Research Article
BibTex RIS Cite

An investigation of the effect of tapered angle and boundary condition on natural frequency of different ceramic coated Ti-6Al-4V alloy with finite element analysis

Year 2022, Volume: 11 Issue: 3, 797 - 805, 18.07.2022
https://doi.org/10.28948/ngumuh.1078779

Abstract

In recent years, the interest in light metals has increased due to the increasing demand for components with high specific strength and long service life in the industry. In this context, titanium alloys have become very common and popular owing to their high strength/weight properties and superior refractory characteristics. In this study, the effect of boundary condition and tapered angle on the natural frequency and vibration behavior of the beam was investigated in Ti-6Al-4V beams coated with three different ceramic materials; Al2O3, AlN, and TiB2. Tapered angle values are considered as 0°, 0.2°, 0.4°, 0.6° and 0.8°. Besides, boundary conditions were evaluated in two conditions including left side fixed or both sides fixed. All analyzes were performed in the finite element-based Ansys APDL 19 program. According to the results obtained from the analyses, it was observed that there was a change in the natural frequency values according to the type of coating material, but no difference was found in terms of increase/decrease tendency. In addition, the resultant displacement values were determined for all samples. The results indicated that the resultant displacement values were severely affected by the tapered angle. A decreasing resultant displacement trend was observed in all samples with increasing tapered angle.

References

  • N. Gupta, D. D. Luong and K. Cho, Magnesium Matrix Composite Foams—Density, Mechanical Properties, and Applications, Metals, 2, 238-252, 2012. https://doi.org/10.3390/met2030238.
  • S. Ferraris and S. Spriano, Antibacterial titanium surfaces for medical implants, Materials Science and Engineering: C, 61, 965-978, 2016. https://doi.org/10.1016/j.msec.2015.12.062.
  • J. Chen, L. Tan, X. Yu, I. P. Etim, M. Ibrahim, K. Yang, Mechanical properties of magnesium alloys for medical application: A review, Journal of the Mechanical Behavior of Biomedical Materials, 87, 68-79, 2018. https://doi.org/10.1016/j.jmbbm.2018.07.022.
  • Ç. Bolat, İ. C. Akgün and A. Göksenli, On the Way to Real Applications: Aluminum Matrix Syntactic Foams, European Mechanical Science, 4(3), 131-141, 2020. https://doi.org/10.26701/ems.703619.
  • V. P. Leonov, I. V. Gorynin, A. S. Kudryavtsev et al., Titanium alloys in steam turbine construction, Inorg. Mater. Appl. Res. 6, 580–590, 2015 https://doi.org/10.1134/S2075113315060076.
  • B. Ergene, Simulation of the production of Inconel 718 and Ti6Al4V biomedical parts with different relative densities by selective laser melting (SLM) method, Journal of the Faculty of Engineering and Architecture of Gazi University, 37(1), 469-484, 2022. https://doi.org/10.17341/gazimmfd.934143.
  • B. Ergene and B. Yalçın, A finite element study on modal analysis of lightweight pipes, Sigma Journal of Engineering and Natural Sciences, 39(3), 268-278, 2021. https://doi.org/10.14744/sigma.2021.00016.
  • S. Liu and Y. C. Shin, Additive manufacturing of Ti6Al4V alloy: A review, Materials & Design, 164, 107552, 2019. https://doi.org/10.1016/j.matdes.2018.107552.
  • I. Inagaki, T. Takechi, Y. Shirai and N. Ariyasu, Application and features of titanium for the aerospace industry, Nippon Steel and Sumitomo Metal Technical Report (2014), pp. 22-27.
  • P. Singh, H. Pungotra and N.S. Kalsi, On the characteristics of titanium alloys for the aircraft applications, Mater. Today Proc., 4(8), 8971-8982, 2017. https://doi.org/10.1016/j.matpr.2017.07.249.
  • B. Song, S. Dong, B. Zhang, H. Liao and C. Coddet, Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V, Materials & Design, 35, 120-125, 2012. https://doi.org/10.1016/j.matdes.2011.09.051.
  • J. Alcisto, A. Enriquez, H. Garcia, Tensile Properties and Microstructures of Laser-Formed Ti-6Al-4V, J. of Materi Eng and Perform., 20, 203–212, 2011. https://doi.org/10.1007/s11665-010-9670-9.
  • H. K. Rafi, T. L. Starr and B. E. Stucker, A comparison of the tensile, fatigue, and fracture behavior of Ti–6Al–4V and 15-5 PH stainless steel parts made by selective laser melting, Int J Adv Manuf Technol., 69, 1299–1309, 2013. https://doi.org/10.1007/s00170-013-5106-7.
  • J. R. Zhao, F. Y. Hung, T. S. Lui, Y. L. Wu, The Relationship of Fracture Mechanism between High Temperature Tensile Mechanical Properties and Particle Erosion Resistance of Selective Laser Melting Ti-6Al-4V Alloy, Metals, 9, 501, 2019. https://doi.org/10.3390/met9050501.
  • B. Aksakal, M. Gavgali and B. Dikici, The Effect of Coating Thickness on Corrosion Resistance of Hydroxyapatite Coated Ti6Al4V and 316L SS Implants, J. of Materi Eng and Perform., 19, 894–899 2010. https://doi.org/10.1007/s11665-009-9559-7.
  • A. A. El Hadad, E. Peón, F. R. García-Galván, V. Barranco, J. Parra, A. Jiménez-Morales and J. C. Galván, Biocompatibility and Corrosion Protection Behaviour of Hydroxyapatite Sol-Gel-Derived Coatings on Ti6Al4V Alloy, Materials, 10, 94, 2017. https://doi.org/10.3390/ma10020094.
  • M. F. M. Yusoff, M. R. A. Kadir, N. Iqbal, M. A. Hassan and R. Hussain, Dipcoating of poly (ε-caprolactone)/hydroxyapatite composite coating on Ti6Al4V for enhanced corrosion protection, Surface and Coatings Technology, 245, 102-107, 2014. https://doi.org/10.1016/j.surfcoat.2014.02.048.
  • H. Asgar, K.M. Deen, Z. U. Rahman, U. H. Shah, M. A. Raza, W. Haider, Functionalized graphene oxide coating on Ti6Al4V alloy for improved biocompatibility and corrosion resistance, Materials Science and Engineering: C, 94, 920-928, 2019. https://doi.org/10.1016/j.msec.2018.10.046.
  • B. N. Mordyuk, S. M. Voloshko, V. I. Zakiev et al. Enhanced Resistance of Ti6Al4V Alloy to High-Temperature Oxidation and Corrosion by Forming Alumina Composite Coating. J. of Materi Eng and Perform., 30, 1780–1795, 2021. https://doi.org/10.1007/s11665-021-05492-y.
  • S. Kumar, A. Mandal, A. K. Das and A. R. Dixit, Parametric study and characterization of AlN-Ni-Ti6Al4V composite cladding on titanium alloy, Surface and Coatings Technology, 349, 37-49, 2018. https://doi.org/10.1016/j.surfcoat.2018.05.053.
  • B. Ergene and Ç. Bolat, Determination of thermal stress and elongation on different ceramic coated Ti-6Al-4V alloy at elevated temperatures by finite element method, Sigma Journal of Engineering and Natural Sciences, 38(4), 2013-2026, 2020.
  • N. Lin, X. Huang, X. Zhang, A. Fan, L. Qin and B. Tang, In vitro assessments on bacterial adhesion and corrosion performance of TiN coating on Ti6Al4V titanium alloy synthesized by multi-arc ion plating, Applied Surface Science, 258(18), 7047-7051, 2012. https://doi.org/10.1016/j.apsusc.2012.03.163.
  • T. Gao, Z. Li, K. Hu, Y. Bian and X. Liu, Assessment of AlN/Mg–8Al Composites Reinforced with In Situ and/or Ex Situ AlN Particles, Materials, 14, 52, 2021. https://doi.org/10.3390/ma14010052.
  • H. D. V. Mejia, A. M. Echavarria and G. G. Bejarano, Detailed study of the electrochemical behavior of low-reflectivity TiAlN coatings, Surface Innovations, 9(5), 296-307, 2021. https://doi.org/10.1680/jsuin.20.00079.
  • B. Ergene and Ç. Bolat, A review on the recent investigation trends in abrasive waterjet cutting and turning of hybrid composites, Sigma Journal of Engineering and Natural Sciences, 37(3), 989-1016, 2019.
  • Ç. Bolat, İ. C. Akgün and A. Gökşenli, Effect of aging heat treatment on compressive characteristics of bimodal aluminum syntactic foams produced by cold chamber die casting, International Journal of Metalcasting, 1-17, 2021. https://doi.org/10.1007/s40962-021-00629-0.
  • A. Bhowmik, D. Dey and A. Biswas, Comparative Study of Microstructure, Physical and Mechanical Characterization of SiC/TiB2 Reinforced Aluminium Matrix Composite, Silicon, 13, 2003–2010, 2021. https://doi.org/10.1007/s12633-020-00591-2.
  • S. V. Сhertovskikh, L. S. Shuster and G. S. Fox-Rabinovich, Study of TiB2 Coated Hard Alloy Tool Wear Resistance During Titanium Alloy Machining, Chem Petrol Eng., 57, 690–695, 2021. https://doi.org/10.1007/s10556-021-00993-y.
  • M. K. Thompson and J. M. Thompson, Ansys Mechanical APDL for Finite Element Analysis, Butterworth-Heinemann (Elsevier), 2017, DOI: 10.1016/B978-0-12-812981-4.00001-0.

Farklı seramik kaplı Ti-6Al-4V alaşımının doğal frekansına konik açı ve sınır koşulunun etkisinin sonlu eleman analizi ile incelenmesi

Year 2022, Volume: 11 Issue: 3, 797 - 805, 18.07.2022
https://doi.org/10.28948/ngumuh.1078779

Abstract

Son yıllarda sektörde özgül mukavemeti yüksek ve uzun ömürlü bileşenlere olan talebin artması nedeniyle hafif metallere olan ilgi artmıştır. Bu bağlamda titanyum alaşımları, yüksek mukavemet/ağırlık özellikleri ve üstün refrakter özellikleri nedeniyle oldukça yaygın ve popüler hale gelmiştir. Bu çalışmada, Al2O3, AlN ve TiB2 olmak üzere üç farklı seramik malzemesi ile kaplanmış Ti-6Al-4V kirişlerde sınır koşulunun ve konik açının kirişin doğal frekansı ve titreşim davranışına olan etkisi araştırılmıştır. Konik açı değerleri 0°, 0.2°, 0.4°, 0.6° ve 0.8° olarak ele alınmıştır. Ayrıca, sınır koşulları sol kenarın sabitlenmesi ya da her iki kenarın da sabitlenmesi olarak iki şekilde değerlendirilmiştir. Tüm analizler sonlu elemanlar bazlı Ansys APDL 19 programında gerçekleştirilmiştir. Analizlerden elde edilen sonuçlara göre, kaplama malzemesinin cinsine göre doğal frekans değerlerinde değişim olduğu ancak artış/azalma eğilimi açısından bir farklılık olmadığı görülmüştür. Ek olarak, tüm numuneler için bileşke deplasman değerleri belirlenmiştir. Sonuçlar, bileşke deplasman değerlerinin konik açıdan ciddi şekilde etkilendiğini göstermiştir. Konik açının artışı ile birlikte tüm numunelerin bileşke deplasman değerlerinde azalış eğilimi gözlemlenmiştir.

References

  • N. Gupta, D. D. Luong and K. Cho, Magnesium Matrix Composite Foams—Density, Mechanical Properties, and Applications, Metals, 2, 238-252, 2012. https://doi.org/10.3390/met2030238.
  • S. Ferraris and S. Spriano, Antibacterial titanium surfaces for medical implants, Materials Science and Engineering: C, 61, 965-978, 2016. https://doi.org/10.1016/j.msec.2015.12.062.
  • J. Chen, L. Tan, X. Yu, I. P. Etim, M. Ibrahim, K. Yang, Mechanical properties of magnesium alloys for medical application: A review, Journal of the Mechanical Behavior of Biomedical Materials, 87, 68-79, 2018. https://doi.org/10.1016/j.jmbbm.2018.07.022.
  • Ç. Bolat, İ. C. Akgün and A. Göksenli, On the Way to Real Applications: Aluminum Matrix Syntactic Foams, European Mechanical Science, 4(3), 131-141, 2020. https://doi.org/10.26701/ems.703619.
  • V. P. Leonov, I. V. Gorynin, A. S. Kudryavtsev et al., Titanium alloys in steam turbine construction, Inorg. Mater. Appl. Res. 6, 580–590, 2015 https://doi.org/10.1134/S2075113315060076.
  • B. Ergene, Simulation of the production of Inconel 718 and Ti6Al4V biomedical parts with different relative densities by selective laser melting (SLM) method, Journal of the Faculty of Engineering and Architecture of Gazi University, 37(1), 469-484, 2022. https://doi.org/10.17341/gazimmfd.934143.
  • B. Ergene and B. Yalçın, A finite element study on modal analysis of lightweight pipes, Sigma Journal of Engineering and Natural Sciences, 39(3), 268-278, 2021. https://doi.org/10.14744/sigma.2021.00016.
  • S. Liu and Y. C. Shin, Additive manufacturing of Ti6Al4V alloy: A review, Materials & Design, 164, 107552, 2019. https://doi.org/10.1016/j.matdes.2018.107552.
  • I. Inagaki, T. Takechi, Y. Shirai and N. Ariyasu, Application and features of titanium for the aerospace industry, Nippon Steel and Sumitomo Metal Technical Report (2014), pp. 22-27.
  • P. Singh, H. Pungotra and N.S. Kalsi, On the characteristics of titanium alloys for the aircraft applications, Mater. Today Proc., 4(8), 8971-8982, 2017. https://doi.org/10.1016/j.matpr.2017.07.249.
  • B. Song, S. Dong, B. Zhang, H. Liao and C. Coddet, Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V, Materials & Design, 35, 120-125, 2012. https://doi.org/10.1016/j.matdes.2011.09.051.
  • J. Alcisto, A. Enriquez, H. Garcia, Tensile Properties and Microstructures of Laser-Formed Ti-6Al-4V, J. of Materi Eng and Perform., 20, 203–212, 2011. https://doi.org/10.1007/s11665-010-9670-9.
  • H. K. Rafi, T. L. Starr and B. E. Stucker, A comparison of the tensile, fatigue, and fracture behavior of Ti–6Al–4V and 15-5 PH stainless steel parts made by selective laser melting, Int J Adv Manuf Technol., 69, 1299–1309, 2013. https://doi.org/10.1007/s00170-013-5106-7.
  • J. R. Zhao, F. Y. Hung, T. S. Lui, Y. L. Wu, The Relationship of Fracture Mechanism between High Temperature Tensile Mechanical Properties and Particle Erosion Resistance of Selective Laser Melting Ti-6Al-4V Alloy, Metals, 9, 501, 2019. https://doi.org/10.3390/met9050501.
  • B. Aksakal, M. Gavgali and B. Dikici, The Effect of Coating Thickness on Corrosion Resistance of Hydroxyapatite Coated Ti6Al4V and 316L SS Implants, J. of Materi Eng and Perform., 19, 894–899 2010. https://doi.org/10.1007/s11665-009-9559-7.
  • A. A. El Hadad, E. Peón, F. R. García-Galván, V. Barranco, J. Parra, A. Jiménez-Morales and J. C. Galván, Biocompatibility and Corrosion Protection Behaviour of Hydroxyapatite Sol-Gel-Derived Coatings on Ti6Al4V Alloy, Materials, 10, 94, 2017. https://doi.org/10.3390/ma10020094.
  • M. F. M. Yusoff, M. R. A. Kadir, N. Iqbal, M. A. Hassan and R. Hussain, Dipcoating of poly (ε-caprolactone)/hydroxyapatite composite coating on Ti6Al4V for enhanced corrosion protection, Surface and Coatings Technology, 245, 102-107, 2014. https://doi.org/10.1016/j.surfcoat.2014.02.048.
  • H. Asgar, K.M. Deen, Z. U. Rahman, U. H. Shah, M. A. Raza, W. Haider, Functionalized graphene oxide coating on Ti6Al4V alloy for improved biocompatibility and corrosion resistance, Materials Science and Engineering: C, 94, 920-928, 2019. https://doi.org/10.1016/j.msec.2018.10.046.
  • B. N. Mordyuk, S. M. Voloshko, V. I. Zakiev et al. Enhanced Resistance of Ti6Al4V Alloy to High-Temperature Oxidation and Corrosion by Forming Alumina Composite Coating. J. of Materi Eng and Perform., 30, 1780–1795, 2021. https://doi.org/10.1007/s11665-021-05492-y.
  • S. Kumar, A. Mandal, A. K. Das and A. R. Dixit, Parametric study and characterization of AlN-Ni-Ti6Al4V composite cladding on titanium alloy, Surface and Coatings Technology, 349, 37-49, 2018. https://doi.org/10.1016/j.surfcoat.2018.05.053.
  • B. Ergene and Ç. Bolat, Determination of thermal stress and elongation on different ceramic coated Ti-6Al-4V alloy at elevated temperatures by finite element method, Sigma Journal of Engineering and Natural Sciences, 38(4), 2013-2026, 2020.
  • N. Lin, X. Huang, X. Zhang, A. Fan, L. Qin and B. Tang, In vitro assessments on bacterial adhesion and corrosion performance of TiN coating on Ti6Al4V titanium alloy synthesized by multi-arc ion plating, Applied Surface Science, 258(18), 7047-7051, 2012. https://doi.org/10.1016/j.apsusc.2012.03.163.
  • T. Gao, Z. Li, K. Hu, Y. Bian and X. Liu, Assessment of AlN/Mg–8Al Composites Reinforced with In Situ and/or Ex Situ AlN Particles, Materials, 14, 52, 2021. https://doi.org/10.3390/ma14010052.
  • H. D. V. Mejia, A. M. Echavarria and G. G. Bejarano, Detailed study of the electrochemical behavior of low-reflectivity TiAlN coatings, Surface Innovations, 9(5), 296-307, 2021. https://doi.org/10.1680/jsuin.20.00079.
  • B. Ergene and Ç. Bolat, A review on the recent investigation trends in abrasive waterjet cutting and turning of hybrid composites, Sigma Journal of Engineering and Natural Sciences, 37(3), 989-1016, 2019.
  • Ç. Bolat, İ. C. Akgün and A. Gökşenli, Effect of aging heat treatment on compressive characteristics of bimodal aluminum syntactic foams produced by cold chamber die casting, International Journal of Metalcasting, 1-17, 2021. https://doi.org/10.1007/s40962-021-00629-0.
  • A. Bhowmik, D. Dey and A. Biswas, Comparative Study of Microstructure, Physical and Mechanical Characterization of SiC/TiB2 Reinforced Aluminium Matrix Composite, Silicon, 13, 2003–2010, 2021. https://doi.org/10.1007/s12633-020-00591-2.
  • S. V. Сhertovskikh, L. S. Shuster and G. S. Fox-Rabinovich, Study of TiB2 Coated Hard Alloy Tool Wear Resistance During Titanium Alloy Machining, Chem Petrol Eng., 57, 690–695, 2021. https://doi.org/10.1007/s10556-021-00993-y.
  • M. K. Thompson and J. M. Thompson, Ansys Mechanical APDL for Finite Element Analysis, Butterworth-Heinemann (Elsevier), 2017, DOI: 10.1016/B978-0-12-812981-4.00001-0.
There are 29 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Mechanical Engineering
Authors

Berkay Ergene 0000-0001-6145-1970

Çağın Bolat 0000-0002-4356-4696

Publication Date July 18, 2022
Submission Date February 24, 2022
Acceptance Date May 6, 2022
Published in Issue Year 2022 Volume: 11 Issue: 3

Cite

APA Ergene, B., & Bolat, Ç. (2022). An investigation of the effect of tapered angle and boundary condition on natural frequency of different ceramic coated Ti-6Al-4V alloy with finite element analysis. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11(3), 797-805. https://doi.org/10.28948/ngumuh.1078779
AMA Ergene B, Bolat Ç. An investigation of the effect of tapered angle and boundary condition on natural frequency of different ceramic coated Ti-6Al-4V alloy with finite element analysis. NOHU J. Eng. Sci. July 2022;11(3):797-805. doi:10.28948/ngumuh.1078779
Chicago Ergene, Berkay, and Çağın Bolat. “An Investigation of the Effect of Tapered Angle and Boundary Condition on Natural Frequency of Different Ceramic Coated Ti-6Al-4V Alloy With Finite Element Analysis”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11, no. 3 (July 2022): 797-805. https://doi.org/10.28948/ngumuh.1078779.
EndNote Ergene B, Bolat Ç (July 1, 2022) An investigation of the effect of tapered angle and boundary condition on natural frequency of different ceramic coated Ti-6Al-4V alloy with finite element analysis. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11 3 797–805.
IEEE B. Ergene and Ç. Bolat, “An investigation of the effect of tapered angle and boundary condition on natural frequency of different ceramic coated Ti-6Al-4V alloy with finite element analysis”, NOHU J. Eng. Sci., vol. 11, no. 3, pp. 797–805, 2022, doi: 10.28948/ngumuh.1078779.
ISNAD Ergene, Berkay - Bolat, Çağın. “An Investigation of the Effect of Tapered Angle and Boundary Condition on Natural Frequency of Different Ceramic Coated Ti-6Al-4V Alloy With Finite Element Analysis”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11/3 (July 2022), 797-805. https://doi.org/10.28948/ngumuh.1078779.
JAMA Ergene B, Bolat Ç. An investigation of the effect of tapered angle and boundary condition on natural frequency of different ceramic coated Ti-6Al-4V alloy with finite element analysis. NOHU J. Eng. Sci. 2022;11:797–805.
MLA Ergene, Berkay and Çağın Bolat. “An Investigation of the Effect of Tapered Angle and Boundary Condition on Natural Frequency of Different Ceramic Coated Ti-6Al-4V Alloy With Finite Element Analysis”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 11, no. 3, 2022, pp. 797-05, doi:10.28948/ngumuh.1078779.
Vancouver Ergene B, Bolat Ç. An investigation of the effect of tapered angle and boundary condition on natural frequency of different ceramic coated Ti-6Al-4V alloy with finite element analysis. NOHU J. Eng. Sci. 2022;11(3):797-805.

23135