Research Article
BibTex RIS Cite

Mathematical correlations for variation in heat release rate of a diesel engine fuelled with n-octanol blends

Year 2023, Volume: 12 Issue: 4, 1452 - 1480, 15.10.2023
https://doi.org/10.28948/ngumuh.1320921

Abstract

The current literature reports a few papers regarding the prediction of heat release rate of a diesel engine fuelled with n-octanol blends using numerical methods. To address this gap, the main objective of the presented study is to derive correlations for estimating the variation in heat release rate of a diesel engine fuelled with diesel fuel and diesel fuel-biodiesel-n-octanol blends. For this purpose, three different ternary blends were prepared by varying the n-octanol concentration to 6% (OCT6), 8% (OCT8), and 10% (OCT10) by volume. The estimation of heat release rate was accomplished using the least-squares regression (sine, piecewise, and rational equations) and the function approximation (Padé approximation) methods. The ignition delay and peak heat release rate increased by 3.8462%, 5.9501% for OCT6; 7.6923%, 3.7125% for OCT8; and 8.9744%, 3.0755% for OCT10, respectively, compared to diesel fuel. The peak cylinder pressure of OCT6 and OCT8 was observed to be higher by 2.4378% and 1.3982%, respectively, whereas that of OCT10 was found to be lower by 1.9458%, compared to diesel fuel. Compared to the others, the suggested rational equation qualitatively and quantitatively achieved the best correlation with all experimental heat release rate data measured by both the author and some other authors.

References

  • T. Sathish, Ü. Ağbulut, S. M. George, K. Ramesh, R. Saravanan, K. L. Roberts, P. Sharma, M. Asif and A. T. Hoang, Waste to fuel: Synergetic effect of hybrid nanoparticle usage for the improvement of CI engine characteristics fuelled with waste fish oils. Energy, 275, 127397, 2023. https://doi.org/10.1016/j.energy.2023.127397.
  • S. Beccari, E. Pipitone and S. Caltabellotta, Analysis of the combustion process in a hydrogen-fueled CFR engine. Energies, 16(5), 1-14, 2023. https://doi.org/10.3390/en16052351.
  • M. K. Yesilyurt and C. Cesur, A statistical optimization attempt by applying the Taguchi technique for the optimum transesterification process parameters in the production of biodiesel from Papaver somniferum L. seed oil. Fuel, 329, 125406, 2022. https://doi.org/10.1016/j.fuel.2022.125406.
  • H. Sanli, E. Alptekin and M. Canakci, Using low viscosity micro-emulsification fuels composed of waste frying oil-diesel fuel-higher bio-alcohols in a turbocharged-CRDI diesel engine. Fuel, 308, 121966, 2022. https://doi.org/10.1016/j.fuel.2021.121966.
  • K. Seeniappan, B. Venkatesan, N. N. Krishnan, T. Kandhasamy, S. Arunachalam, R. K. Seeta and M. V. Depoures, A comparative assessment of performance and emission characteristics of a DI diesel engine fuelled with ternary blends of two higher alcohols with lemongrass oil biodiesel and diesel fuel. Energy & Environment, 33(6), 1134-1159, 2022. https://doi.org/10.1177/0958305x211051323.
  • M. V. D. Poures, A. P. Sathiyagnanam, D. Rana, R. K. Babu, S. Subramani, B. Sethuramasamyraja and D. Damodharan, Using renewable n-octanol in a non-road diesel engine with some modifications. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41(10), 1194-1208, 2019. https://doi.org/10.1080/15567036.2018.1544997.
  • B. R. Kumar, S. Saravanan, D. Rana, V. Anish and A. Nagendran, Effect of a sustainable biofuel–n-octanol–on the combustion, performance and emissions of a DI diesel engine under naturally aspirated and exhaust gas recirculation (EGR) modes. Energy Conversion and Management, 118, 275-286, 2016. https://doi.org/10.1016/j.enconman.2016.04.001.
  • M. K. Yeşilyurt and A. Çakmak, An extensive investigation of utilization of a C8 type long-chain alcohol as a sustainable next-generation biofuel and diesel fuel blends in a CI engine-The effects of alcohol infusion ratio on the performance, exhaust emissions, and combustion characteristics. Fuel, 305, 121453, 2021. https://doi.org/10.1016/j.fuel.2021.121453.
  • K. Gopal, A. P. Sathiyagnanam, B. R. Kumar, S. Saravanan, D. Rana and B. Sethuramasamyraja, Prediction of emissions and performance of a diesel engine fueled with n-octanol/diesel blends using response surface methodology. Journal of Cleaner Production, 184, 423-439, 2018. https://doi.org/10.1016/j.jclepro.2018.02.204.
  • M. K. Akhtar, H. Dandapani, K. Thiel and P. R. Jones, Microbial production of 1-octanol: A naturally excreted biofuel with diesel-like properties. Metabolic Engineering Communications, 2, 1-5, 2015. https://doi.org/10.1016/j.meteno.2014.11.001.
  • Sidharth and N. Kumar, Performance and emission studies of ternary fuel blends of diesel, biodiesel and octanol. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42(18), 2277-2296, 2020. https://doi.org/10.1080/15567036.2019.1607940.
  • B. Ashok, K. Nanthagopal, V. Anand, K. M. Aravind, A. K. Jeevanantham and S. Balusamy, Effects of n-octanol as a fuel blend with biodiesel on diesel engine characteristics. Fuel, 235, 363-373, 2019. https://doi.org/10.1016/j.fuel.2018.07.126.
  • M. S. C. Sekar, V. R. Ananthan, N. Baskaran, H. K. S. Kumar and R. Arumugam, Combustion, performance, and emission study on the octanol-neem biodiesel blends fueled diesel engine. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-13, 2020. https://doi.org/10.1080/15567036.2020.1741736.
  • S. Ali, M. V. D. Poures, D. Damodharan, K. Gopal, V. C. Augustin and M. R. Swaminathan, Prediction of emissions and performance of a diesel engine fueled with waste cooking oil and C8 oxygenate blends using response surface methodology. Journal of Cleaner Production, 371, 133323, 2022. https://doi.org/10.1016/j.jclepro.2022.133323.
  • L. Konjević, M. Racar, P. Ilinčić and F. Faraguna, A comprehensive study on application properties of diesel blends with propanol, butanol, isobutanol, pentanol, hexanol, octanol and dodecanol. Energy, 262, 125430, 2023. https://doi.org/10.1016/j.energy.2022.125430.
  • J. Li, Y. Liang and W. Yang, Combustion characteristics and emissions formation of a compression ignition engine fueled with C8 biofuels blends. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(3), 5991-6008, 2022. https://doi.org/10.1080/15567036.2022.2095062.
  • A. Mahalingam, Y. Devarajan, S. Radhakrishnan, S. Vellaiyan and B. Nagappan, Emissions analysis on mahua oil biodiesel and higher alcohol blends in diesel engine. Alexandria Engineering Journal, 57(4), 2627-2631, 2018. https://doi.org/10.1016/j.aej.2017.07.009.
  • D. Damodharan, K. Gopal, A. P. Sathiyagnanam, B. R. Kumar, M. V. Depoures and N. Mukilarasan, Performance and emission study of a single cylinder diesel engine fuelled with n-octanol/WPO with some modifications. International Journal of Ambient Energy, 42(7), 779-788, 2019. https://doi.org/10.1080/01430750.2018.1563824.
  • N. Joy, Y. Devarajan, B. Nagappan and A. Anderson, Exhaust emission study on neat biodiesel and alcohol blends fueled diesel engine. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40(1), 115-119, 2018. https://doi.org/10.1080/15567036.2017.1405119.
  • A. Bilgin and M. Gulum, Effects of various transesterification parameters on the some fuel properties of hazelnut oil methyl ester. Energy Procedia, 147, 54-62, 2018. https://doi.org/10.1016/j.egypro.2018.07.033.
  • M. K. Yesilyurt, A detailed investigation on the performance, combustion, and exhaust emission characteristics of a diesel engine running on the blend of diesel fuel, biodiesel and 1-heptanol (C7 alcohol) as a next-generation higher alcohol. Fuel, 275, 117893, 2020. https://doi.org/10.1016/j.fuel.2020.117893.
  • M. A. Ghadikolaei, P. K. Wong, C. S. Cheung, Z. Ning, K. F. Yung, J. Zhao, N. K. Gali and A. V. Berenjestanaki, Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review. Renewable and Sustainable Energy Reviews, 143, 110970, 2021. https://doi.org/10.1016/j.rser.2021.110970.
  • A. I. El-Seesy, M. S. Waly, Z. He, H. M. El-Batsh, A. Nasser and R. M. El-Zoheiry, Influence of quaternary combinations of biodiesel/methanol/n-octanol/diethyl ether from waste cooking oil on combustion, emission, and stability aspects of a diesel engine. Energy Conversion and Management, 240, 114268, 2021. https://doi.org/10.1016/j.enconman.2021.114268.
  • European Parliament Directive 2003/30/EC of the European Parliament and of the Council of 8 May 2003 on the promotion of the use of biofuels or other renewable fuels for transport. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32003L0030&from=en, Accessed 28 June 2023.
  • European Parliament Regulation (EU) 2018/1999 of the European Parliament and of the Council and Directive 98/70/EC of the European Parliament and of the Council as regards the promotion of energy from renewable sources, and repealing Council Directive (EU) 2015/652. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0557, Accessed 28 June 2023.
  • M. Gülüm, Performance, combustion and emission characteristics of a diesel engine fuelled with diesel fuel + corn oil + alcohol ternary blends. Environmental Science and Pollution Research, 30, 53767–53777, 2023. https://doi.org/10.1007/s11356-023-26053-x
  • J.B. Heywood, Internal Combustion Engine Fundamentals. McGraw Hill Series in mechanical engineering, 1988. ISBN: 0-07-100499-8.
  • M. Bakioğlu, Sayısal Analiz (in Turkish). Birsen Yayınevi, 2011. ISBN: 978-975-511-353-3.
  • C.F. Gerald and P.O. Wheatley, Applied Numerical Analysis (Seventh Edition). Pearson Education, 2004. ISBN: 0-321-13304-8.
  • L.V. Fausett, Numerical Methods Using MathCAD. Prentice-Hall, 2002. ISBN: 0-13-061081-X.
  • MATLAB Curve Fitting Toolbox User's Guide. The MathWorks, Inc., 2020.
  • J.L. Hintze, NCSS User's Guide III Regression and Curve Fitting. NCSS Statistical System, 2007, https://www.ncss.com/download/ncss/manuals/, Accessed: 31.05.2023.
  • A. Çakmak, M. K. Yeşilyurt, D. Erol and B. Doğan, The experimental investigation on the impact of n-octanol in the compression-ignition engine operating with biodiesel/diesel fuel blends: exergy, exergoeconomic, environmental analyses. Journal of Thermal Analysis and Calorimetry, 147, 11231-11259, 2022. https://doi.org/10.1007/s10973-022-11357-w.

n-Oktanol karışımlarıyla çalışan bir dizel motorun ısı yayılımı oranının değişimi için matematiksel korelasyonlar

Year 2023, Volume: 12 Issue: 4, 1452 - 1480, 15.10.2023
https://doi.org/10.28948/ngumuh.1320921

Abstract

Mevcut literatür, n-oktanol karışımları ile çalışan bir dizel motorun ısı yayılımı oranının sayısal yöntemlerle tahmin edilmesiyle ilgili birkaç makale sunmaktadır. Bu boşluğu gidermek için, sunulan çalışmanın temel amacı, dizel yakıtı ve dizel yakıtı-biyodizel-n-oktanol karışımları ile çalışan bir dizel motorun ısı yayılımı oranındaki değişimi tahmin etmek için korelasyonlar elde etmektir. Bu amaçla n-oktanol miktarı hacimsel olarak %6 (OCT6), %8 (OCT8) ve %10 (OCT10) oranlarında değiştirilerek üç farklı üçlü karışım hazırlanmıştır. Isı yayılımı oranının tahmini, en küçük kareler regresyonu (sinüs, parçalı ve rasyonel denklemler) ve fonksiyon yaklaşımı yöntemleri (Padé yaklaşımı) kullanılarak gerçekleştirilmiştir. Tutuşma gecikmesi ve en yüksek ısı yayılımı oranı, dizel yakıtına kıyasla sırasıyla, OCT6 için %3.8462, %5.9501; OCT8 için %7.6923, %3.7125; ve OCT10 için %8.9744, %3.0755 oranlarında artmıştır. Dizel yakıtına kıyasla, OCT6 ve OCT8'in en yüksek silindir basınçlarının %2.4378 ve %1.3982 oranlarında daha yüksek olduğu, OCT10'un ise %1.9458 oranında daha düşük olduğu görülmüştür. Diğer denklemler ile karşılaştırıldığında, önerilen rasyonel denklem, nitelik ve nicelik olarak hem yazar hem de diğer bazı yazarlar tarafından ölçülen tüm deneysel ısı yayılımı oranı verileriyle en iyi korelasyonu sağlamıştır.

References

  • T. Sathish, Ü. Ağbulut, S. M. George, K. Ramesh, R. Saravanan, K. L. Roberts, P. Sharma, M. Asif and A. T. Hoang, Waste to fuel: Synergetic effect of hybrid nanoparticle usage for the improvement of CI engine characteristics fuelled with waste fish oils. Energy, 275, 127397, 2023. https://doi.org/10.1016/j.energy.2023.127397.
  • S. Beccari, E. Pipitone and S. Caltabellotta, Analysis of the combustion process in a hydrogen-fueled CFR engine. Energies, 16(5), 1-14, 2023. https://doi.org/10.3390/en16052351.
  • M. K. Yesilyurt and C. Cesur, A statistical optimization attempt by applying the Taguchi technique for the optimum transesterification process parameters in the production of biodiesel from Papaver somniferum L. seed oil. Fuel, 329, 125406, 2022. https://doi.org/10.1016/j.fuel.2022.125406.
  • H. Sanli, E. Alptekin and M. Canakci, Using low viscosity micro-emulsification fuels composed of waste frying oil-diesel fuel-higher bio-alcohols in a turbocharged-CRDI diesel engine. Fuel, 308, 121966, 2022. https://doi.org/10.1016/j.fuel.2021.121966.
  • K. Seeniappan, B. Venkatesan, N. N. Krishnan, T. Kandhasamy, S. Arunachalam, R. K. Seeta and M. V. Depoures, A comparative assessment of performance and emission characteristics of a DI diesel engine fuelled with ternary blends of two higher alcohols with lemongrass oil biodiesel and diesel fuel. Energy & Environment, 33(6), 1134-1159, 2022. https://doi.org/10.1177/0958305x211051323.
  • M. V. D. Poures, A. P. Sathiyagnanam, D. Rana, R. K. Babu, S. Subramani, B. Sethuramasamyraja and D. Damodharan, Using renewable n-octanol in a non-road diesel engine with some modifications. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41(10), 1194-1208, 2019. https://doi.org/10.1080/15567036.2018.1544997.
  • B. R. Kumar, S. Saravanan, D. Rana, V. Anish and A. Nagendran, Effect of a sustainable biofuel–n-octanol–on the combustion, performance and emissions of a DI diesel engine under naturally aspirated and exhaust gas recirculation (EGR) modes. Energy Conversion and Management, 118, 275-286, 2016. https://doi.org/10.1016/j.enconman.2016.04.001.
  • M. K. Yeşilyurt and A. Çakmak, An extensive investigation of utilization of a C8 type long-chain alcohol as a sustainable next-generation biofuel and diesel fuel blends in a CI engine-The effects of alcohol infusion ratio on the performance, exhaust emissions, and combustion characteristics. Fuel, 305, 121453, 2021. https://doi.org/10.1016/j.fuel.2021.121453.
  • K. Gopal, A. P. Sathiyagnanam, B. R. Kumar, S. Saravanan, D. Rana and B. Sethuramasamyraja, Prediction of emissions and performance of a diesel engine fueled with n-octanol/diesel blends using response surface methodology. Journal of Cleaner Production, 184, 423-439, 2018. https://doi.org/10.1016/j.jclepro.2018.02.204.
  • M. K. Akhtar, H. Dandapani, K. Thiel and P. R. Jones, Microbial production of 1-octanol: A naturally excreted biofuel with diesel-like properties. Metabolic Engineering Communications, 2, 1-5, 2015. https://doi.org/10.1016/j.meteno.2014.11.001.
  • Sidharth and N. Kumar, Performance and emission studies of ternary fuel blends of diesel, biodiesel and octanol. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42(18), 2277-2296, 2020. https://doi.org/10.1080/15567036.2019.1607940.
  • B. Ashok, K. Nanthagopal, V. Anand, K. M. Aravind, A. K. Jeevanantham and S. Balusamy, Effects of n-octanol as a fuel blend with biodiesel on diesel engine characteristics. Fuel, 235, 363-373, 2019. https://doi.org/10.1016/j.fuel.2018.07.126.
  • M. S. C. Sekar, V. R. Ananthan, N. Baskaran, H. K. S. Kumar and R. Arumugam, Combustion, performance, and emission study on the octanol-neem biodiesel blends fueled diesel engine. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-13, 2020. https://doi.org/10.1080/15567036.2020.1741736.
  • S. Ali, M. V. D. Poures, D. Damodharan, K. Gopal, V. C. Augustin and M. R. Swaminathan, Prediction of emissions and performance of a diesel engine fueled with waste cooking oil and C8 oxygenate blends using response surface methodology. Journal of Cleaner Production, 371, 133323, 2022. https://doi.org/10.1016/j.jclepro.2022.133323.
  • L. Konjević, M. Racar, P. Ilinčić and F. Faraguna, A comprehensive study on application properties of diesel blends with propanol, butanol, isobutanol, pentanol, hexanol, octanol and dodecanol. Energy, 262, 125430, 2023. https://doi.org/10.1016/j.energy.2022.125430.
  • J. Li, Y. Liang and W. Yang, Combustion characteristics and emissions formation of a compression ignition engine fueled with C8 biofuels blends. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(3), 5991-6008, 2022. https://doi.org/10.1080/15567036.2022.2095062.
  • A. Mahalingam, Y. Devarajan, S. Radhakrishnan, S. Vellaiyan and B. Nagappan, Emissions analysis on mahua oil biodiesel and higher alcohol blends in diesel engine. Alexandria Engineering Journal, 57(4), 2627-2631, 2018. https://doi.org/10.1016/j.aej.2017.07.009.
  • D. Damodharan, K. Gopal, A. P. Sathiyagnanam, B. R. Kumar, M. V. Depoures and N. Mukilarasan, Performance and emission study of a single cylinder diesel engine fuelled with n-octanol/WPO with some modifications. International Journal of Ambient Energy, 42(7), 779-788, 2019. https://doi.org/10.1080/01430750.2018.1563824.
  • N. Joy, Y. Devarajan, B. Nagappan and A. Anderson, Exhaust emission study on neat biodiesel and alcohol blends fueled diesel engine. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40(1), 115-119, 2018. https://doi.org/10.1080/15567036.2017.1405119.
  • A. Bilgin and M. Gulum, Effects of various transesterification parameters on the some fuel properties of hazelnut oil methyl ester. Energy Procedia, 147, 54-62, 2018. https://doi.org/10.1016/j.egypro.2018.07.033.
  • M. K. Yesilyurt, A detailed investigation on the performance, combustion, and exhaust emission characteristics of a diesel engine running on the blend of diesel fuel, biodiesel and 1-heptanol (C7 alcohol) as a next-generation higher alcohol. Fuel, 275, 117893, 2020. https://doi.org/10.1016/j.fuel.2020.117893.
  • M. A. Ghadikolaei, P. K. Wong, C. S. Cheung, Z. Ning, K. F. Yung, J. Zhao, N. K. Gali and A. V. Berenjestanaki, Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review. Renewable and Sustainable Energy Reviews, 143, 110970, 2021. https://doi.org/10.1016/j.rser.2021.110970.
  • A. I. El-Seesy, M. S. Waly, Z. He, H. M. El-Batsh, A. Nasser and R. M. El-Zoheiry, Influence of quaternary combinations of biodiesel/methanol/n-octanol/diethyl ether from waste cooking oil on combustion, emission, and stability aspects of a diesel engine. Energy Conversion and Management, 240, 114268, 2021. https://doi.org/10.1016/j.enconman.2021.114268.
  • European Parliament Directive 2003/30/EC of the European Parliament and of the Council of 8 May 2003 on the promotion of the use of biofuels or other renewable fuels for transport. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32003L0030&from=en, Accessed 28 June 2023.
  • European Parliament Regulation (EU) 2018/1999 of the European Parliament and of the Council and Directive 98/70/EC of the European Parliament and of the Council as regards the promotion of energy from renewable sources, and repealing Council Directive (EU) 2015/652. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0557, Accessed 28 June 2023.
  • M. Gülüm, Performance, combustion and emission characteristics of a diesel engine fuelled with diesel fuel + corn oil + alcohol ternary blends. Environmental Science and Pollution Research, 30, 53767–53777, 2023. https://doi.org/10.1007/s11356-023-26053-x
  • J.B. Heywood, Internal Combustion Engine Fundamentals. McGraw Hill Series in mechanical engineering, 1988. ISBN: 0-07-100499-8.
  • M. Bakioğlu, Sayısal Analiz (in Turkish). Birsen Yayınevi, 2011. ISBN: 978-975-511-353-3.
  • C.F. Gerald and P.O. Wheatley, Applied Numerical Analysis (Seventh Edition). Pearson Education, 2004. ISBN: 0-321-13304-8.
  • L.V. Fausett, Numerical Methods Using MathCAD. Prentice-Hall, 2002. ISBN: 0-13-061081-X.
  • MATLAB Curve Fitting Toolbox User's Guide. The MathWorks, Inc., 2020.
  • J.L. Hintze, NCSS User's Guide III Regression and Curve Fitting. NCSS Statistical System, 2007, https://www.ncss.com/download/ncss/manuals/, Accessed: 31.05.2023.
  • A. Çakmak, M. K. Yeşilyurt, D. Erol and B. Doğan, The experimental investigation on the impact of n-octanol in the compression-ignition engine operating with biodiesel/diesel fuel blends: exergy, exergoeconomic, environmental analyses. Journal of Thermal Analysis and Calorimetry, 147, 11231-11259, 2022. https://doi.org/10.1007/s10973-022-11357-w.
There are 33 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Articles
Authors

Mert Gülüm 0000-0002-1792-3499

Early Pub Date September 27, 2023
Publication Date October 15, 2023
Submission Date June 29, 2023
Acceptance Date August 31, 2023
Published in Issue Year 2023 Volume: 12 Issue: 4

Cite

APA Gülüm, M. (2023). Mathematical correlations for variation in heat release rate of a diesel engine fuelled with n-octanol blends. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(4), 1452-1480. https://doi.org/10.28948/ngumuh.1320921
AMA Gülüm M. Mathematical correlations for variation in heat release rate of a diesel engine fuelled with n-octanol blends. NOHU J. Eng. Sci. October 2023;12(4):1452-1480. doi:10.28948/ngumuh.1320921
Chicago Gülüm, Mert. “Mathematical Correlations for Variation in Heat Release Rate of a Diesel Engine Fuelled With N-Octanol Blends”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, no. 4 (October 2023): 1452-80. https://doi.org/10.28948/ngumuh.1320921.
EndNote Gülüm M (October 1, 2023) Mathematical correlations for variation in heat release rate of a diesel engine fuelled with n-octanol blends. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 4 1452–1480.
IEEE M. Gülüm, “Mathematical correlations for variation in heat release rate of a diesel engine fuelled with n-octanol blends”, NOHU J. Eng. Sci., vol. 12, no. 4, pp. 1452–1480, 2023, doi: 10.28948/ngumuh.1320921.
ISNAD Gülüm, Mert. “Mathematical Correlations for Variation in Heat Release Rate of a Diesel Engine Fuelled With N-Octanol Blends”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/4 (October 2023), 1452-1480. https://doi.org/10.28948/ngumuh.1320921.
JAMA Gülüm M. Mathematical correlations for variation in heat release rate of a diesel engine fuelled with n-octanol blends. NOHU J. Eng. Sci. 2023;12:1452–1480.
MLA Gülüm, Mert. “Mathematical Correlations for Variation in Heat Release Rate of a Diesel Engine Fuelled With N-Octanol Blends”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 12, no. 4, 2023, pp. 1452-80, doi:10.28948/ngumuh.1320921.
Vancouver Gülüm M. Mathematical correlations for variation in heat release rate of a diesel engine fuelled with n-octanol blends. NOHU J. Eng. Sci. 2023;12(4):1452-80.

23135