Research Article
BibTex RIS Cite

GaAs yarıiletken yüzeyinde mikro yarıkların üretilmesi ve FLIM tekniği ile yüzey karakterizasyonu

Year 2022, Volume: 11 Issue: 3, 826 - 837, 18.07.2022
https://doi.org/10.28948/ngumuh.1082122

Abstract

Farklı üretim koşulları altında gerçekleştirilen çift hücreli elektrokimyasal aşındırma metodu ile p-tipi Galyum arsenik (GaAs) yarıiletken üzerinde paralel mikro yarıklar başarılı bir şekilde üretilmiştir. Mikro yarıkların yüzey morfolojisini analiz etmek için alan emisyonlu taramalı elektron mikroskobu (SEM) kullanılmıştır. GaAs yüzeyinde derinliği 210 ile 30 nm arasında değişen mikro yarıklar oluştuğu gözlemlenmiştir. Aynı zamanda, mikro yarıkların kimyasal yapısı enerji dağılımlı X-ışını spekroskopisi (EDS) tekniği ile belirlenmiştir. EDS analizi mikro yarıkların yaklaşık olarak 1:1 atomik oranlarda galyum (Ga) ve arsenik (As) elementlerini içerdiğini doğrulamıştır. Mikro yapılı GaAs yüzeyin zaman uyumlu foto ışıma özelliklerini incelenmek için fluoresans yaşam ömrü görüntüleme mikroskopi (FLIM) tekniği uygulanmıştır. 210, 70 ve 30 nm derinliğe sahip olan mikro yarıkların üzerindeki taşıyıcı ömürleri sırasıyla 0.70, 0.37 and 0.25 ns olarak ölçülmüştür. Taşıyıcı rekombinasyon ömrünün, yüzey rekombinasyonlarından dolayı yarıkların derinliğine güçlü bir şekilde duyarlı olduğu sonucuna varılmıştır. Aynı zamanda, GaAs mikro yarıkların yüzey rekombinasyon hızı 42.63 ×10^2 cm⁄s olarak hesaplanmıştır. Üretilen mikro yarıklar optoelektronik aygıt uygulamaları için ilgi çekici görünmektedir.

Supporting Institution

TÜBİTAK

Project Number

114F451

Thanks

Bu çalışma, Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından 114F451 numaralı proje ile desteklenmiştir.

References

  • V.V. Vainberg, A.S. Pylypchuk, N.V. Baidus, B.N. Zvonkov, Electron mobility in the GaAs/InGaAs/GaAs quantum wells, Semiconductor Physics, Quantum Electronics & Optoelectronics, 16(2), 152-161, 2013. https://doi.org/10.15407/spqeo16.02.152
  • S. Kundu, A. Kumar, S. Banerjee, P. Banerji, Electrical properties and barrier modification of GaAs MIS Schottky device based on MEH-PPV organic interfacial layer, Mat. Sci. Semicon. Proc. 15, 386-392, 2012. : https://doi.org/10.1016/j.mssp.2012.01.001
  • D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H.H. Tan, C. Jagadish, Optically pumped room-temperature GaAs nanowire lasers, Nature Photonics 7, 963-968,2013.https://doi.org/10.1038/NPHOTON.2013.303
  • D. Jung, J. Faucher, R. Biswas, L. Shen, D. Kang, M.L. Lee, J.Yoon, igh performance ultrathin GaAs solar cells enabled with heterogeneously integrated dielectric periodic nanostructures, ACS Nano 9(10), 10356-10365, 2015. https://doi.org/10.1021/acsnano.5b05585
  • J. Wu, D. Shao, V.G. Dorogan, A.Z. Li, S. Li, E.A. DeCuir, M.O. Manasreh, Z.M. Wang, Y.I. Mazur and G.J. Salamo, Intersublevel infrred photodetector with strain-free GaAs quantum dot pairs grown by high-temperature droplet epitaxy, Nano Lett. 10, 1512-1516, 2010. https://doi.org/10.1021/nl100217k
  • R.J. Warburton, Single spins in self-assembled quantum dots, Nature Matter. 12, 483-493, 2013. https://www.nature.com/articles/nmat3585
  • R.P.G. McNeil, M. Kataoka, C.J.B. Ford, C.H.W. Barnes, D. Anderson, G.A.C. Jones, I. Farrer and D.A Ritchie, On-demand single-electron transfer between distant quantum dots, Nature 477, 439-442, 2011. https://www.nature.com/articles/nature10444
  • M.A. Ladugin, A.A. Marmalyuk, A.A. Padalitsa, T.A. Bagaev, A.Yu. Andreev, K.Yu. Telegin, A.V. Lobintsov, E.I. Davydova, S.M. Sapozhnikov, A.I. Danilov, A.V. Podkopaev, E.B. Ivanova, V.A. Simakov, Laser diode bars based on AlGaAs/GaAs quantum-well heterostructures with an efficiency up to 70%, Quantum Electronics 47(4), 291-293, 2017. http://dx.doi.org/10.1070/QEL16365
  • S. Chen, W. Li, Z. Zhang, D. Childs, K. Zhou, J. Orchard, K. Kennedy, M. Hugues, E. Clarke, I. Ross, O. Wada and R. Hogg, GaAs-Based Superluminescent Light-Emitting Diodes with 290-nm Emission Bandwidth by Using Hybrid Quantum Well/Quantum Dot Structures, Nanoscale Research Letters 10, 340, 2015. https://doi.org/10.1186/s11671-015-1049-2
  • N. Han, Z. Yang, F. Wang, G. Dong, S. Yip, X. Liang, T.F. Hung, Y. Chen, and J.C. Ho, High-Performance GaAs Nanowire Solar Cells for Flexible and Transparent Photovoltaics, ACS Appl. Mater. Interfaces 7, 20454-20459, 2015. https://doi.org/10.1021/acsami.5b06452
  • R. Sanatinia, K.M. Awan, S. Naureen, N. Anttu, E. Ebraert, and S. Anand, GaAs nanopillar arrays with suppressed broadband reflectance and high optical quality for photovoltaic applications, Opt. Mater. Express 2(11), 1671-1679, 2012.https://doi.org/10.1364/OME.2.001671
  • P.K. Mohseni, S.H. Kim, X. Zhao, K. Balasundararm and J.D. Kim, GaAs pillar array-based light emitting diodes fabricated by metal-assisted chemical etching, J. Appl. Phys. 114, 064909, 2013. http://dx.doi.org/10.1063/1.4817424
  • C. Kong, J.W. Leem, J.W. Lee, J.S. Yu and C.S. Kee, Characteristics of terahertz pulses from antireflective GaAs surfaces with nanopillars, J. Appl. Phys. 113, 203102, 2013. https://doi.org/10.1063/1.4807407
  • K.J. Luo, J.Y. Xu, H. Cao, Y. Ma, S.H. Chang, S.T. Ho and G.S. Solomon, Dynamics of GaAs/AlGaAs microdisk lasers, Appl. Phys. Lett. 77(15), 2304-2306, 2000. https://doi.org/10.1063/1.1317544
  • K. Kim, Y. Song and J. Oh, Nano/micro dual-textured antireflective subwavelength structures in anisotropically etched GaAs, Optics Letters 42(16), 3105-3108, 2017. https://doi.org/10.1364/OL.42.003105
  • S.G. Bailey, N.S. Fatemi, G.R. Landis, D.M. Wilt, R.D. Thomas and A. Arrison, A v-grooved gaas solar cell, Conference Record of the 20th IEEE Photovoltaic Specialists Conf., 625-628, 1988. https://doi.org/10.1109/PVSC.1988.105778
  • M. Komuro, H. Hiroshima, H. Tanou and T. Kanayama, Maskless etching of a nanometer structure by focused ion beams, J. Vaco Sci. Technol. B 1 (4), 985-989, 1983. https://doi.org/10.1116/1.582719
  • M.A. Al-Gawati, A.N. Alhazaa, A. N. Alodhayb, H.A. Albrithen, M.A. Shar, Z.A. Almutairi, Controlling the fabrication of sub-microgrooves on a silicon surface using a femtosecond laser, Journal of King Saud University Science 33, 101251- 101257, 2021. https://doi.org/10.1016/j.jksus.2020.101251
  • J. Wang, D.A. Thompson and J.G. Simmons, Wet chemical etching for V‐grooves into InP substrates, J. Electrochem. Soc. 145, 2931-2937, 1998.https://iopscience.iop.org/article/10.1149/1.1838739/pdf
  • V. Khuat, Y.C. Ma, J.H. Si, T. Chen, F. Chen and X. Hou, Fabrication of micro-grooves in silicon carbide using femtosecond laser irradiation and acid etching, Chin. Phys. Lett. 31, 037901- 037904, 2014. http://cpl.iphy.ac.cn/Y2014/V31/I03/037901
  • A. Pan, J. Si, T. Chen, Y. Ma, F. Chen and X. Hou, Fabrication of high-aspect-ratio grooves in silicon using femtosecond laser irradiation and oxygen-dependent acid etching, Optics Express 21, 16657-16662, 2013. https://doi.org/10.1364/OE.21.016657
  • S. Acikgoz, H. Yungevis, E. Özünal and A. Şahin, Low-cost, fast and easy production of germanium nanostructures and interfacial electron transfer dynamics of BODIPY–germanium nanostructure system, J Mater. Sci. 52, 13149-13162, 2017. https://link.springer.com/article/10.1007/s10853-017-1434-6
  • K. Yamada, M. Yamada, H. Maki and K.M. Itoh, Fabrication of arrays of tapered silicon micro-/nano-pillars by metal-assisted chemical etching and anisotropic wet etching, Nanotechnology 29(28), 28LT01, 2018. https://doi.org/10.1088/1361-6528/aac04b
  • M. DeJarld, J.C. Shin, W. Chern, D. Chanda, K. Balasundaram, J. A. Rogers and X. Li, Formation of High Aspect Ratio GaAs Nanostructures with Metal-Assisted Chemical Etching, Nano Lett. 11, 5259-5263, 2011. https://doi.org/10.1021/nl202708d
  • R.K. Ahrenkiel and S.W. Johnston, Lifetime analysis of silicon solar cells by microwave reflection, Solar Energy Materials & Solar Cells 92, 830-835, 2008. https://doi.org/10.1016/j.solmat.2008.01.022
  • K. M. W. Boyd and R. N. Kleiman, Quasi-Steady-State Free Carrier Absorption Measurements of Effective Carrier Lifetime in Silicon, IEEE Journal of Photovoltaics 9(1), 64-71, 2019. https://doi.org/10.1109/JPHOTOV.2018.2874973.
  • R.K. Ahrenkiel, Resonant coupling for contactless measurement of carrier lifetime, Journal of Vacuum Science & Technology B 31, 04D113, (2013). http://dx.doi.org/10.1116/1.4813757
  • B. J. Simonds, B. Yan, G. Yue, R. K. Ahrenkiel and P. C. Taylor, Generation rate dependence of carrier lifetime measurements in nanocrystalline silicon using transmission modulated photoconductive decay, 35th IEEE Photovoltaic Specialists Conference, 003743-003747, 2010.http://dx.doi.org/10.1109/PVSC.2010.5616574
  • B. Julsgaard, N. Driesch, P. T. Lichtenberg, C. Pedersen, Z. Ikonic, and D. Buca, Carrier lifetime of GeSn measured by spectrally resolved picosecond photoluminescence spectroscopy, Photon. Res. 8, 788-798, 2020. https://doi.org/10.1364/PRJ.385096
  • T. P. Weiss, B. Bissig, T. Feurer, R. Carron, S. Buecheler and A.N. Tiwari, Bulk and surface recombination properties in thin film semiconductors with different surface treatments from time resolved photoluminescence measurements, Scientific Reports 9, 5385, 2019. https://doi.org/10.1038/s41598-019-41716-x
  • R. Hidayat, A.A.Nurunnizar, A. Fariz, E.S. Rosa, T. Oizumi, A. Fujii, M. Ozaki, Revealing the charge carrier kinetics in perovskite solar cells affected by mesoscopic structures and defect states from simple transient photovoltage measurements, Scientific Reports 10, 19197, 2020. https://doi.org/10.1038/s41598-020-74603-x
  • S. Gupta, R. Sircar, D. Prakash and B. Tripathi, Optimization of recombination parameters to enhance minority carrier lifetime, International Journal of Pure and Applied Physics 5(2), 133–141, 2009. http://www.ripublication.com/ijpap.htm
  • X.H. Zhao, M.J. Dinezza, S. Liu, C.M. Campbell, Y. Zhao and Y.H. Zhang, Determination of CdTe bulk carrier lifetime and interface recombination velocity of CdTe/MgCdTe double heterostructures grown by molecular beam epitaxy, Appl. Phys. Lett.105, 252101, (2014). http://dx.doi.org/10.1063/1.4904993
  • Y.A. Bioud, A. Boucherif, A. Belarouci, E. Paradis, D. Drouin, R. Ares, Chemical Composition of Nanoporous Layer Formed by Electrochemical Etching of p-Type GaAs, Nanoscale Res. Lett. 11, 446, 2016. https://doi.org/10.1186/s11671-016-1642-z
  • W. Chen,Y. Liu, L. Yang, J. Wu, Q. Chen, Y. Zhao, Y. Wang and X. Du, Diference in anisotropic etching characteristics of alkaline and copper based acid solutions for single-crystalline Si, Scientific Reports 8, 3408, 2018. https://doi.org/10.1038/s41598-018-21877-x
  • Z.L.Weber, A. Claverie, J. Washburn, F. Smith and R. Calawa, Microstructure of Annealed Low-Temperature-Grown GaAs Layers, Appl. Phys. A 53, 141-146, 1991. https://doi.org/10.1007/BF00323874
  • N.J. Smeenk, J. Engel, P. Mulder, G.J. Bauhuis, G.M.M.W. Bissels, J.J. Schermer, E. Vlieg, and J.J. Kellyb, Arsenic Formation on GaAs during Etching in HF Solutions:Relevance for the Epitaxial Lift-Off Process, ECS Journal of Solid State Science and Technology, 2 (3) 58-65, 2013. https://iopscience.iop.org/article/10.1149/2.006303jss
  • A. Borowieca and H.K. Haugen, Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses, Appl. Phys. Lett. 82, 4462-4464, 2003. https://doi.org/10.1063/1.1586457
  • T. Kumar, M. Kumar, S. Verma and D. Kanjilal, Fabrication of ordered ripple patterns onGaAs(100) surface using 60 keV Arz beam irradiation, Surface Engineering 29(7), 543, 2013. DOI: https://doi.org/10.1179/1743294413Y.0000000146
  • L. Hong, Rusli, X.C. Wang, H.Y. Zheng, H. Wang, H.Y. Yu, Femtosecond laser fabrication of large-area periodic surface ripple structure on Si substrate, Applied Surface Science 297, 134-138, 2014. https://doi.org/10.1016/j.apsusc.2014.01.100
  • Q. Liu, Z. Wang, L. Zhu, X. Cheng, J. Wang, Nano-grooves etching on top of GaN-LED for light extraction enhancement, Optics and Laser Technology 138, 106842, 2021. https://doi.org/10.1016/j.optlastec.2020.106842
  • I. Saleem, W.K. Chu, Gold nano-ripple structure with potential for bio molecular sensing applications, Sensing and Bio-Sensing Research 11, 14-19, 2016. http://dx.doi.org/10.1016/j.sbsr.2016.09.004
  • R. DellAnna, C. Masciullo, E. Iacob, M. Barozzi, D. Giubertoni, R. Böttger, M. Cecchini and G. Pepponi, Multiscale structured germanium nanoripples as templates for bioactive surfaces, RSC Adv. 7, 9024-9030, 2017. https://doi.org/10.1039/C6RA28531G
  • G.B. Lush, H.F. MacMillan, B.M. Keyes, D.H. Levi, M.R. Melloch, R.K. Ahrenkiel, M.S. Lundstrom, A study of minority carrier lifetime versus doping concentration in n-type GaAs grown by metalorganic chemical vapor deposition, J. Appl. Phys. 72 (4), 1436-1442, 1992. http://dx.doi.org/10.1063/1.351704
  • R.R. King, J.H. Ermer, D.E. Joslin, M. Haddad, J.W. Eldredge, N.H. Karam, B. Keyes and R.K. Ahrenkiel, Double heterostructures for characterızatıon of bulk lıfetıme and ınterface recombınatıon velocıty ın ııı-v multıjunctıon solar cells, Proceedings of the 2nd World Conference on Photovoltaic Solar Energy Conversion, 86-90, 1998.
  • K. Ali, H.M. Khan, M. Anmal, I.A. Ahmad, W.A. Farooq, B.A. Al-Asabi, S.M. Qaid, H.M. Ghaithan, Effect of surface recombination velocity (SRV) on the efficiency of silicon solar cells, Journal of Optoelectronics and Advanced Materials 22, 251-255, 2020. https://joam.inoe.ro/volume/2020/22/5-6/May-June%202020/articles
  • E. Chahid, M.I. Oumhand, M. Feddaoui, A. Malaoui, Study of the physical parameters on the GaAs Solar Cell Efficiency, Journal of Ovonic Research 13, 119-128, 2017. https://www.chalcogen.ro/119_ChahidE.pdf
  • A.B. Bey, A. Talbi, M. Hebali, M. Berka, F. Ducroquet, Numerical Study of the Impact of Junction Depth and the Surface Recombination Velocity on Electrical Parameters of GaAs-Solar Cell, Int. J. Adv. Sci. Eng. 5(3), 1064-1071, 2019. https://hal.archives-ouvertes.fr/hal-02393349
  • N.L. Dmitruk,V.I. Lyashenko, A.K. Tereshenko, S.A. Spektor, Investigation of surface recombination on epitaxial GaAs films, Phys. Stat. Sol. (A) 20, 53-62, 1973. https://doi.org/10.1002/pssa.2210200103
  • A. Aierken, J. Riikonen, M. Mattila, T. Hakkarainen, M. Sopanen, H. Lipsanen, GaAs Surface Passivation by Ultra-Thin Epitaxial GaP Layer and Surface As-P Exchange. Appl. Surf. Sci. 253, 6232-6235, 2007. https://doi.org/10.1016/j.apsusc.2007.01.069
  • N.M. Kumar, A. Chikhalkar, R.R. King, Effect of Deposited Passivation Materials and Doping on Recombination at III-V Surfaces, IEEE Photovolt. Spec. Conf. 1039-1043, 2019. https://doi.org/10.1109/pvsc40753.2019.8980913S
  • Anantathanasarn, S.Y. Otomo, T. Hashizume and H. Hasegawa, Surface Passivation of GaAs by Ultra-Thin Cubic GaN Layer, Appl. Surf. Sci. 159–160, 456-461, 2000. https://doi.org/10.1016/S0169-4332(00)00077-5
  • R.J. Nelson, J.S. Williams, H.J. Leamy, B. Miller, H.C. Casey, B.A. Parkinson, and A. Heller, Reduction of GaAs surface recombination velocity by chemical treatment, Applied Physics Letters 36, 76-79, 1980. http://dx.doi.org/10.1063/1.91280
  • V.L. Berkovits, V.P. Ulin, M. Losurdo, P. Capezzuto, G. Bruno, Wet Chemical Treatment in Hydrazine-Sulfide Solutions for Sulfide and Nitride Monomolecular Surface Films on GaAs(100), J. Electrochem. Soc. 152, 349-353, 2005. https://doi.org/10.1149/1.1878032
  • X. Zou, C. Li, X. Su, Y. Liu, D. F. Shapiro, W. Zhang, and A. Yartsev, Carrier Recombination Processes in GaAs Wafers Passivated by Wet Nitridation, ACS Applied Materials & Interfaces 12 (25), 28360-28367, 2020. https://doi.org/10.1021/acsami.0c04892

Fabrication of the micro grooves on GaAs semiconductor surfaces and surface characterization via FLIM technique

Year 2022, Volume: 11 Issue: 3, 826 - 837, 18.07.2022
https://doi.org/10.28948/ngumuh.1082122

Abstract

Paralel micro grooves were successfully fabricated on p-type gallium arsenide (GaAs) substrate by double cell electrochemical etching method under various growth conditions. The field emission scanning electron microscopy (FESEM) was used to analize surface morphology of micro grooves. It is observed that micro grooves with a depth size ranging from 210 to 30 nm are formed on GaAs surface. Moreover, the chemical composition of micro grooves was determined by energy dispersive X-ray spectroscopy (EDS) technique. The EDS analysis confirmed that the prepared grooves were composed dominantly of gallium (Ga) and arsenide (As) with atomic ratio of approximately 1:1. In order to probe time-resolved photoluminescence properties of micro structured GaAs surface, fluorescence lifetime imaging microscopy (FLIM) technique has been employed. The carrier lifetimes on microgrooves with varying dept 210, 70 and 30 nm are measured as 0.70, 0.37 and 0.25 ns, respectively. It has been concluded that the carrier recombination lifetime was strongly sensitive to the depth of grooves due to surface recombinations. Moreover, surface recombination velocity of GaAs micro grooves is calculated as 42.63 ×10^2 cm⁄s. The grown micro grooves seem to be interesting for applications in optoelectronic devices.

Project Number

114F451

References

  • V.V. Vainberg, A.S. Pylypchuk, N.V. Baidus, B.N. Zvonkov, Electron mobility in the GaAs/InGaAs/GaAs quantum wells, Semiconductor Physics, Quantum Electronics & Optoelectronics, 16(2), 152-161, 2013. https://doi.org/10.15407/spqeo16.02.152
  • S. Kundu, A. Kumar, S. Banerjee, P. Banerji, Electrical properties and barrier modification of GaAs MIS Schottky device based on MEH-PPV organic interfacial layer, Mat. Sci. Semicon. Proc. 15, 386-392, 2012. : https://doi.org/10.1016/j.mssp.2012.01.001
  • D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H.H. Tan, C. Jagadish, Optically pumped room-temperature GaAs nanowire lasers, Nature Photonics 7, 963-968,2013.https://doi.org/10.1038/NPHOTON.2013.303
  • D. Jung, J. Faucher, R. Biswas, L. Shen, D. Kang, M.L. Lee, J.Yoon, igh performance ultrathin GaAs solar cells enabled with heterogeneously integrated dielectric periodic nanostructures, ACS Nano 9(10), 10356-10365, 2015. https://doi.org/10.1021/acsnano.5b05585
  • J. Wu, D. Shao, V.G. Dorogan, A.Z. Li, S. Li, E.A. DeCuir, M.O. Manasreh, Z.M. Wang, Y.I. Mazur and G.J. Salamo, Intersublevel infrred photodetector with strain-free GaAs quantum dot pairs grown by high-temperature droplet epitaxy, Nano Lett. 10, 1512-1516, 2010. https://doi.org/10.1021/nl100217k
  • R.J. Warburton, Single spins in self-assembled quantum dots, Nature Matter. 12, 483-493, 2013. https://www.nature.com/articles/nmat3585
  • R.P.G. McNeil, M. Kataoka, C.J.B. Ford, C.H.W. Barnes, D. Anderson, G.A.C. Jones, I. Farrer and D.A Ritchie, On-demand single-electron transfer between distant quantum dots, Nature 477, 439-442, 2011. https://www.nature.com/articles/nature10444
  • M.A. Ladugin, A.A. Marmalyuk, A.A. Padalitsa, T.A. Bagaev, A.Yu. Andreev, K.Yu. Telegin, A.V. Lobintsov, E.I. Davydova, S.M. Sapozhnikov, A.I. Danilov, A.V. Podkopaev, E.B. Ivanova, V.A. Simakov, Laser diode bars based on AlGaAs/GaAs quantum-well heterostructures with an efficiency up to 70%, Quantum Electronics 47(4), 291-293, 2017. http://dx.doi.org/10.1070/QEL16365
  • S. Chen, W. Li, Z. Zhang, D. Childs, K. Zhou, J. Orchard, K. Kennedy, M. Hugues, E. Clarke, I. Ross, O. Wada and R. Hogg, GaAs-Based Superluminescent Light-Emitting Diodes with 290-nm Emission Bandwidth by Using Hybrid Quantum Well/Quantum Dot Structures, Nanoscale Research Letters 10, 340, 2015. https://doi.org/10.1186/s11671-015-1049-2
  • N. Han, Z. Yang, F. Wang, G. Dong, S. Yip, X. Liang, T.F. Hung, Y. Chen, and J.C. Ho, High-Performance GaAs Nanowire Solar Cells for Flexible and Transparent Photovoltaics, ACS Appl. Mater. Interfaces 7, 20454-20459, 2015. https://doi.org/10.1021/acsami.5b06452
  • R. Sanatinia, K.M. Awan, S. Naureen, N. Anttu, E. Ebraert, and S. Anand, GaAs nanopillar arrays with suppressed broadband reflectance and high optical quality for photovoltaic applications, Opt. Mater. Express 2(11), 1671-1679, 2012.https://doi.org/10.1364/OME.2.001671
  • P.K. Mohseni, S.H. Kim, X. Zhao, K. Balasundararm and J.D. Kim, GaAs pillar array-based light emitting diodes fabricated by metal-assisted chemical etching, J. Appl. Phys. 114, 064909, 2013. http://dx.doi.org/10.1063/1.4817424
  • C. Kong, J.W. Leem, J.W. Lee, J.S. Yu and C.S. Kee, Characteristics of terahertz pulses from antireflective GaAs surfaces with nanopillars, J. Appl. Phys. 113, 203102, 2013. https://doi.org/10.1063/1.4807407
  • K.J. Luo, J.Y. Xu, H. Cao, Y. Ma, S.H. Chang, S.T. Ho and G.S. Solomon, Dynamics of GaAs/AlGaAs microdisk lasers, Appl. Phys. Lett. 77(15), 2304-2306, 2000. https://doi.org/10.1063/1.1317544
  • K. Kim, Y. Song and J. Oh, Nano/micro dual-textured antireflective subwavelength structures in anisotropically etched GaAs, Optics Letters 42(16), 3105-3108, 2017. https://doi.org/10.1364/OL.42.003105
  • S.G. Bailey, N.S. Fatemi, G.R. Landis, D.M. Wilt, R.D. Thomas and A. Arrison, A v-grooved gaas solar cell, Conference Record of the 20th IEEE Photovoltaic Specialists Conf., 625-628, 1988. https://doi.org/10.1109/PVSC.1988.105778
  • M. Komuro, H. Hiroshima, H. Tanou and T. Kanayama, Maskless etching of a nanometer structure by focused ion beams, J. Vaco Sci. Technol. B 1 (4), 985-989, 1983. https://doi.org/10.1116/1.582719
  • M.A. Al-Gawati, A.N. Alhazaa, A. N. Alodhayb, H.A. Albrithen, M.A. Shar, Z.A. Almutairi, Controlling the fabrication of sub-microgrooves on a silicon surface using a femtosecond laser, Journal of King Saud University Science 33, 101251- 101257, 2021. https://doi.org/10.1016/j.jksus.2020.101251
  • J. Wang, D.A. Thompson and J.G. Simmons, Wet chemical etching for V‐grooves into InP substrates, J. Electrochem. Soc. 145, 2931-2937, 1998.https://iopscience.iop.org/article/10.1149/1.1838739/pdf
  • V. Khuat, Y.C. Ma, J.H. Si, T. Chen, F. Chen and X. Hou, Fabrication of micro-grooves in silicon carbide using femtosecond laser irradiation and acid etching, Chin. Phys. Lett. 31, 037901- 037904, 2014. http://cpl.iphy.ac.cn/Y2014/V31/I03/037901
  • A. Pan, J. Si, T. Chen, Y. Ma, F. Chen and X. Hou, Fabrication of high-aspect-ratio grooves in silicon using femtosecond laser irradiation and oxygen-dependent acid etching, Optics Express 21, 16657-16662, 2013. https://doi.org/10.1364/OE.21.016657
  • S. Acikgoz, H. Yungevis, E. Özünal and A. Şahin, Low-cost, fast and easy production of germanium nanostructures and interfacial electron transfer dynamics of BODIPY–germanium nanostructure system, J Mater. Sci. 52, 13149-13162, 2017. https://link.springer.com/article/10.1007/s10853-017-1434-6
  • K. Yamada, M. Yamada, H. Maki and K.M. Itoh, Fabrication of arrays of tapered silicon micro-/nano-pillars by metal-assisted chemical etching and anisotropic wet etching, Nanotechnology 29(28), 28LT01, 2018. https://doi.org/10.1088/1361-6528/aac04b
  • M. DeJarld, J.C. Shin, W. Chern, D. Chanda, K. Balasundaram, J. A. Rogers and X. Li, Formation of High Aspect Ratio GaAs Nanostructures with Metal-Assisted Chemical Etching, Nano Lett. 11, 5259-5263, 2011. https://doi.org/10.1021/nl202708d
  • R.K. Ahrenkiel and S.W. Johnston, Lifetime analysis of silicon solar cells by microwave reflection, Solar Energy Materials & Solar Cells 92, 830-835, 2008. https://doi.org/10.1016/j.solmat.2008.01.022
  • K. M. W. Boyd and R. N. Kleiman, Quasi-Steady-State Free Carrier Absorption Measurements of Effective Carrier Lifetime in Silicon, IEEE Journal of Photovoltaics 9(1), 64-71, 2019. https://doi.org/10.1109/JPHOTOV.2018.2874973.
  • R.K. Ahrenkiel, Resonant coupling for contactless measurement of carrier lifetime, Journal of Vacuum Science & Technology B 31, 04D113, (2013). http://dx.doi.org/10.1116/1.4813757
  • B. J. Simonds, B. Yan, G. Yue, R. K. Ahrenkiel and P. C. Taylor, Generation rate dependence of carrier lifetime measurements in nanocrystalline silicon using transmission modulated photoconductive decay, 35th IEEE Photovoltaic Specialists Conference, 003743-003747, 2010.http://dx.doi.org/10.1109/PVSC.2010.5616574
  • B. Julsgaard, N. Driesch, P. T. Lichtenberg, C. Pedersen, Z. Ikonic, and D. Buca, Carrier lifetime of GeSn measured by spectrally resolved picosecond photoluminescence spectroscopy, Photon. Res. 8, 788-798, 2020. https://doi.org/10.1364/PRJ.385096
  • T. P. Weiss, B. Bissig, T. Feurer, R. Carron, S. Buecheler and A.N. Tiwari, Bulk and surface recombination properties in thin film semiconductors with different surface treatments from time resolved photoluminescence measurements, Scientific Reports 9, 5385, 2019. https://doi.org/10.1038/s41598-019-41716-x
  • R. Hidayat, A.A.Nurunnizar, A. Fariz, E.S. Rosa, T. Oizumi, A. Fujii, M. Ozaki, Revealing the charge carrier kinetics in perovskite solar cells affected by mesoscopic structures and defect states from simple transient photovoltage measurements, Scientific Reports 10, 19197, 2020. https://doi.org/10.1038/s41598-020-74603-x
  • S. Gupta, R. Sircar, D. Prakash and B. Tripathi, Optimization of recombination parameters to enhance minority carrier lifetime, International Journal of Pure and Applied Physics 5(2), 133–141, 2009. http://www.ripublication.com/ijpap.htm
  • X.H. Zhao, M.J. Dinezza, S. Liu, C.M. Campbell, Y. Zhao and Y.H. Zhang, Determination of CdTe bulk carrier lifetime and interface recombination velocity of CdTe/MgCdTe double heterostructures grown by molecular beam epitaxy, Appl. Phys. Lett.105, 252101, (2014). http://dx.doi.org/10.1063/1.4904993
  • Y.A. Bioud, A. Boucherif, A. Belarouci, E. Paradis, D. Drouin, R. Ares, Chemical Composition of Nanoporous Layer Formed by Electrochemical Etching of p-Type GaAs, Nanoscale Res. Lett. 11, 446, 2016. https://doi.org/10.1186/s11671-016-1642-z
  • W. Chen,Y. Liu, L. Yang, J. Wu, Q. Chen, Y. Zhao, Y. Wang and X. Du, Diference in anisotropic etching characteristics of alkaline and copper based acid solutions for single-crystalline Si, Scientific Reports 8, 3408, 2018. https://doi.org/10.1038/s41598-018-21877-x
  • Z.L.Weber, A. Claverie, J. Washburn, F. Smith and R. Calawa, Microstructure of Annealed Low-Temperature-Grown GaAs Layers, Appl. Phys. A 53, 141-146, 1991. https://doi.org/10.1007/BF00323874
  • N.J. Smeenk, J. Engel, P. Mulder, G.J. Bauhuis, G.M.M.W. Bissels, J.J. Schermer, E. Vlieg, and J.J. Kellyb, Arsenic Formation on GaAs during Etching in HF Solutions:Relevance for the Epitaxial Lift-Off Process, ECS Journal of Solid State Science and Technology, 2 (3) 58-65, 2013. https://iopscience.iop.org/article/10.1149/2.006303jss
  • A. Borowieca and H.K. Haugen, Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses, Appl. Phys. Lett. 82, 4462-4464, 2003. https://doi.org/10.1063/1.1586457
  • T. Kumar, M. Kumar, S. Verma and D. Kanjilal, Fabrication of ordered ripple patterns onGaAs(100) surface using 60 keV Arz beam irradiation, Surface Engineering 29(7), 543, 2013. DOI: https://doi.org/10.1179/1743294413Y.0000000146
  • L. Hong, Rusli, X.C. Wang, H.Y. Zheng, H. Wang, H.Y. Yu, Femtosecond laser fabrication of large-area periodic surface ripple structure on Si substrate, Applied Surface Science 297, 134-138, 2014. https://doi.org/10.1016/j.apsusc.2014.01.100
  • Q. Liu, Z. Wang, L. Zhu, X. Cheng, J. Wang, Nano-grooves etching on top of GaN-LED for light extraction enhancement, Optics and Laser Technology 138, 106842, 2021. https://doi.org/10.1016/j.optlastec.2020.106842
  • I. Saleem, W.K. Chu, Gold nano-ripple structure with potential for bio molecular sensing applications, Sensing and Bio-Sensing Research 11, 14-19, 2016. http://dx.doi.org/10.1016/j.sbsr.2016.09.004
  • R. DellAnna, C. Masciullo, E. Iacob, M. Barozzi, D. Giubertoni, R. Böttger, M. Cecchini and G. Pepponi, Multiscale structured germanium nanoripples as templates for bioactive surfaces, RSC Adv. 7, 9024-9030, 2017. https://doi.org/10.1039/C6RA28531G
  • G.B. Lush, H.F. MacMillan, B.M. Keyes, D.H. Levi, M.R. Melloch, R.K. Ahrenkiel, M.S. Lundstrom, A study of minority carrier lifetime versus doping concentration in n-type GaAs grown by metalorganic chemical vapor deposition, J. Appl. Phys. 72 (4), 1436-1442, 1992. http://dx.doi.org/10.1063/1.351704
  • R.R. King, J.H. Ermer, D.E. Joslin, M. Haddad, J.W. Eldredge, N.H. Karam, B. Keyes and R.K. Ahrenkiel, Double heterostructures for characterızatıon of bulk lıfetıme and ınterface recombınatıon velocıty ın ııı-v multıjunctıon solar cells, Proceedings of the 2nd World Conference on Photovoltaic Solar Energy Conversion, 86-90, 1998.
  • K. Ali, H.M. Khan, M. Anmal, I.A. Ahmad, W.A. Farooq, B.A. Al-Asabi, S.M. Qaid, H.M. Ghaithan, Effect of surface recombination velocity (SRV) on the efficiency of silicon solar cells, Journal of Optoelectronics and Advanced Materials 22, 251-255, 2020. https://joam.inoe.ro/volume/2020/22/5-6/May-June%202020/articles
  • E. Chahid, M.I. Oumhand, M. Feddaoui, A. Malaoui, Study of the physical parameters on the GaAs Solar Cell Efficiency, Journal of Ovonic Research 13, 119-128, 2017. https://www.chalcogen.ro/119_ChahidE.pdf
  • A.B. Bey, A. Talbi, M. Hebali, M. Berka, F. Ducroquet, Numerical Study of the Impact of Junction Depth and the Surface Recombination Velocity on Electrical Parameters of GaAs-Solar Cell, Int. J. Adv. Sci. Eng. 5(3), 1064-1071, 2019. https://hal.archives-ouvertes.fr/hal-02393349
  • N.L. Dmitruk,V.I. Lyashenko, A.K. Tereshenko, S.A. Spektor, Investigation of surface recombination on epitaxial GaAs films, Phys. Stat. Sol. (A) 20, 53-62, 1973. https://doi.org/10.1002/pssa.2210200103
  • A. Aierken, J. Riikonen, M. Mattila, T. Hakkarainen, M. Sopanen, H. Lipsanen, GaAs Surface Passivation by Ultra-Thin Epitaxial GaP Layer and Surface As-P Exchange. Appl. Surf. Sci. 253, 6232-6235, 2007. https://doi.org/10.1016/j.apsusc.2007.01.069
  • N.M. Kumar, A. Chikhalkar, R.R. King, Effect of Deposited Passivation Materials and Doping on Recombination at III-V Surfaces, IEEE Photovolt. Spec. Conf. 1039-1043, 2019. https://doi.org/10.1109/pvsc40753.2019.8980913S
  • Anantathanasarn, S.Y. Otomo, T. Hashizume and H. Hasegawa, Surface Passivation of GaAs by Ultra-Thin Cubic GaN Layer, Appl. Surf. Sci. 159–160, 456-461, 2000. https://doi.org/10.1016/S0169-4332(00)00077-5
  • R.J. Nelson, J.S. Williams, H.J. Leamy, B. Miller, H.C. Casey, B.A. Parkinson, and A. Heller, Reduction of GaAs surface recombination velocity by chemical treatment, Applied Physics Letters 36, 76-79, 1980. http://dx.doi.org/10.1063/1.91280
  • V.L. Berkovits, V.P. Ulin, M. Losurdo, P. Capezzuto, G. Bruno, Wet Chemical Treatment in Hydrazine-Sulfide Solutions for Sulfide and Nitride Monomolecular Surface Films on GaAs(100), J. Electrochem. Soc. 152, 349-353, 2005. https://doi.org/10.1149/1.1878032
  • X. Zou, C. Li, X. Su, Y. Liu, D. F. Shapiro, W. Zhang, and A. Yartsev, Carrier Recombination Processes in GaAs Wafers Passivated by Wet Nitridation, ACS Applied Materials & Interfaces 12 (25), 28360-28367, 2020. https://doi.org/10.1021/acsami.0c04892
There are 55 citations in total.

Details

Primary Language Turkish
Subjects Material Production Technologies
Journal Section Materials and Metallurgical Engineering
Authors

Sabriye Açıkgöz 0000-0002-2020-7565

Hasan Yungevis 0000-0001-5451-3379

Project Number 114F451
Publication Date July 18, 2022
Submission Date March 3, 2022
Acceptance Date May 9, 2022
Published in Issue Year 2022 Volume: 11 Issue: 3

Cite

APA Açıkgöz, S., & Yungevis, H. (2022). GaAs yarıiletken yüzeyinde mikro yarıkların üretilmesi ve FLIM tekniği ile yüzey karakterizasyonu. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11(3), 826-837. https://doi.org/10.28948/ngumuh.1082122
AMA Açıkgöz S, Yungevis H. GaAs yarıiletken yüzeyinde mikro yarıkların üretilmesi ve FLIM tekniği ile yüzey karakterizasyonu. NOHU J. Eng. Sci. July 2022;11(3):826-837. doi:10.28948/ngumuh.1082122
Chicago Açıkgöz, Sabriye, and Hasan Yungevis. “GaAs yarıiletken yüzeyinde Mikro yarıkların üretilmesi Ve FLIM tekniği Ile yüzey Karakterizasyonu”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11, no. 3 (July 2022): 826-37. https://doi.org/10.28948/ngumuh.1082122.
EndNote Açıkgöz S, Yungevis H (July 1, 2022) GaAs yarıiletken yüzeyinde mikro yarıkların üretilmesi ve FLIM tekniği ile yüzey karakterizasyonu. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11 3 826–837.
IEEE S. Açıkgöz and H. Yungevis, “GaAs yarıiletken yüzeyinde mikro yarıkların üretilmesi ve FLIM tekniği ile yüzey karakterizasyonu”, NOHU J. Eng. Sci., vol. 11, no. 3, pp. 826–837, 2022, doi: 10.28948/ngumuh.1082122.
ISNAD Açıkgöz, Sabriye - Yungevis, Hasan. “GaAs yarıiletken yüzeyinde Mikro yarıkların üretilmesi Ve FLIM tekniği Ile yüzey Karakterizasyonu”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11/3 (July 2022), 826-837. https://doi.org/10.28948/ngumuh.1082122.
JAMA Açıkgöz S, Yungevis H. GaAs yarıiletken yüzeyinde mikro yarıkların üretilmesi ve FLIM tekniği ile yüzey karakterizasyonu. NOHU J. Eng. Sci. 2022;11:826–837.
MLA Açıkgöz, Sabriye and Hasan Yungevis. “GaAs yarıiletken yüzeyinde Mikro yarıkların üretilmesi Ve FLIM tekniği Ile yüzey Karakterizasyonu”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 11, no. 3, 2022, pp. 826-37, doi:10.28948/ngumuh.1082122.
Vancouver Açıkgöz S, Yungevis H. GaAs yarıiletken yüzeyinde mikro yarıkların üretilmesi ve FLIM tekniği ile yüzey karakterizasyonu. NOHU J. Eng. Sci. 2022;11(3):826-37.

23135