi: 10.28948/ngumuh.1034351.
ISNAD Kaplan, Cihangir et al. “Investigation of Material Models on Deep Drawing and Ironing Processes”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11/2 (April 2022), 387-392. https://doi.org/10.28948/ngumuh.1034351.
JAMA Kaplan C, Güleç C, Arıkoğlu M, Toros S, Korkmaz HG. Investigation of material models on deep drawing and ironing processes. NOHU J. Eng. Sci. 2022;11:387–392.
MLA Kaplan, Cihangir et al. “Investigation of Material Models on Deep Drawing and Ironing Processes”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 11, no. 2, 2022, pp. 387-92, doi:10.28948/ngumuh.1034351.
Vancouver Kaplan C, Güleç C, Arıkoğlu M, Toros S, Korkmaz HG. Investigation of material models on deep drawing and ironing processes. NOHU J. Eng. Sci. 2022;11(2):387-92.

download