Araştırma Makalesi
PDF EndNote BibTex RIS Kaynak Göster

Derin çekme ve ütüleme proseslerinde malzeme modellerinin incelenmesi

Yıl 2022, Cilt 11, Sayı 2, 387 - 392, 15.04.2022
https://doi.org/10.28948/ngumuh.1034351

Öz

Bu çalışma kapsamında, şekillendirme simülasyonlarında kullanılan akma ve pekleşme kriterlerinin parça geometrik boyutlarına etkisi incelenmiştir. Malzeme olarak 0.8 mm kalınlığındaki DC04 malzemesi kullanılmıştır. Çalışmada Hill-48 ve Barlat-91 akma kriterleri ile deneysel akma eğrisi, Hockett-Sherby, Ludwig ve Hollomon akma eğrisi modelleri kullanılarak sonuçlar karşılaştırılmıştır. Çalışmalar Simufact Sheet Metal Form yazılımda gerçekleştirilmiştir. Boyutsal değerlendirmeler neticesinde çalışılan bütün modeller her ne kadar tolerans değerleri içerisinde tahmin etmiş olsa da deneysel verilerinin Hill-48 ile kullanıldığı model nominal boyutlara en yakın sonuçları vermiştir.

Kaynakça

  • V. L. Hattalli and S. R. Srivatsa, Sheet metal forming processes–recent technological advances, Materials Today: Proceedings, 5, 2564-2574, 2018. https://doi.org/10.1016/j.matpr.2017.11.040
  • Y. Jia, Y. Qiao, H. Pan, E. Chu, and Y. Bai, A Comprehensive plasticity and fracture model for metal sheets under multi-axial stress and non-linear strain path, SAE International Journal of Engines, 10, 266-273, 2017. https://doi:10.4271/2017-01-0315
  • H. Zeng, Z. Huang, T. Wang, H. Sun, and L. Wang, Optimal design and forming analysis of the stamping process for front wall of automobile considering springback compensation technology, SAE Technical Paper, 0148-7191, 2021. https://doi.org/10.4271/2021-01-0269
  • Z. Wang, T. Hakoyama, Y. Endo, and K. Osakada, Application of flow model in metal cutting to cold forging of tubular products, CIRP Annals, 68, 273-276, 2019. https://doi.org/10.1016/j.cirp.2019.04.033
  • K. Zhao, L. Wang, Y. Chang, and J. Yan, Identification of post-necking stress–strain curve for sheet metals by inverse method, Mechanics of Materials, 92, 107-118, 2016. https://doi.org/10.1016/j.mechmat.2015.09.004
  • I. Mirandola, G. A. Berti, R. Caracciolo, S. Lee, N. Kim, and L. Quagliato, Machine learning-based models for the estimation of the energy consumption in metal forming processes, Metals, 11, 833, 2021. https://doi.org/10.3390/met11050833
  • Q.-F. Zhang, Z.-Y. Cai, Y. Zhang, and M.-Z. Li, Springback compensation method for doubly curved plate in multi-point forming, Materials & Design, 47, 377-385, 2013. https://doi.org/10.1016/j.matdes.2012. 12.005
  • J. Abu Qudeiri, A. Ziout, M. Alsayyed, A. Alzarooni, F. Safieh, A. Al Hatti, et al., Simulation study of deep drawing process, in Materials Science Forum, 2020, 139-147. https://doi.org/10.4028/www.scientific.net/ MSF.977.139
  • S. Tatipala, J. Pilthammar, M. Sigvant, J. Wall, and C. M. Johansson, Introductory study of sheet metal forming simulations to evaluate process robustness, in IOP Conference Series: Materials Science and Engineering, 2018, 012111. https://doi:10.1088/1757-899X/418/1/012111
  • A. Zabala, E. S. de Argandoña, D. Cañizares, I. Llavori, N. Otegi, and J. Mendiguren, Numerical study of advanced friction modelling for sheet metal forming: Influence of the die local roughness, Tribology International, 165, 107259, 2022. https://doi.org/10.1016/j.triboint.2021.107259
  • M. Ramezani and Z. Ripin, Introduction to sheet metal forming processes, Rubber-Pad Forming Processes—Technology and Applications, Elsevier, Amsterdam, 1-22, 2012.
  • Y. Qin, W. A. W. Nawang, and J. Zhao, Forming of micro sheet-metal components, in Micromanufacturing Engineering and Technology, ed, 2015, 299-322. https://doi.org/10.1016/B978-0-323-31149-6.00013-X
  • O. Çavuşoğlu, S. Toros, H. Gürün, and A. Güral, Warm deformation and fracture behaviour of DP1000 advanced high strength steel, Ironmaking & Steelmaking, 45, 618-625, 2018. https://doi.org/10. 1080/03019233.2017.1309168
  • J. Lian, F. Shen, X. Jia, D.-C. Ahn, D.-C. Chae, S. Münstermann, et al., An evolving non-associated Hill48 plasticity model accounting for anisotropic hardening and r-value evolution and its application to forming limit prediction, International Journal of Solids and Structures, 151, 20-44, 2018. https://doi.org/10.1016/j.ijsolstr.2017.04.007
  • D. Banabic, Sheet metal forming processes: constitutive modelling and numerical simulation: Springer Science & Business Media, 2010.
  • B. Şener, T. A. Akşen, and M. Fırat, On the effect of through-thickness integration for the blank thickness and ear formation in cup drawing FE analysis, European Mechanical Science, 5, 51-55, 2021. https://doi.org/10.26701/ems.781175

Investigation of material models on deep drawing and ironing processes

Yıl 2022, Cilt 11, Sayı 2, 387 - 392, 15.04.2022
https://doi.org/10.28948/ngumuh.1034351

Öz

Within the scope of this study, the effects of yield and hardening criteria used in forming simulations on part geometric dimensions were investigated. As material 0.8 mm thick DC04 material is used. In the study, the results were compared using the Hill-48 and Barlat-91 yield criteria and experimental flow curve, Hockett-Sherby, Ludwig and Hollomon flow curve models. The studies were carried out in Simufact Sheet Metal Form software. Although all the models studied because of dimensional evaluations estimated within tolerance values, the model in which the experimental data were used with Hill-48 gave the closest results to the nominal dimensions.

Kaynakça

  • V. L. Hattalli and S. R. Srivatsa, Sheet metal forming processes–recent technological advances, Materials Today: Proceedings, 5, 2564-2574, 2018. https://doi.org/10.1016/j.matpr.2017.11.040
  • Y. Jia, Y. Qiao, H. Pan, E. Chu, and Y. Bai, A Comprehensive plasticity and fracture model for metal sheets under multi-axial stress and non-linear strain path, SAE International Journal of Engines, 10, 266-273, 2017. https://doi:10.4271/2017-01-0315
  • H. Zeng, Z. Huang, T. Wang, H. Sun, and L. Wang, Optimal design and forming analysis of the stamping process for front wall of automobile considering springback compensation technology, SAE Technical Paper, 0148-7191, 2021. https://doi.org/10.4271/2021-01-0269
  • Z. Wang, T. Hakoyama, Y. Endo, and K. Osakada, Application of flow model in metal cutting to cold forging of tubular products, CIRP Annals, 68, 273-276, 2019. https://doi.org/10.1016/j.cirp.2019.04.033
  • K. Zhao, L. Wang, Y. Chang, and J. Yan, Identification of post-necking stress–strain curve for sheet metals by inverse method, Mechanics of Materials, 92, 107-118, 2016. https://doi.org/10.1016/j.mechmat.2015.09.004
  • I. Mirandola, G. A. Berti, R. Caracciolo, S. Lee, N. Kim, and L. Quagliato, Machine learning-based models for the estimation of the energy consumption in metal forming processes, Metals, 11, 833, 2021. https://doi.org/10.3390/met11050833
  • Q.-F. Zhang, Z.-Y. Cai, Y. Zhang, and M.-Z. Li, Springback compensation method for doubly curved plate in multi-point forming, Materials & Design, 47, 377-385, 2013. https://doi.org/10.1016/j.matdes.2012. 12.005
  • J. Abu Qudeiri, A. Ziout, M. Alsayyed, A. Alzarooni, F. Safieh, A. Al Hatti, et al., Simulation study of deep drawing process, in Materials Science Forum, 2020, 139-147. https://doi.org/10.4028/www.scientific.net/ MSF.977.139
  • S. Tatipala, J. Pilthammar, M. Sigvant, J. Wall, and C. M. Johansson, Introductory study of sheet metal forming simulations to evaluate process robustness, in IOP Conference Series: Materials Science and Engineering, 2018, 012111. https://doi:10.1088/1757-899X/418/1/012111
  • A. Zabala, E. S. de Argandoña, D. Cañizares, I. Llavori, N. Otegi, and J. Mendiguren, Numerical study of advanced friction modelling for sheet metal forming: Influence of the die local roughness, Tribology International, 165, 107259, 2022. https://doi.org/10.1016/j.triboint.2021.107259
  • M. Ramezani and Z. Ripin, Introduction to sheet metal forming processes, Rubber-Pad Forming Processes—Technology and Applications, Elsevier, Amsterdam, 1-22, 2012.
  • Y. Qin, W. A. W. Nawang, and J. Zhao, Forming of micro sheet-metal components, in Micromanufacturing Engineering and Technology, ed, 2015, 299-322. https://doi.org/10.1016/B978-0-323-31149-6.00013-X
  • O. Çavuşoğlu, S. Toros, H. Gürün, and A. Güral, Warm deformation and fracture behaviour of DP1000 advanced high strength steel, Ironmaking & Steelmaking, 45, 618-625, 2018. https://doi.org/10. 1080/03019233.2017.1309168
  • J. Lian, F. Shen, X. Jia, D.-C. Ahn, D.-C. Chae, S. Münstermann, et al., An evolving non-associated Hill48 plasticity model accounting for anisotropic hardening and r-value evolution and its application to forming limit prediction, International Journal of Solids and Structures, 151, 20-44, 2018. https://doi.org/10.1016/j.ijsolstr.2017.04.007
  • D. Banabic, Sheet metal forming processes: constitutive modelling and numerical simulation: Springer Science & Business Media, 2010.
  • B. Şener, T. A. Akşen, and M. Fırat, On the effect of through-thickness integration for the blank thickness and ear formation in cup drawing FE analysis, European Mechanical Science, 5, 51-55, 2021. https://doi.org/10.26701/ems.781175

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik, Makine
Bölüm Makine Mühendisliği
Yazarlar

Cihangir KAPLAN> (Sorumlu Yazar)
KENTPAR OTOMOTİV
0000-0002-6972-7959
Türkiye


Cem GÜLEÇ>
Kentpar Otomotiv
0000-0002-5612-6572
Türkiye


Mesut ARIKOĞLU>
Kentpar Otomotiv
0000-0002-7198-1905
Türkiye


Serkan TOROS>
NIGDE UNIVERSITY
0000-0003-0438-2862
Türkiye


Habip Gökay KORKMAZ>
NIGDE UNIVERSITY
0000-0003-2670-7912
Türkiye

Yayımlanma Tarihi 15 Nisan 2022
Başvuru Tarihi 14 Aralık 2021
Kabul Tarihi 7 Mart 2022
Yayınlandığı Sayı Yıl 2022, Cilt 11, Sayı 2

Kaynak Göster

Bibtex @araştırma makalesi { ngumuh1034351, journal = {Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi}, eissn = {2564-6605}, address = {Niğde Üniversitesi Mühendislik Fakültesi, Merkez Yerleşke, Niğde}, publisher = {Niğde Ömer Halisdemir Üniversitesi}, year = {2022}, volume = {11}, number = {2}, pages = {387 - 392}, doi = {10.28948/ngumuh.1034351}, title = {Investigation of material models on deep drawing and ironing processes}, key = {cite}, author = {Kaplan, Cihangir and Güleç, Cem and Arıkoğlu, Mesut and Toros, Serkan and Korkmaz, Habip Gökay} }
APA Kaplan, C. , Güleç, C. , Arıkoğlu, M. , Toros, S. & Korkmaz, H. G. (2022). Investigation of material models on deep drawing and ironing processes . Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi , 11 (2) , 387-392 . DOI: 10.28948/ngumuh.1034351
MLA Kaplan, C. , Güleç, C. , Arıkoğlu, M. , Toros, S. , Korkmaz, H. G. "Investigation of material models on deep drawing and ironing processes" . Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11 (2022 ): 387-392 <https://dergipark.org.tr/tr/pub/ngumuh/issue/69417/1034351>
Chicago Kaplan, C. , Güleç, C. , Arıkoğlu, M. , Toros, S. , Korkmaz, H. G. "Investigation of material models on deep drawing and ironing processes". Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11 (2022 ): 387-392
RIS TY - JOUR T1 - Derin çekme ve ütüleme proseslerinde malzeme modellerinin incelenmesi AU - CihangirKaplan, CemGüleç, MesutArıkoğlu, SerkanToros, Habip GökayKorkmaz Y1 - 2022 PY - 2022 N1 - doi: 10.28948/ngumuh.1034351 DO - 10.28948/ngumuh.1034351 T2 - Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi JF - Journal JO - JOR SP - 387 EP - 392 VL - 11 IS - 2 SN - -2564-6605 M3 - doi: 10.28948/ngumuh.1034351 UR - https://doi.org/10.28948/ngumuh.1034351 Y2 - 2022 ER -
EndNote %0 Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi Investigation of material models on deep drawing and ironing processes %A Cihangir Kaplan , Cem Güleç , Mesut Arıkoğlu , Serkan Toros , Habip Gökay Korkmaz %T Investigation of material models on deep drawing and ironing processes %D 2022 %J Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi %P -2564-6605 %V 11 %N 2 %R doi: 10.28948/ngumuh.1034351 %U 10.28948/ngumuh.1034351
ISNAD Kaplan, Cihangir , Güleç, Cem , Arıkoğlu, Mesut , Toros, Serkan , Korkmaz, Habip Gökay . "Investigation of material models on deep drawing and ironing processes". Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11 / 2 (Nisan 2022): 387-392 . https://doi.org/10.28948/ngumuh.1034351
AMA Kaplan C. , Güleç C. , Arıkoğlu M. , Toros S. , Korkmaz H. G. Investigation of material models on deep drawing and ironing processes. NÖHÜ Müh. Bilim. Derg.. 2022; 11(2): 387-392.
Vancouver Kaplan C. , Güleç C. , Arıkoğlu M. , Toros S. , Korkmaz H. G. Investigation of material models on deep drawing and ironing processes. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi. 2022; 11(2): 387-392.
IEEE C. Kaplan , C. Güleç , M. Arıkoğlu , S. Toros ve H. G. Korkmaz , "Investigation of material models on deep drawing and ironing processes", Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 11, sayı. 2, ss. 387-392, Nis. 2022, doi:10.28948/ngumuh.1034351

 23135