Review
BibTex RIS Cite

Gıda endüstrisinde immobilize enzim uygulamaları

Year 2024, Volume: 13 Issue: 3, 1056 - 1073, 15.07.2024
https://doi.org/10.28948/ngumuh.1487845

Abstract

İmmobilizasyon terimi, hareketi sınırlama veya hareket edemez hale getirmek anlamına gelmektedir. Uygulamalarda, enzimler genellikle inert ve çözünmez taşıyıcılar üzerinde immobilize edilmektedir. Bu uygulama, çoklu yeniden kullanılabilirlik nedeniyle enzimlerin etkinliklerini artırmaktadır. İmmobilize enzimler, belirli bir alanda hapsedilmiş ancak katalitik aktiviteleri korunan enzimleri ifade etmektedir. İmmobilize enzimlerin özellikleri immobilizasyon yöntemine ve taşıyıcı tipine bağlıdır. İmmobilize enzimlerin; laktozsuz süt üretimi, meyve suyunda acılığının giderilmesi, yüksek fruktozlu mısır şurubu (YFMŞ) üretimi gibi birçok alanda gıda sektöründe uygulaması mevcuttur. Bu derlemede, öncelikle gıda endüstrisine odaklanarak, immobilize enzimlerin elde edilme yöntemleri ve çeşitli taşıyıcı malzemelerine genel bir bakış açısı sunmak amaçlanmıştır. Ayrıca mevcut immobilize enzim uygulamaları gıda endüstrisi merkez alınarak değerlendirilmiştir. Derleme çalışması immobilize enzim teknolojisinin anlaşılması, bugünü ve geleceğinin değerlendirilmesine ışık tutacaktır.

References

  • D. Sutay Kocabaş, Gıda Endüstrisinde Enzimlerin Rolü ve İlgili Yasal Düzenlemeler, Gıda Biyoteknolojisi, 1st ed., Ögel ZB, pp. 29–38, Ankara: Türkiye Klinikleri, 2021.
  • M. Misson, H. Zhang, B. Jin, Nanobiocatalyst advancements and bioprocessing applications, Journal of The Royal Society Interface. 12, 20140891, 2015. https://doi.org/10.1098/rsif.2014.0891.
  • N.M. Mubarak, J.R. Wong, K.W. Tan, J.N. Sahu, E.C. Abdullah, N.S. Jayakumar, P. Ganesan, Immobilization of cellulase enzyme on functionalized multiwall carbon nanotubes, Journal of Molecular Catalysis B: Enzymatic. 107, 124–131, 2014. https://doi.org/10.1016/j.molcatb.2014.06.002.
  • A. Homaei, Enzyme Immobilization and its Application in the Food Industry, Advances in Food Biotechnology, John Wiley & Sons, Ltd, pp. 145–164, 2015. https://doi.org/10.1002/9781118864463.ch09.
  • B. Brena, P. González-Pombo, F. Batista-Viera, Immobilization of Enzymes: A Literature Survey, in: J.M. Guisan (Ed.), Immobilization of Enzymes and Cells: Third Edition, Humana Press, pp. 15–31, Totowa, NJ, 2013. https://doi.org/10.1007/978-1-62703-550-7_2.
  • A. Basso, S. Serban, Industrial applications of immobilized enzymes—A review, Molecular Catalysis. 10, 110607, 2005. https://doi.org/10.1016/j.mcat.2019.110607.
  • R.A.M. Sardar, Enzyme Immobilization: An Overview on Nanoparticles as Immobilization Matrix, Biochemistry & Analytical Biochemistry. 4, 2015. https://doi.org/10.4172/2161-1009.1000178.
  • J.R. Xavier, K.V. Ramana, R.K. Sharma, β-galactosidase: Biotechnological applications in food processing, Journal of Food Biochemistry. 42, e12564, 2018. https://doi.org/10.1111/jfbc.12564.
  • R.C. Rodrigues, J.J. Virgen-Ortíz, J.C.S. dos Santos, Á. Berenguer-Murcia, A.R. Alcantara, O. Barbosa, C. Ortiz, R. Fernandez-Lafuente, Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions, Biotechnology Advances. 37, 746–770, 2019. https://doi.org/10.1016/j.biotechadv.2019.04.003.
  • S. Jakovetić Tanasković, B. Jokić, S. Grbavčić, I. Drvenica, N. Prlainović, N. Luković, Z. Knežević-Jugović, Immobilization of Candida antarctica lipase B on kaolin and its application in synthesis of lipophilic antioxidants, Applied Clay Science. 135, 103–111, 2017. https://doi.org/10.1016/j.clay.2016.09.011.
  • M. Bilal, H.M.N. Iqbal, H. Hu, W. Wang, X. Zhang, Development of horseradish peroxidase-based cross-linked enzyme aggregates and their environmental exploitation for bioremediation purposes, Journal of Environmental Management. 188, 137–143, 2017. https://doi.org/10.1016/j.jenvman.2016.12.015.
  • R. Fernandez-Lafuente, Lipase from Thermomyces lanuginosus: Uses and prospects as an industrial biocatalyst, Journal of Molecular Catalysis B: Enzymatic. 62, 197–212, 2010. https://doi.org/10.1016/j.molcatb.2009.11.010.
  • A. Illanes, L. Wilson, C. Vera, Problem Solving in Enzyme Biocatalysis, John Wiley & Sons, 2013.
  • H.E. Swaisgood, The use of immobilized enzymes to improve functionality. Proteins in food processing, Proteins in Food Processing, pp. 607–630, 2004.
  • K. Khoshnevisan, F. Vakhshiteh, M. Barkhi, H. Baharifar, E. Poor-Akbar, N. Zari, H. Stamatis, A.-K. Bordbar, Immobilization of cellulase enzyme onto magnetic nanoparticles: Applications and recent advances, Molecular Catalysis. 442, 66–73, 2017. https://doi.org/10.1016/j.mcat.2017.09.006.
  • A. Homaei, H. Barkheh, R. Sariri, R. Stevanato, Immobilized papain on gold nanorods as heterogeneous biocatalysts, Amino Acids. 46, 1649–1657, 2014. https://doi.org/10.1007/s00726-014-1724-0.
  • N. Rueda, J.C.S. dos Santos, C. Ortiz, R. Torres, O. Barbosa, R.C. Rodrigues, Á. Berenguer-Murcia, R. Fernandez-Lafuente, Chemical Modification in the Design of Immobilized Enzyme Biocatalysts: Drawbacks and Opportunities, The Chemical Record. 16, 1436–1455, 2016. https://doi.org/10.1002/tcr.201600007.
  • M. Ali, Q. Husain, S. Sultana, M. Ahmad, Immobilization of peroxidase on polypyrrole-cellulose-graphene oxide nanocomposite via non-covalent interactions for the degradation of Reactive Blue 4 dye, Chemosphere. 202, 198–207, 2018. https://doi.org/10.1016/j.chemosphere.2018.03.073.
  • L. Cao, L. van Langen, R.A. Sheldon, Immobilised enzymes: Carrier-bound or carrier-free?, Current Opinion in Biotechnology. 14, 387–394, 2003. https://doi.org/10.1016/S0958-1669(03)00096-X.
  • R.A. Sheldon, Enzyme Immobilization: The Quest for Optimum Performance, Advanced Synthesis & Catalysis. 349, 1289–1307, 2007. https://doi.org/10.1002/adsc.200700082.
  • V.-D. Truong, D.A. Clare, G.L. Catignani, H.E. Swaisgood, Cross-Linking and Rheological Changes of Whey Proteins Treated with Microbial Transglutaminase, J. Agric. Food Chem. 52, 1170–1176, 2004. https://doi.org/10.1021/jf034397c.
  • P.S. Panesar, S. Kumari, R. Panesar, Potential applications of immobilized β-galactosidase in food processing industries, Enzyme Research. 2010, 2010.
  • D. Brady, J. Jordaan, Advances in enzyme immobilisation, Biotechnol Lett. 31, 1639–1650, 2009. https://doi.org/10.1007/s10529-009-0076-4.
  • D.G. Filho, A.G. Silva, C.Z. Guidini, Lipases: sources, immobilization methods, and industrial applications, Appl Microbiol Biotechnol. 103, 7399–7423, 2019. https://doi.org/10.1007/s00253-019-10027-6.
  • D.-M. Liu, J. Chen, Y.-P. Shi, Advances on methods and easy separated support materials for enzymes immobilization, TrAC Trends in Analytical Chemistry. 102, 332–342, 2018. https://doi.org/10.1016/j.trac.2018.03.011.
  • V.L. Sirisha, A. Jain, A. Jain, Chapter Nine - Enzyme Immobilization: An Overview on Methods, Support Material, and Applications of Immobilized Enzymes, in: S.-K. Kim, F. Toldrá (Eds.), Advances in Food and Nutrition Research, Academic Press, pp. 179–211, 2016. https://doi.org/10.1016/bs.afnr.2016.07.004.
  • W. Shuai, R.K. Das, M. Naghdi, S.K. Brar, M. Verma, A review on the important aspects of lipase immobilization on nanomaterials, Biotechnology and Applied Biochemistry. 64, 496–508, 2017. https://doi.org/10.1002/bab.1515.
  • S. Voběrková, V. Solčány, M. Vršanská, V. Adam, Immobilization of ligninolytic enzymes from white-rot fungi in cross-linked aggregates, Chemosphere. 202, 694–707, 2018. https://doi.org/10.1016/j.chemosphere.2018.03.088.
  • X. Ji, Z. Su, C. Liu, P. Wang, S. Zhang, Regulation of enzyme activity and stability through positional interaction with polyurethane nanofibers, Biochemical Engineering Journal. 121, 147–155, 2017. https://doi.org/10.1016/j.bej.2017.02.007.
  • K. Liang, R. Ricco, C.M. Doherty, M.J. Styles, S. Bell, N. Kirby, S. Mudie, D. Haylock, A.J. Hill, C.J. Doonan, P. Falcaro, Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules, Nat Commun. 6, 7240, 2015. https://doi.org/10.1038/ncomms8240.
  • J.W. Wilkerson, S.-O. Yang, P.J. Funk, S.K. Stanley, B.C. Bundy, Nanoreactors: Strategies to encapsulate enzyme biocatalysts in virus-like particles, New Biotechnology. 44, 59–63, 2018. https://doi.org/10.1016/j.nbt.2018.04.003.
  • S. Nordholm, G.B. Bacskay, The Basics of Covalent Bonding in Terms of Energy and Dynamics, Molecules. 25, 2667, 2020. https://doi.org/10.3390/molecules25112667.
  • G. Cirillo, F.P. Nicoletta, M. Curcio, U.G. Spizzirri, N. Picci, F. Iemma, Enzyme immobilization on smart polymers: Catalysis on demand, Reactive and Functional Polymers. 83, 62–69, 2014. https://doi.org/10.1016/j.reactfunctpolym.2014.07.010.
  • M. Sharifi, S.-M. Robatjazi, M. Sadri, J.M. Mosaabadi, Immobilization of organophosphorus hydrolase enzyme by covalent attachment on modified cellulose microfibers using different chemical activation strategies: Characterization and stability studies, Chinese Journal of Chemical Engineering. 27, 191–199, 2019. https://doi.org/10.1016/j.cjche.2018.03.023.
  • İ. Saldamlı, Gıda Kimyası, Hacettepe Üniversitesi Yayınları, Ankara, 2007.
  • C.E. La Rotta Hernandez, S. Lütz, A. Liese, E.P.S. Bon, Activity and stability of Caldariomyces fumago chloroperoxidase modified by reductive alkylation, amidation and cross-linking, Enzyme and Microbial Technology. 37, 582–588, 2005. https://doi.org/10.1016/j.enzmictec.2005.02.025.
  • N. Aissaoui, J. Landoulsi, L. Bergaoui, S. Boujday, J.-F. Lambert, Catalytic activity and thermostability of enzymes immobilized on silanized surface: Influence of the crosslinking agent, Enzyme and Microbial Technology. 52, 336–343, 2013. https://doi.org/10.1016/j.enzmictec.2013.02.018.
  • L. Cao, F.V. Rantwijk, R.A. Sheldon, Cross-linked enzyme aggregates: A simple and effective method for the immobilization of penicillin acylase, Organic Letters. 2, 1361–1364, 2000. https://doi.org/10.1021/ol005593x.
  • S. Datta, L.R. Christena, Y.R.S. Rajaram, Enzyme immobilization: an overview on techniques and support materials, 3 Biotech. 3, 1–9, 2013. https://doi.org/10.1007/s13205-012-0071-7.
  • K. Mosbach, P. Brodelius, Immobilized enzymes and cells. B. II: Immobilization technique for cells/organelles, Methods Enzymol. 135, 171–472, 1987.
  • Y. Yong, Y.X. Bai, Y.F. Li, L. Lin, Y.J. Cui, C.G. Xia, Characterization of Candida rugosa lipase immobilized onto magnetic microspheres with hydrophilicity, Process Biochemistry. 43, 1179–1185, 2008. https://doi.org/10.1016/j.procbio.2008.05.019.
  • M. Rebroš, M. Rosenberg, Z. Mlichová, L. Krištofíková, M. Paluch, A simple entrapment of glucoamylase into LentiKats® as an efficient catalyst for maltodextrin hydrolysis, Enzyme and Microbial Technology. 39, 800–804, 2006. https://doi.org/10.1016/j.enzmictec.2006.01.001.
  • G.A. Kovalenko, L.V. Perminova, T.G. Terent’eva, G.V. Plaksin, Catalytic properties of glucoamylase immobilized on synthetic carbon material Sibunit, Appl Biochem Microbiol. 43, 374–378, 2007. https://doi.org/10.1134/S0003683807040023.
  • A.S. Drozdov, O.E. Shapovalova, V. Ivanovski, D. Avnir, V.V. Vinogradov, Entrapment of Enzymes within Sol–Gel-Derived Magnetite, Chem. Mater. 28, 2248–2253, 2016. https://doi.org/10.1021/acs.chemmater.6b00193.
  • T. Nakamura, Y. Ogata, A. Shitara, A. Nakamura, K. Ohta, Continuous production of fructose syrups from inulin by immobilized inulinase from Aspergillus niger mutant 817, Journal of Fermentation and Bioengineering. 80, 164–169, 1995. https://doi.org/10.1016/0922-338X(95)93213-4.
  • Q. Shen, R. Yang, X. Hua, F. Ye, W. Zhang, W. Zhao, Gelatin-templated biomimetic calcification for β-galactosidase immobilization, Process Biochemistry. 46, 1565–1571, 2011. https://doi.org/10.1016/j.procbio.2011.04.010.
  • M. Sureshkumar, C.K. Lee, Polydopamine coated magnetic-chitin (MCT) particles as a new matrix for enzyme immobilization, Carbohydrate Polymers. 84, 775–780, 2011. https://doi.org/10.1016/j.carbpol.2010.03.036.
  • V. Zargar, M. Asghari, A. Dashti, A Review on Chitin and Chitosan Polymers: Structure, Chemistry, Solubility, Derivatives, and Applications, ChemBioEng Reviews. 2, 204–226, 2015. https://doi.org/10.1002/cben.201400025.
  • P. Tripathi, A. Kumari, P. Rath, A.M. Kayastha, Immobilization of α-amylase from mung beans (Vigna radiata) on Amberlite MB 150 and chitosan beads: A comparative study, Journal of Molecular Catalysis B: Enzymatic. 49, 69–74, 2007. https://doi.org/10.1016/j.molcatb.2007.08.011.
  • F. van de Velde, N.D. Lourenço, H.M. Pinheiro, M. Bakker, Carrageenan: A Food-Grade and Biocompatible Support for Immobilisation Techniques, Advanced Synthesis & Catalysis. 344, 815–835, 2002. https://doi.org/10.1002/1615-4169(200209)344:8<815::AID-ADSC815>3.0.CO;2-H.
  • B. Bayón, I.R. Berti, A.M. Gagneten, G.R. Castro, Biopolymers from Wastes to High-Value Products in Biomedicine, Energy, Environment, and Sustainability, Springer Nature, pp. 1–44, 2018. https://doi.org/10.1007/978-981-10-7431-8_1.
  • M.L. Cacicedo, R.M. Manzo, S. Municoy, H.L. Bonazza, G.A. Islan, M. Desimone, M. Bellino, E.J. Mammarella, G.R. Castro, Chapter 7 - Immobilized Enzymes and Their Applications, in: R.S. Singh, R.R. Singhania, A. Pandey, C. Larroche (Eds.), Advances in Enzyme Technology, Elsevier, pp. 169–200, 2019. https://doi.org/10.1016/B978-0-444-64114-4.00007-8.
  • E. Katchalski-Katzir, D.M. Kraemer, Eupergit® C, a carrier for immobilization of enzymes of industrial potential, Journal of Molecular Catalysis B: Enzymatic. 10, 157–176, 2000. https://doi.org/10.1016/S1381-1177(00)00124-7.
  • V.V. Vinogradov, D. Avnir, Exceptional thermal stability of therapeutical enzymes entrapped in alumina sol-gel matrices, Journal of Materials Chemistry B. 2, 2868–2873, 2014. https://doi.org/10.1039/C3TB21643H.
  • M.N. Gupta, M. Kaloti, M. Kapoor, K. Solanki, Nanomaterials as matrices for enzyme immobilization, Artificial Cells, Blood Substitutes, and Biotechnology. 39, 98–109, 2011. https://doi.org/10.3109/10731199.2010.516259.
  • S. Escobar, C. Bernal, M. Mesa, Relationship between sol-gel conditions and enzyme stability: A case study with β-galactosidase/silica biocatalyst for whey hydrolysis, Journal of Biomaterials Science, Polymer Edition. 26, 1126–1138, 2015. https://doi.org/10.1080/09205063.2015.1078929.
  • E.T. Hwang, M.B. Gu, Enzyme stabilization by nano/microsized hybrid materials, Engineering in Life Sciences. 13, 49–61, 2013. https://doi.org/10.1002/elsc.201100225.
  • M. Hartmann, Ordered Mesoporous Materials for Bioadsorption and Biocatalysis, Chem. Mater. 17, 4577–4593, 2005. https://doi.org/10.1021/cm0485658.
  • N. Carlsson, H. Gustafsson, C. Thörn, L. Olsson, K. Holmberg, B. Åkerman, Enzymes immobilized in mesoporous silica: A physical–chemical perspective, Advances in Colloid and Interface Science. 205, 339–360, 2014. https://doi.org/10.1016/j.cis.2013.08.010.
  • S. Tanvir, H. Adenier, S. Pulvin, Screening and prediction of reactive intermediates in a microreactor with immobilized rat hepatic microsomes using acetaminophen as a model drug, Enzyme and Microbial Technology. 45, 112–117, 2009. https://doi.org/10.1016/j.enzmictec.2009.05.006.
  • S. Hudson, J. Cooney, E. Magner, Proteins in Mesoporous Silicates, Angewandte Chemie International Edition. 47, 8582–8594, 2008. https://doi.org/10.1002/anie.200705238.
  • L. Treccani, T. Yvonne Klein, F. Meder, K. Pardun, K. Rezwan, Functionalized ceramics for biomedical, biotechnological and environmental applications, Acta Biomaterialia. 9, 7115–7150, 2013. https://doi.org/10.1016/j.actbio.2013.03.036.
  • M. Hartmann, X. Kostrov, Immobilization of enzymes on porous silicas – benefits and challenges, Chem. Soc. Rev. 42, 6277–6289, 2013. https://doi.org/10.1039/C3CS60021A.
  • K. Ashtari, K. Khajeh, J. Fasihi, P. Ashtari, A. Ramazani, H. Vali, Silica-encapsulated magnetic nanoparticles: Enzyme immobilization and cytotoxic study, International Journal of Biological Macromolecules. 50, 1063–1069, 2012. https://doi.org/10.1016/j.ijbiomac.2011.12.025.
  • G. Larsen, R. Velarde-Ortiz, K. Minchow, A. Barrero, I.G. Loscertales, A Method for Making Inorganic and Hybrid (Organic/Inorganic) Fibers and Vesicles with Diameters in the Submicrometer and Micrometer Range via Sol−Gel Chemistry and Electrically Forced Liquid Jets, J. Am. Chem. Soc. 125, 1154–1155, 2003. https://doi.org/10.1021/ja028983i.
  • S.L. Hosseinipour, M.S. Khiabani, H. Hamishehkar, R. Salehi, Enhanced stability and catalytic activity of immobilized α-amylase on modified Fe3O4 nanoparticles for potential application in food industries, J Nanopart Res. 17, 382, 2015. https://doi.org/10.1007/s11051-015-3174-3.
  • A. Illanes, C. Altamirano, Enzyme Reactors, in: A. Illanes (Ed.), Enzyme Biocatalysis: Principles and Applications, Springer Netherlands, pp. 205–251, Dordrecht, 2008. https://doi.org/10.1007/978-1-4020-8361-7_5.
  • S.K. Sharma, R.M. Leblanc, Biosensors based on β-galactosidase enzyme: Recent advances and perspectives, Analytical Biochemistry. 535, 1–11, 2017. https://doi.org/10.1016/j.ab.2017.07.019.
  • J.-W. Rhim, H.-M. Park, C.-S. Ha, Bio-nanocomposites for food packaging applications, Progress in Polymer Science. 38, 1629–1652, 2013. https://doi.org/10.1016/j.progpolymsci.2013.05.008.
  • S. Adhikari (Nee Pramanik), Chapter 41 - Application of Immobilized Enzymes in the Food Industry, in: M. Kuddus (Ed.), Enzymes in Food Biotechnology, Academic Press, pp. 711–721, 2019. https://doi.org/10.1016/B978-0-12-813280-7.00041-4.
  • H.A.R. Gomes, L.R.S. Moreira, E.X.F. Filho, Enzymes and Food Industry: A Consolidated Marriage, Advances in Biotechnology for Food Industry, Elsevier Inc., pp. 55–89, 2018. https://doi.org/10.1016/B978-0-12-811443-8.00003-7.
  • P. Brodelius, Industrial applications of immobilized biocatalysts, Advances in Biochemical Engineering. 10, 75–129, 2005. https://doi.org/10.1007/BFb0004472.
  • D. Abdel, R. Mahmoud, D.A.R. Mahmoud, W.A. Helmy, Potential Application of Immobilization Technology in Enzyme and Biomass Production, Journal of Applied Sciences Research. 5, 2466–2476, 2009.
  • Y.H. Hong, J.H. Kim, S.B. KIM, J.H. Kim, Y.M. Lee, S.W. Park, Immobilization of psicose-epimerase and a method of producing D-psicose using the same, US8735106B2, 2014.
  • P. Villeneuve, Lipases in lipophilization reactions, Biotechnology Advances. 25, 515–536, 2007. https://doi.org/10.1016/j.biotechadv.2007.06.001.
  • S.-J. Gea, H. Bai, H.-S. Yuan, L.-X. Zhang, Continuous production of high degree casein hydrolysates by immobilized proteases in column reactor, Journal of Biotechnology. 50, 161–170, 1996. https://doi.org/10.1016/0168-1656(96)01561-1.
  • F. Xu, M.-J. Oruna-Concha, J.S. Elmore, The use of asparaginase to reduce acrylamide levels in cooked food, Food Chemistry. 210, 163–171, 2016. https://doi.org/10.1016/j.foodchem.2016.04.105.
  • C.-J. Chiang, L.-T. Hsiau, W.-C. Lee, Immobilization of cell-associated enzymes by entrapment in polymethacrylamide beads, Biotechnology Techniques. 11, 121–125, 1997. https://doi.org/10.1023/B:BITE.0000034016.43050.22.
  • B. Sujoy, A. Aparna, Enzymology, immobilization and applications of urease enzyme, Int. Res. J. Biol. Sci. 2, 51–56, 2013.
  • N.C. Ricardi, E.W. de Menezes, E. Valmir Benvenutti, J. da Natividade Schöffer, C.R. Hackenhaar, P.F. Hertz, T.M.H. Costa, Highly stable novel silica/chitosan support for β-galactosidase immobilization for application in dairy technology, Food Chemistry. 246, 343–350, 2018. https://doi.org/10.1016/j.foodchem.2017.11.026.
  • H. Hirohara, H. Yamamoto, E. Kawano, S. Nabeshima, Immobilized lactase, its preparation and use, EP 0037667B1, 1981.
  • S. Chauhan, A. Vohra, A. Lakhanpal, R. Gupta, Immobilization of Commercial Pectinase (Polygalacturonase) on Celite and Its Application in Juice Clarification, Journal of Food Processing and Preservation. 39, 2135–2141, 2015. https://doi.org/10.1111/jfpp.12457.
  • M.S. Akin, M.B. Güler-Akin, H.A. Kirmaci, A.F. Atasoy, H. Türkoǧlu, The effects of lipase-encapsulating carriers on the accelerated ripening of Kashar cheese, International Journal of Dairy Technology. 65, 243–249, 2012. https://doi.org/10.1111/j.1471-0307.2012.00821.x.
  • V. Gekas, M. Lopez-Leiva, Hydrolysis of lactose: a literature review, Process Biochem. 20, 1985.
  • D.A. Kimball, S.I. Norman, Processing effects during commercial debittering of California navel orange juice, J. Agric. Food Chem. 38, 1396–1400, 1990.
  • M. Puri, S.S. Marwaha, R.M. Kothari, J.F. Kennedy, Biochemical Basis of Bitterness in Citrus Fruit Juices and Biotech Approaches for Debittering, Critical Reviews in Biotechnology. 16, 145–155, 1996. https://doi.org/10.3109/07388559609147419.
  • M. Puri, A. Kaur, R.S. Singh, J.R. Kanwar, Immobilized enzyme technology for debittering citrus fruit juices, Transworld Research Network, 2008.
  • G. Şekeroğlu, S. Fadıloğlu, F. Göğüş, Immobilization and characterization of naringinase for the hydrolysis of naringin, European Food Research and Technology. 224, 55–60, 2006. https://doi.org/10.1007/s00217-006-0288-y.
  • M. Roitner, Th. Schalkhammer, F. Pittner, Preparation of prunin with the help of immobilized naringinase pretreated with alkaline buffer, Appl Biochem Biotechnol. 9, 483–488, 1984. https://doi.org/10.1007/BF02798402.
  • H.-Y. Tsen, G.-K. Yu, Limonin and Naringin Removal from Grapefruit Juice with Naringinase Entrapped in Cellulose Triacetate Fibers, Journal of Food Science. 56, 31–34, 1991. https://doi.org/10.1111/j.1365-2621.1991.tb07968.x.
  • I.A.C. Ribeiro, M.H.L. Ribeiro, Kinetic modelling of naringin hydrolysis using a bitter sweet alfa-rhamnopyranosidase immobilized in k-carrageenan, Journal of Molecular Catalysis B: Enzymatic. 51, 10–18, 2008. https://doi.org/10.1016/j.molcatb.2007.09.023.
  • M. Ono, T. Tosa, I. Chibata, Preparation and properties of immobilized naringinase using tanninaminohexyl cellulose, Agricultural and Biological ChemistryAgric. BioI. Chem. 42, 1847–1853, 1978. https://doi.org/10.1080/00021369.1978.10863264.
  • P. Kohli, M. Kalia, R. Gupta, Pectin Methylesterases: A Review, Journal of Bioprocessing & Biotechniques. 5, 2015. https://doi.org/10.4172/2155-9821.1000227.
  • K. Hiteshi, S. Chauhan, R. Gupta, Immobilization of microbial pectinases: a review, CIBTech J Biotechnol. 2, 37–52, 2013.
  • Magindag, Amylase, polygalacturonase and naringinase co-immobilization, EP 298, 954, 1989.
  • R.D. Cosimo, J.M. Auliffe, A.J. Poulose, G. Bohlmann, Industrial use of immobilized enzymes, Chemical Society Reviews. 42, 6437–6474, 2013. https://doi.org/10.1039/C3CS35506C.
  • M.K. Walsh, 4 - Immobilized enzyme technology for food applications, in: R. Rastall (Ed.), Novel Enzyme Technology for Food Applications, Woodhead Publishing, pp. 60–84, 2007. https://doi.org/10.1533/9781845693718.1.60.
  • B. Hauer, C.K. Branneby, K. Hult, A. Magnusson, A. Hamberg, Enzymatically catalyzed method of preparing mono-acylated polyols, US8715970B2, 2014.
  • P.S.J. Cheetham, C.E. Imber, J. Isherwood, The formation of isomaltulose by immobilized Erwinia rhapontici, Nature. 299, 628–631, 1982. https://doi.org/10.1038/299628a0.
  • P. Cheetham, Applications of immobilized enzymes and cells in the food industry’, Chemical Aspects of Food Enzymes, AT Andrews, pp. 53–93, 1987.
  • W. Wenling, W. Wuguang Le Huiying, W. Shiyuan, Continuous preparation of fructose syrups from Jerusalem artichoke tuber using immobilized intracellular inulinase from Kluyveromyces sp. Y-85, Process Biochemistry. 34, 643–646, 1999. https://doi.org/10.1016/S0032-9592(98)00140-X.
  • P. Bajpai, A. Margaritis, Immobilization of Kluyveromyces marxianus cells containing inulinase activity in open pore gelatin matrix: 2. Application for high fructose syrup production, Enzyme and Microbial Technology. 7, 459–461, 1985. https://doi.org/10.1016/0141-0229(85)90048-1.
  • I. Smaali, A. Soussi, H. Bouallagui, N. Chaira, M. Hamdi, M.N. Marzouki, Production of high-fructose syrup from date by-products in a packed bed bioreactor using a novel thermostable invertase from Aspergillus awamori, Biocatalysis and Biotransformation. 29, 253–261, 2011. https://doi.org/10.3109/10242422.2011.615924.
  • N.A. Mohd Zain, S. Mohd Suardi, A. Idris, Hydrolysis of liquid pineapple waste by invertase immobilized in PVA–alginate matrix, Biochemical Engineering Journal. 50, 83–89, 2010. https://doi.org/10.1016/j.bej.2010.02.009.
  • J.R. Beadle, J.P. Saunders, T.J.W. Jr, Process for manufacturing tagatose, US5002612A, 1991.
  • S. Jung, B.P. Lamsal, V. Stepien, L.A. Johnson, P.A. Murphy, Functionality of soy protein produced by enzyme-assisted extraction, Journal of the American Oil Chemists’ Society. 83, 71–78, 2006. https://doi.org/10.1007/s11746-006-1178-y.
  • S. Sharma, S.S. Kanwar, Organic Solvent Tolerant Lipases and Applications, The Scientific World Journal. 2014, 2014. https://doi.org/10.1155/2014/625258.
  • W. Nawar, Lipids, ed. or fennema food chemistry, 3rd ed., New York, 1996.
  • S.F. Li, W.T. Wu, Lipase-immobilized electrospun PAN nanofibrous membranes for soybean oil hydrolysis, Biochemical Engineering Journal. 45, 48–53, 2009. https://doi.org/10.1016/j.bej.2009.02.004.
  • T. Guan, B. Liu, R. Wang, Y. Huang, J. Luo, Y. Li, The enhanced fatty acids flavor release for low-fat heeses by carrier immobilized lipases on O/W Pickering emulsions, Food Hydrocolloids. 116, 106651, 2021. https://doi.org/10.1016/j.foodhyd.2021.106651.
  • J.A. Nettleton, Omega-3 Fatty Acids and Health, Springer US, Boston, MA, 1995. https://doi.org/10.1007/978-1-4615-2071-9_2.
  • J. Kralovec, W. Wang, J.C. Barrow, Enzymatic modification of oil, US8420349B2, 2013.
  • G.G. Haraldsson, A. Halldorsson, O. Thorstad, Lipase-catalysed esterification of marine oil, US7491522B2, 2009.
  • P.R. Witt, R.A. Sair, T. Richardson, N.F. Olson, Chillproofing beer with insoluble papain., Brewers Digest. 45, 70, 1970.
  • E.A. Raspopova, A.A. Krasnoshtanova, Characterizing the properties and evaluating the efficiency of biocatalysts based on immobilized fungal amylase, Catalysis in Industry. 8, 75–80, 2016. https://doi.org/10.1134/S2070050416010104.
  • I. Benucci, M.C. Caso, T. Bavaro, S. Masci, M. Keršienė, M. Esti, Prolyl endopeptidase from Aspergillus niger immobilized on a food-grade carrier for the production of gluten-reduced beer, Food Control. 110, 106987, 2020. https://doi.org/10.1016/j.foodcont.2019.106987.
  • R. Willaert, H. Verachtert, K. van den Bremt, F. Delvaux, G. Derdelinckx, Bioflavouring of Foods and Beverages, Applications of Cell Immobilisation Biotechnology, Springer, Dordrecht, pp. 355–372, 2005.
  • A. Durieux, X. Nicolay, J.-P. Simon, Application of Immobilisation Technology to Cider Production: A Review, Applications of Cell Immobilisation Biotechnology, Springer, Dordrecht, pp. 275–284, 2005. https://doi.org/10.1007/1-4020-3363-X_16.
  • C. Caldini, F. Bonomi, P.G. Pifferi, G. Lanzarini, Y.M. Galante, Kinetic and immobilization studies on fungal glycosidases for aroma enhancement in wine, Enzyme and Microbial Technology. 16, 286–291, 1994. https://doi.org/10.1016/0141-0229(94)90168-6.
  • G. Spagna, R.N. Barbagallo, A. Martino, P.G. Pifferi, A simple method for purifying glycosidases: α-l-rhamnopyranosidase from Aspergillus niger to increase the aroma of Moscato wine, Enzyme and Microbial Technology. 27, 522–530, 2000. https://doi.org/10.1016/S0141-0229(00)00236-2.
  • K.P. Dhake, D.D. Thakare, B.M. Bhanage, Lipase: A potential biocatalyst for the synthesis of valuable flavour and fragrance ester compounds, Flavour and Fragrance Journal. 28, 71–83, 2013. https://doi.org/10.1002/ffj.3140.
  • C.M.F. Soares, H.F. de Castro, J.E. Itako, F.F. de Moraes, G.M. Zanin, Characterization of Sol-Gel Bioencapsulates for Ester Hydrolysis and Synthesis, in: B.H. Davison, B.R. Evans, M. Finkelstein, J.D. McMillan (Eds.), Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals, Humana Press, pp. 845–859, Totowa, NJ, 2005. https://doi.org/10.1007/978-1-59259-991-2_72.
  • A.R.M. Yahya, W.A. Anderson, M. Moo-Young, Ester synthesis in lipase-catalyzed reactions, Enzyme and Microbial Technology. 23, 438–450, 1998. https://doi.org/10.1016/S0141-0229(98)00065-9.
  • S.H. Krishna, B. Manohar, S. Divakar, N.G. Karanth, Lipase-catalyzed synthesis of isoamyl butyrate: Optimization by response surface methodology, J Amer Oil Chem Soc. 76, 1483–1488, 1999. https://doi.org/10.1007/s11746-999-0189-x.
  • A. Sadighi, S.F. Motevalizadeh, M. Hosseini, A. Ramazani, L. Gorgannezhad, H. Nadri, B. Deiham, M.R. Ganjali, A. Shafiee, M.A. Faramarzi, M. Khoobi, Metal-Chelate Immobilization of Lipase onto Polyethylenimine Coated MCM-41 for Apple Flavor Synthesis, Applied Biochemistry and Biotechnology. 182, 1371–1389, 2017. https://doi.org/10.1007/s12010-017-2404-9.
  • N.C.A. Silva, J.S. Miranda, I.C.A. Bolina, W.C. Silva, D.B. Hirata, H.F. de Castro, A.A. Mendes, Immobilization of porcine pancreatic lipase on poly-hydroxybutyrate particles for the production of ethyl esters from macaw palm oils and pineapple flavor, Biochemical Engineering Journal. 82, 139–149, 2014. https://doi.org/10.1016/j.bej.2013.11.015.
  • K. Oyama, S. Irino, N. Hagi, [46] Production of aspartame by immobilized thermoase, Methods in Enzymology, Academic Press, pp. 503–516, 1987. https://doi.org/10.1016/S0076-6879(87)36048-3.
  • R. Das, H. Mishra, A. Srivastava, A.M. Kayastha, Covalent immobilization of Β-amylase onto functionalized molybdenum sulfide nanosheets, its kinetics and stability studies: A gateway to boost enzyme application, Chemical Engineering Journal. 328, 215–227, 2017. https://doi.org/10.1016/j.cej.2017.07.019.
  • Z. Grosová, M. Rosenberg, M. Rebroš, M. Šipocz, B. Sedláčková, Entrapment of β-galactosidase in polyvinylalcohol hydrogel, Biotechnology Letters. 30, 763–767, 2008. https://doi.org/10.1007/s10529-007-9606-0.
  • X.Y. Chen, M.G. Gänzle, Lactose and lactose-derived oligosaccharides: More than prebiotics?, International Dairy Journal. 67, 61–72, 2017. https://doi.org/10.1016/j.idairyj.2016.10.001.
  • Z. Kovács, E. Benjamins, K. Grau, A.U. Rehman, M. Ebrahimi, P. Czermak, Recent developments in manufacturing oligosaccharides with prebiotic functions, Advances in Biochemical Engineering/Biotechnology. 143, 257–295, 2013. https://doi.org/10.1007/10_2013_237.
  • R. Reshmi, G. Sanjay, S. Sugunan, Immobilization of α-amylase on zirconia: A heterogeneous biocatalyst for starch hydrolysis, Catalysis Communications. 8, 393–399, 2007. https://doi.org/10.1016/j.catcom.2006.07.009.
  • T. Noda, S. Furuta, I. Suda, Sweet potato β-amylase immobilized on chitosan beads and its application in the semi-continuous production of maltose, Carbohydrate Polymers. 44, 189–195, 2001. https://doi.org/10.1016/S0144-8617(00)00226-5.
  • A.S. Rani, M.L.M. Das, S. Satyanarayana, Preparation and characterization of amyloglucosidase adsorbed on activated charcoal, Journal of Molecular Catalysis B: Enzymatic. 10, 471–476, 2000. https://doi.org/10.1016/S1381-1177(99)00116-2.
  • G.D. Kibarer, G. Akovali, Optimization studies on the features of an activated charcoal-supported urease system, Biomaterials. 17, 1473–1479, 1996. https://doi.org/10.1016/0142-9612(96)89771-7.
  • M.-K. Chang, G. Abraham, V.T. John, Production of cocoa butter-like fat from interesterification of vegetable oils, Journal of the American Oil Chemists’ Society. 67, 832–834, 1990. https://doi.org/10.1007/BF02540501.
  • R. Aravindan, P. Anbumathi, T. Viruthagiri, Lipase applications in food industry, IJBT Vol.6(2). 2007.
  • N. Sawamura, Transesterification of Fats and Oils, Annals of the New York Academy of Sciences. 542, 266–269, 1988. https://doi.org/10.1111/j.1749-6632.1988.tb25840.x.
  • J. Pedroche, M.M. Yust, H. Lqari, J. Girón-Calle, J. Vioque, M. Alaiz, F. Millán, Production and characterization of casein hydrolysates with a high amino acid Fischer’s ratio using immobilized proteases, International Dairy Journal. 14, 527–533, 2004. https://doi.org/10.1016/j.idairyj.2003.11.002.
  • X.L. Huang, G.L. Catignani, H.E. Swaisgood, Improved Emulsifying Properties of β-Barrel Domain Peptides Obtained by Membrane-Fractionation of a Limited Tryptic Hydrolysate of β-Lactoglobulin, J. Agric. Food Chem. 44, 3437–3443, 1996. https://doi.org/10.1021/jf960038o.
  • E.-L. Ticu, D. Vercaigne-Marko, R. Froidevaux, A. Huma, V. Artenie, D. Guillochon, Use of a protease-modified-alumina complex to design a continuous stirred tank reactor for producing bioactive hydrolysates, Process Biochemistry. 40, 2841–2848, 2005. https://doi.org/10.1016/j.procbio.2005.01.003.
  • P.C. Lorenzen, E. Schlimme, Characterization of trypsin immobilized on oxirane-acrylic beads for obtaining phosphopeptides from casein, Z Ernahrungswiss. 34, 118–130, 1995. https://doi.org/10.1007/bf01636945.
  • O. Park, H.E. Swaisgood, J.C. Allen, Calcium Binding of Phosphopeptides Derived from Hydrolysis of a αs-Casein or β-Casein Using Immobilized Trypsin, Journal of Dairy Science. 81, 2850–2857, 1998. https://doi.org/10.3168/jds.S0022-0302(98)75844-8.
  • K. Garg, A.C.B. Sharma, Continous Production of Citric Acid by Immobilized Whole Cells of Aspergillus Niger, J. Gen. Appl. Microbiol. 38, 605–615, 1992. https://doi.org/10.2323/jgam.38.605.

Application of immobilized enzymes in the food industry

Year 2024, Volume: 13 Issue: 3, 1056 - 1073, 15.07.2024
https://doi.org/10.28948/ngumuh.1487845

Abstract

The term immobilization refers to limiting movement or rendering something immovable. Enzymes are frequently immobilized on inert and insoluble carriers in practical applications. This application enhances the activities of enzymes due to their multiple reusability. Immobilized enzymes refer to enzymes confined to a specific area while retaining their catalytic activities. The type of carrier and the immobilization process affect the characteristics of the immobilized enzyme. Immobilized enzymes find applications in the food industry in various areas such as lactose-free milk production, reduction of bitterness in fruit juice, and production of high fructose corn syrup (HFCS). This review aims to provide an overview of methods for obtaining immobilized enzymes and various carrier materials, primarily focusing on the food industry. Additionally, existing applications of immobilized enzymes are evaluated with a focus on the food industry. This review work will shed light on understanding immobilized enzyme technology and assessing its present and future prospects.

References

  • D. Sutay Kocabaş, Gıda Endüstrisinde Enzimlerin Rolü ve İlgili Yasal Düzenlemeler, Gıda Biyoteknolojisi, 1st ed., Ögel ZB, pp. 29–38, Ankara: Türkiye Klinikleri, 2021.
  • M. Misson, H. Zhang, B. Jin, Nanobiocatalyst advancements and bioprocessing applications, Journal of The Royal Society Interface. 12, 20140891, 2015. https://doi.org/10.1098/rsif.2014.0891.
  • N.M. Mubarak, J.R. Wong, K.W. Tan, J.N. Sahu, E.C. Abdullah, N.S. Jayakumar, P. Ganesan, Immobilization of cellulase enzyme on functionalized multiwall carbon nanotubes, Journal of Molecular Catalysis B: Enzymatic. 107, 124–131, 2014. https://doi.org/10.1016/j.molcatb.2014.06.002.
  • A. Homaei, Enzyme Immobilization and its Application in the Food Industry, Advances in Food Biotechnology, John Wiley & Sons, Ltd, pp. 145–164, 2015. https://doi.org/10.1002/9781118864463.ch09.
  • B. Brena, P. González-Pombo, F. Batista-Viera, Immobilization of Enzymes: A Literature Survey, in: J.M. Guisan (Ed.), Immobilization of Enzymes and Cells: Third Edition, Humana Press, pp. 15–31, Totowa, NJ, 2013. https://doi.org/10.1007/978-1-62703-550-7_2.
  • A. Basso, S. Serban, Industrial applications of immobilized enzymes—A review, Molecular Catalysis. 10, 110607, 2005. https://doi.org/10.1016/j.mcat.2019.110607.
  • R.A.M. Sardar, Enzyme Immobilization: An Overview on Nanoparticles as Immobilization Matrix, Biochemistry & Analytical Biochemistry. 4, 2015. https://doi.org/10.4172/2161-1009.1000178.
  • J.R. Xavier, K.V. Ramana, R.K. Sharma, β-galactosidase: Biotechnological applications in food processing, Journal of Food Biochemistry. 42, e12564, 2018. https://doi.org/10.1111/jfbc.12564.
  • R.C. Rodrigues, J.J. Virgen-Ortíz, J.C.S. dos Santos, Á. Berenguer-Murcia, A.R. Alcantara, O. Barbosa, C. Ortiz, R. Fernandez-Lafuente, Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions, Biotechnology Advances. 37, 746–770, 2019. https://doi.org/10.1016/j.biotechadv.2019.04.003.
  • S. Jakovetić Tanasković, B. Jokić, S. Grbavčić, I. Drvenica, N. Prlainović, N. Luković, Z. Knežević-Jugović, Immobilization of Candida antarctica lipase B on kaolin and its application in synthesis of lipophilic antioxidants, Applied Clay Science. 135, 103–111, 2017. https://doi.org/10.1016/j.clay.2016.09.011.
  • M. Bilal, H.M.N. Iqbal, H. Hu, W. Wang, X. Zhang, Development of horseradish peroxidase-based cross-linked enzyme aggregates and their environmental exploitation for bioremediation purposes, Journal of Environmental Management. 188, 137–143, 2017. https://doi.org/10.1016/j.jenvman.2016.12.015.
  • R. Fernandez-Lafuente, Lipase from Thermomyces lanuginosus: Uses and prospects as an industrial biocatalyst, Journal of Molecular Catalysis B: Enzymatic. 62, 197–212, 2010. https://doi.org/10.1016/j.molcatb.2009.11.010.
  • A. Illanes, L. Wilson, C. Vera, Problem Solving in Enzyme Biocatalysis, John Wiley & Sons, 2013.
  • H.E. Swaisgood, The use of immobilized enzymes to improve functionality. Proteins in food processing, Proteins in Food Processing, pp. 607–630, 2004.
  • K. Khoshnevisan, F. Vakhshiteh, M. Barkhi, H. Baharifar, E. Poor-Akbar, N. Zari, H. Stamatis, A.-K. Bordbar, Immobilization of cellulase enzyme onto magnetic nanoparticles: Applications and recent advances, Molecular Catalysis. 442, 66–73, 2017. https://doi.org/10.1016/j.mcat.2017.09.006.
  • A. Homaei, H. Barkheh, R. Sariri, R. Stevanato, Immobilized papain on gold nanorods as heterogeneous biocatalysts, Amino Acids. 46, 1649–1657, 2014. https://doi.org/10.1007/s00726-014-1724-0.
  • N. Rueda, J.C.S. dos Santos, C. Ortiz, R. Torres, O. Barbosa, R.C. Rodrigues, Á. Berenguer-Murcia, R. Fernandez-Lafuente, Chemical Modification in the Design of Immobilized Enzyme Biocatalysts: Drawbacks and Opportunities, The Chemical Record. 16, 1436–1455, 2016. https://doi.org/10.1002/tcr.201600007.
  • M. Ali, Q. Husain, S. Sultana, M. Ahmad, Immobilization of peroxidase on polypyrrole-cellulose-graphene oxide nanocomposite via non-covalent interactions for the degradation of Reactive Blue 4 dye, Chemosphere. 202, 198–207, 2018. https://doi.org/10.1016/j.chemosphere.2018.03.073.
  • L. Cao, L. van Langen, R.A. Sheldon, Immobilised enzymes: Carrier-bound or carrier-free?, Current Opinion in Biotechnology. 14, 387–394, 2003. https://doi.org/10.1016/S0958-1669(03)00096-X.
  • R.A. Sheldon, Enzyme Immobilization: The Quest for Optimum Performance, Advanced Synthesis & Catalysis. 349, 1289–1307, 2007. https://doi.org/10.1002/adsc.200700082.
  • V.-D. Truong, D.A. Clare, G.L. Catignani, H.E. Swaisgood, Cross-Linking and Rheological Changes of Whey Proteins Treated with Microbial Transglutaminase, J. Agric. Food Chem. 52, 1170–1176, 2004. https://doi.org/10.1021/jf034397c.
  • P.S. Panesar, S. Kumari, R. Panesar, Potential applications of immobilized β-galactosidase in food processing industries, Enzyme Research. 2010, 2010.
  • D. Brady, J. Jordaan, Advances in enzyme immobilisation, Biotechnol Lett. 31, 1639–1650, 2009. https://doi.org/10.1007/s10529-009-0076-4.
  • D.G. Filho, A.G. Silva, C.Z. Guidini, Lipases: sources, immobilization methods, and industrial applications, Appl Microbiol Biotechnol. 103, 7399–7423, 2019. https://doi.org/10.1007/s00253-019-10027-6.
  • D.-M. Liu, J. Chen, Y.-P. Shi, Advances on methods and easy separated support materials for enzymes immobilization, TrAC Trends in Analytical Chemistry. 102, 332–342, 2018. https://doi.org/10.1016/j.trac.2018.03.011.
  • V.L. Sirisha, A. Jain, A. Jain, Chapter Nine - Enzyme Immobilization: An Overview on Methods, Support Material, and Applications of Immobilized Enzymes, in: S.-K. Kim, F. Toldrá (Eds.), Advances in Food and Nutrition Research, Academic Press, pp. 179–211, 2016. https://doi.org/10.1016/bs.afnr.2016.07.004.
  • W. Shuai, R.K. Das, M. Naghdi, S.K. Brar, M. Verma, A review on the important aspects of lipase immobilization on nanomaterials, Biotechnology and Applied Biochemistry. 64, 496–508, 2017. https://doi.org/10.1002/bab.1515.
  • S. Voběrková, V. Solčány, M. Vršanská, V. Adam, Immobilization of ligninolytic enzymes from white-rot fungi in cross-linked aggregates, Chemosphere. 202, 694–707, 2018. https://doi.org/10.1016/j.chemosphere.2018.03.088.
  • X. Ji, Z. Su, C. Liu, P. Wang, S. Zhang, Regulation of enzyme activity and stability through positional interaction with polyurethane nanofibers, Biochemical Engineering Journal. 121, 147–155, 2017. https://doi.org/10.1016/j.bej.2017.02.007.
  • K. Liang, R. Ricco, C.M. Doherty, M.J. Styles, S. Bell, N. Kirby, S. Mudie, D. Haylock, A.J. Hill, C.J. Doonan, P. Falcaro, Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules, Nat Commun. 6, 7240, 2015. https://doi.org/10.1038/ncomms8240.
  • J.W. Wilkerson, S.-O. Yang, P.J. Funk, S.K. Stanley, B.C. Bundy, Nanoreactors: Strategies to encapsulate enzyme biocatalysts in virus-like particles, New Biotechnology. 44, 59–63, 2018. https://doi.org/10.1016/j.nbt.2018.04.003.
  • S. Nordholm, G.B. Bacskay, The Basics of Covalent Bonding in Terms of Energy and Dynamics, Molecules. 25, 2667, 2020. https://doi.org/10.3390/molecules25112667.
  • G. Cirillo, F.P. Nicoletta, M. Curcio, U.G. Spizzirri, N. Picci, F. Iemma, Enzyme immobilization on smart polymers: Catalysis on demand, Reactive and Functional Polymers. 83, 62–69, 2014. https://doi.org/10.1016/j.reactfunctpolym.2014.07.010.
  • M. Sharifi, S.-M. Robatjazi, M. Sadri, J.M. Mosaabadi, Immobilization of organophosphorus hydrolase enzyme by covalent attachment on modified cellulose microfibers using different chemical activation strategies: Characterization and stability studies, Chinese Journal of Chemical Engineering. 27, 191–199, 2019. https://doi.org/10.1016/j.cjche.2018.03.023.
  • İ. Saldamlı, Gıda Kimyası, Hacettepe Üniversitesi Yayınları, Ankara, 2007.
  • C.E. La Rotta Hernandez, S. Lütz, A. Liese, E.P.S. Bon, Activity and stability of Caldariomyces fumago chloroperoxidase modified by reductive alkylation, amidation and cross-linking, Enzyme and Microbial Technology. 37, 582–588, 2005. https://doi.org/10.1016/j.enzmictec.2005.02.025.
  • N. Aissaoui, J. Landoulsi, L. Bergaoui, S. Boujday, J.-F. Lambert, Catalytic activity and thermostability of enzymes immobilized on silanized surface: Influence of the crosslinking agent, Enzyme and Microbial Technology. 52, 336–343, 2013. https://doi.org/10.1016/j.enzmictec.2013.02.018.
  • L. Cao, F.V. Rantwijk, R.A. Sheldon, Cross-linked enzyme aggregates: A simple and effective method for the immobilization of penicillin acylase, Organic Letters. 2, 1361–1364, 2000. https://doi.org/10.1021/ol005593x.
  • S. Datta, L.R. Christena, Y.R.S. Rajaram, Enzyme immobilization: an overview on techniques and support materials, 3 Biotech. 3, 1–9, 2013. https://doi.org/10.1007/s13205-012-0071-7.
  • K. Mosbach, P. Brodelius, Immobilized enzymes and cells. B. II: Immobilization technique for cells/organelles, Methods Enzymol. 135, 171–472, 1987.
  • Y. Yong, Y.X. Bai, Y.F. Li, L. Lin, Y.J. Cui, C.G. Xia, Characterization of Candida rugosa lipase immobilized onto magnetic microspheres with hydrophilicity, Process Biochemistry. 43, 1179–1185, 2008. https://doi.org/10.1016/j.procbio.2008.05.019.
  • M. Rebroš, M. Rosenberg, Z. Mlichová, L. Krištofíková, M. Paluch, A simple entrapment of glucoamylase into LentiKats® as an efficient catalyst for maltodextrin hydrolysis, Enzyme and Microbial Technology. 39, 800–804, 2006. https://doi.org/10.1016/j.enzmictec.2006.01.001.
  • G.A. Kovalenko, L.V. Perminova, T.G. Terent’eva, G.V. Plaksin, Catalytic properties of glucoamylase immobilized on synthetic carbon material Sibunit, Appl Biochem Microbiol. 43, 374–378, 2007. https://doi.org/10.1134/S0003683807040023.
  • A.S. Drozdov, O.E. Shapovalova, V. Ivanovski, D. Avnir, V.V. Vinogradov, Entrapment of Enzymes within Sol–Gel-Derived Magnetite, Chem. Mater. 28, 2248–2253, 2016. https://doi.org/10.1021/acs.chemmater.6b00193.
  • T. Nakamura, Y. Ogata, A. Shitara, A. Nakamura, K. Ohta, Continuous production of fructose syrups from inulin by immobilized inulinase from Aspergillus niger mutant 817, Journal of Fermentation and Bioengineering. 80, 164–169, 1995. https://doi.org/10.1016/0922-338X(95)93213-4.
  • Q. Shen, R. Yang, X. Hua, F. Ye, W. Zhang, W. Zhao, Gelatin-templated biomimetic calcification for β-galactosidase immobilization, Process Biochemistry. 46, 1565–1571, 2011. https://doi.org/10.1016/j.procbio.2011.04.010.
  • M. Sureshkumar, C.K. Lee, Polydopamine coated magnetic-chitin (MCT) particles as a new matrix for enzyme immobilization, Carbohydrate Polymers. 84, 775–780, 2011. https://doi.org/10.1016/j.carbpol.2010.03.036.
  • V. Zargar, M. Asghari, A. Dashti, A Review on Chitin and Chitosan Polymers: Structure, Chemistry, Solubility, Derivatives, and Applications, ChemBioEng Reviews. 2, 204–226, 2015. https://doi.org/10.1002/cben.201400025.
  • P. Tripathi, A. Kumari, P. Rath, A.M. Kayastha, Immobilization of α-amylase from mung beans (Vigna radiata) on Amberlite MB 150 and chitosan beads: A comparative study, Journal of Molecular Catalysis B: Enzymatic. 49, 69–74, 2007. https://doi.org/10.1016/j.molcatb.2007.08.011.
  • F. van de Velde, N.D. Lourenço, H.M. Pinheiro, M. Bakker, Carrageenan: A Food-Grade and Biocompatible Support for Immobilisation Techniques, Advanced Synthesis & Catalysis. 344, 815–835, 2002. https://doi.org/10.1002/1615-4169(200209)344:8<815::AID-ADSC815>3.0.CO;2-H.
  • B. Bayón, I.R. Berti, A.M. Gagneten, G.R. Castro, Biopolymers from Wastes to High-Value Products in Biomedicine, Energy, Environment, and Sustainability, Springer Nature, pp. 1–44, 2018. https://doi.org/10.1007/978-981-10-7431-8_1.
  • M.L. Cacicedo, R.M. Manzo, S. Municoy, H.L. Bonazza, G.A. Islan, M. Desimone, M. Bellino, E.J. Mammarella, G.R. Castro, Chapter 7 - Immobilized Enzymes and Their Applications, in: R.S. Singh, R.R. Singhania, A. Pandey, C. Larroche (Eds.), Advances in Enzyme Technology, Elsevier, pp. 169–200, 2019. https://doi.org/10.1016/B978-0-444-64114-4.00007-8.
  • E. Katchalski-Katzir, D.M. Kraemer, Eupergit® C, a carrier for immobilization of enzymes of industrial potential, Journal of Molecular Catalysis B: Enzymatic. 10, 157–176, 2000. https://doi.org/10.1016/S1381-1177(00)00124-7.
  • V.V. Vinogradov, D. Avnir, Exceptional thermal stability of therapeutical enzymes entrapped in alumina sol-gel matrices, Journal of Materials Chemistry B. 2, 2868–2873, 2014. https://doi.org/10.1039/C3TB21643H.
  • M.N. Gupta, M. Kaloti, M. Kapoor, K. Solanki, Nanomaterials as matrices for enzyme immobilization, Artificial Cells, Blood Substitutes, and Biotechnology. 39, 98–109, 2011. https://doi.org/10.3109/10731199.2010.516259.
  • S. Escobar, C. Bernal, M. Mesa, Relationship between sol-gel conditions and enzyme stability: A case study with β-galactosidase/silica biocatalyst for whey hydrolysis, Journal of Biomaterials Science, Polymer Edition. 26, 1126–1138, 2015. https://doi.org/10.1080/09205063.2015.1078929.
  • E.T. Hwang, M.B. Gu, Enzyme stabilization by nano/microsized hybrid materials, Engineering in Life Sciences. 13, 49–61, 2013. https://doi.org/10.1002/elsc.201100225.
  • M. Hartmann, Ordered Mesoporous Materials for Bioadsorption and Biocatalysis, Chem. Mater. 17, 4577–4593, 2005. https://doi.org/10.1021/cm0485658.
  • N. Carlsson, H. Gustafsson, C. Thörn, L. Olsson, K. Holmberg, B. Åkerman, Enzymes immobilized in mesoporous silica: A physical–chemical perspective, Advances in Colloid and Interface Science. 205, 339–360, 2014. https://doi.org/10.1016/j.cis.2013.08.010.
  • S. Tanvir, H. Adenier, S. Pulvin, Screening and prediction of reactive intermediates in a microreactor with immobilized rat hepatic microsomes using acetaminophen as a model drug, Enzyme and Microbial Technology. 45, 112–117, 2009. https://doi.org/10.1016/j.enzmictec.2009.05.006.
  • S. Hudson, J. Cooney, E. Magner, Proteins in Mesoporous Silicates, Angewandte Chemie International Edition. 47, 8582–8594, 2008. https://doi.org/10.1002/anie.200705238.
  • L. Treccani, T. Yvonne Klein, F. Meder, K. Pardun, K. Rezwan, Functionalized ceramics for biomedical, biotechnological and environmental applications, Acta Biomaterialia. 9, 7115–7150, 2013. https://doi.org/10.1016/j.actbio.2013.03.036.
  • M. Hartmann, X. Kostrov, Immobilization of enzymes on porous silicas – benefits and challenges, Chem. Soc. Rev. 42, 6277–6289, 2013. https://doi.org/10.1039/C3CS60021A.
  • K. Ashtari, K. Khajeh, J. Fasihi, P. Ashtari, A. Ramazani, H. Vali, Silica-encapsulated magnetic nanoparticles: Enzyme immobilization and cytotoxic study, International Journal of Biological Macromolecules. 50, 1063–1069, 2012. https://doi.org/10.1016/j.ijbiomac.2011.12.025.
  • G. Larsen, R. Velarde-Ortiz, K. Minchow, A. Barrero, I.G. Loscertales, A Method for Making Inorganic and Hybrid (Organic/Inorganic) Fibers and Vesicles with Diameters in the Submicrometer and Micrometer Range via Sol−Gel Chemistry and Electrically Forced Liquid Jets, J. Am. Chem. Soc. 125, 1154–1155, 2003. https://doi.org/10.1021/ja028983i.
  • S.L. Hosseinipour, M.S. Khiabani, H. Hamishehkar, R. Salehi, Enhanced stability and catalytic activity of immobilized α-amylase on modified Fe3O4 nanoparticles for potential application in food industries, J Nanopart Res. 17, 382, 2015. https://doi.org/10.1007/s11051-015-3174-3.
  • A. Illanes, C. Altamirano, Enzyme Reactors, in: A. Illanes (Ed.), Enzyme Biocatalysis: Principles and Applications, Springer Netherlands, pp. 205–251, Dordrecht, 2008. https://doi.org/10.1007/978-1-4020-8361-7_5.
  • S.K. Sharma, R.M. Leblanc, Biosensors based on β-galactosidase enzyme: Recent advances and perspectives, Analytical Biochemistry. 535, 1–11, 2017. https://doi.org/10.1016/j.ab.2017.07.019.
  • J.-W. Rhim, H.-M. Park, C.-S. Ha, Bio-nanocomposites for food packaging applications, Progress in Polymer Science. 38, 1629–1652, 2013. https://doi.org/10.1016/j.progpolymsci.2013.05.008.
  • S. Adhikari (Nee Pramanik), Chapter 41 - Application of Immobilized Enzymes in the Food Industry, in: M. Kuddus (Ed.), Enzymes in Food Biotechnology, Academic Press, pp. 711–721, 2019. https://doi.org/10.1016/B978-0-12-813280-7.00041-4.
  • H.A.R. Gomes, L.R.S. Moreira, E.X.F. Filho, Enzymes and Food Industry: A Consolidated Marriage, Advances in Biotechnology for Food Industry, Elsevier Inc., pp. 55–89, 2018. https://doi.org/10.1016/B978-0-12-811443-8.00003-7.
  • P. Brodelius, Industrial applications of immobilized biocatalysts, Advances in Biochemical Engineering. 10, 75–129, 2005. https://doi.org/10.1007/BFb0004472.
  • D. Abdel, R. Mahmoud, D.A.R. Mahmoud, W.A. Helmy, Potential Application of Immobilization Technology in Enzyme and Biomass Production, Journal of Applied Sciences Research. 5, 2466–2476, 2009.
  • Y.H. Hong, J.H. Kim, S.B. KIM, J.H. Kim, Y.M. Lee, S.W. Park, Immobilization of psicose-epimerase and a method of producing D-psicose using the same, US8735106B2, 2014.
  • P. Villeneuve, Lipases in lipophilization reactions, Biotechnology Advances. 25, 515–536, 2007. https://doi.org/10.1016/j.biotechadv.2007.06.001.
  • S.-J. Gea, H. Bai, H.-S. Yuan, L.-X. Zhang, Continuous production of high degree casein hydrolysates by immobilized proteases in column reactor, Journal of Biotechnology. 50, 161–170, 1996. https://doi.org/10.1016/0168-1656(96)01561-1.
  • F. Xu, M.-J. Oruna-Concha, J.S. Elmore, The use of asparaginase to reduce acrylamide levels in cooked food, Food Chemistry. 210, 163–171, 2016. https://doi.org/10.1016/j.foodchem.2016.04.105.
  • C.-J. Chiang, L.-T. Hsiau, W.-C. Lee, Immobilization of cell-associated enzymes by entrapment in polymethacrylamide beads, Biotechnology Techniques. 11, 121–125, 1997. https://doi.org/10.1023/B:BITE.0000034016.43050.22.
  • B. Sujoy, A. Aparna, Enzymology, immobilization and applications of urease enzyme, Int. Res. J. Biol. Sci. 2, 51–56, 2013.
  • N.C. Ricardi, E.W. de Menezes, E. Valmir Benvenutti, J. da Natividade Schöffer, C.R. Hackenhaar, P.F. Hertz, T.M.H. Costa, Highly stable novel silica/chitosan support for β-galactosidase immobilization for application in dairy technology, Food Chemistry. 246, 343–350, 2018. https://doi.org/10.1016/j.foodchem.2017.11.026.
  • H. Hirohara, H. Yamamoto, E. Kawano, S. Nabeshima, Immobilized lactase, its preparation and use, EP 0037667B1, 1981.
  • S. Chauhan, A. Vohra, A. Lakhanpal, R. Gupta, Immobilization of Commercial Pectinase (Polygalacturonase) on Celite and Its Application in Juice Clarification, Journal of Food Processing and Preservation. 39, 2135–2141, 2015. https://doi.org/10.1111/jfpp.12457.
  • M.S. Akin, M.B. Güler-Akin, H.A. Kirmaci, A.F. Atasoy, H. Türkoǧlu, The effects of lipase-encapsulating carriers on the accelerated ripening of Kashar cheese, International Journal of Dairy Technology. 65, 243–249, 2012. https://doi.org/10.1111/j.1471-0307.2012.00821.x.
  • V. Gekas, M. Lopez-Leiva, Hydrolysis of lactose: a literature review, Process Biochem. 20, 1985.
  • D.A. Kimball, S.I. Norman, Processing effects during commercial debittering of California navel orange juice, J. Agric. Food Chem. 38, 1396–1400, 1990.
  • M. Puri, S.S. Marwaha, R.M. Kothari, J.F. Kennedy, Biochemical Basis of Bitterness in Citrus Fruit Juices and Biotech Approaches for Debittering, Critical Reviews in Biotechnology. 16, 145–155, 1996. https://doi.org/10.3109/07388559609147419.
  • M. Puri, A. Kaur, R.S. Singh, J.R. Kanwar, Immobilized enzyme technology for debittering citrus fruit juices, Transworld Research Network, 2008.
  • G. Şekeroğlu, S. Fadıloğlu, F. Göğüş, Immobilization and characterization of naringinase for the hydrolysis of naringin, European Food Research and Technology. 224, 55–60, 2006. https://doi.org/10.1007/s00217-006-0288-y.
  • M. Roitner, Th. Schalkhammer, F. Pittner, Preparation of prunin with the help of immobilized naringinase pretreated with alkaline buffer, Appl Biochem Biotechnol. 9, 483–488, 1984. https://doi.org/10.1007/BF02798402.
  • H.-Y. Tsen, G.-K. Yu, Limonin and Naringin Removal from Grapefruit Juice with Naringinase Entrapped in Cellulose Triacetate Fibers, Journal of Food Science. 56, 31–34, 1991. https://doi.org/10.1111/j.1365-2621.1991.tb07968.x.
  • I.A.C. Ribeiro, M.H.L. Ribeiro, Kinetic modelling of naringin hydrolysis using a bitter sweet alfa-rhamnopyranosidase immobilized in k-carrageenan, Journal of Molecular Catalysis B: Enzymatic. 51, 10–18, 2008. https://doi.org/10.1016/j.molcatb.2007.09.023.
  • M. Ono, T. Tosa, I. Chibata, Preparation and properties of immobilized naringinase using tanninaminohexyl cellulose, Agricultural and Biological ChemistryAgric. BioI. Chem. 42, 1847–1853, 1978. https://doi.org/10.1080/00021369.1978.10863264.
  • P. Kohli, M. Kalia, R. Gupta, Pectin Methylesterases: A Review, Journal of Bioprocessing & Biotechniques. 5, 2015. https://doi.org/10.4172/2155-9821.1000227.
  • K. Hiteshi, S. Chauhan, R. Gupta, Immobilization of microbial pectinases: a review, CIBTech J Biotechnol. 2, 37–52, 2013.
  • Magindag, Amylase, polygalacturonase and naringinase co-immobilization, EP 298, 954, 1989.
  • R.D. Cosimo, J.M. Auliffe, A.J. Poulose, G. Bohlmann, Industrial use of immobilized enzymes, Chemical Society Reviews. 42, 6437–6474, 2013. https://doi.org/10.1039/C3CS35506C.
  • M.K. Walsh, 4 - Immobilized enzyme technology for food applications, in: R. Rastall (Ed.), Novel Enzyme Technology for Food Applications, Woodhead Publishing, pp. 60–84, 2007. https://doi.org/10.1533/9781845693718.1.60.
  • B. Hauer, C.K. Branneby, K. Hult, A. Magnusson, A. Hamberg, Enzymatically catalyzed method of preparing mono-acylated polyols, US8715970B2, 2014.
  • P.S.J. Cheetham, C.E. Imber, J. Isherwood, The formation of isomaltulose by immobilized Erwinia rhapontici, Nature. 299, 628–631, 1982. https://doi.org/10.1038/299628a0.
  • P. Cheetham, Applications of immobilized enzymes and cells in the food industry’, Chemical Aspects of Food Enzymes, AT Andrews, pp. 53–93, 1987.
  • W. Wenling, W. Wuguang Le Huiying, W. Shiyuan, Continuous preparation of fructose syrups from Jerusalem artichoke tuber using immobilized intracellular inulinase from Kluyveromyces sp. Y-85, Process Biochemistry. 34, 643–646, 1999. https://doi.org/10.1016/S0032-9592(98)00140-X.
  • P. Bajpai, A. Margaritis, Immobilization of Kluyveromyces marxianus cells containing inulinase activity in open pore gelatin matrix: 2. Application for high fructose syrup production, Enzyme and Microbial Technology. 7, 459–461, 1985. https://doi.org/10.1016/0141-0229(85)90048-1.
  • I. Smaali, A. Soussi, H. Bouallagui, N. Chaira, M. Hamdi, M.N. Marzouki, Production of high-fructose syrup from date by-products in a packed bed bioreactor using a novel thermostable invertase from Aspergillus awamori, Biocatalysis and Biotransformation. 29, 253–261, 2011. https://doi.org/10.3109/10242422.2011.615924.
  • N.A. Mohd Zain, S. Mohd Suardi, A. Idris, Hydrolysis of liquid pineapple waste by invertase immobilized in PVA–alginate matrix, Biochemical Engineering Journal. 50, 83–89, 2010. https://doi.org/10.1016/j.bej.2010.02.009.
  • J.R. Beadle, J.P. Saunders, T.J.W. Jr, Process for manufacturing tagatose, US5002612A, 1991.
  • S. Jung, B.P. Lamsal, V. Stepien, L.A. Johnson, P.A. Murphy, Functionality of soy protein produced by enzyme-assisted extraction, Journal of the American Oil Chemists’ Society. 83, 71–78, 2006. https://doi.org/10.1007/s11746-006-1178-y.
  • S. Sharma, S.S. Kanwar, Organic Solvent Tolerant Lipases and Applications, The Scientific World Journal. 2014, 2014. https://doi.org/10.1155/2014/625258.
  • W. Nawar, Lipids, ed. or fennema food chemistry, 3rd ed., New York, 1996.
  • S.F. Li, W.T. Wu, Lipase-immobilized electrospun PAN nanofibrous membranes for soybean oil hydrolysis, Biochemical Engineering Journal. 45, 48–53, 2009. https://doi.org/10.1016/j.bej.2009.02.004.
  • T. Guan, B. Liu, R. Wang, Y. Huang, J. Luo, Y. Li, The enhanced fatty acids flavor release for low-fat heeses by carrier immobilized lipases on O/W Pickering emulsions, Food Hydrocolloids. 116, 106651, 2021. https://doi.org/10.1016/j.foodhyd.2021.106651.
  • J.A. Nettleton, Omega-3 Fatty Acids and Health, Springer US, Boston, MA, 1995. https://doi.org/10.1007/978-1-4615-2071-9_2.
  • J. Kralovec, W. Wang, J.C. Barrow, Enzymatic modification of oil, US8420349B2, 2013.
  • G.G. Haraldsson, A. Halldorsson, O. Thorstad, Lipase-catalysed esterification of marine oil, US7491522B2, 2009.
  • P.R. Witt, R.A. Sair, T. Richardson, N.F. Olson, Chillproofing beer with insoluble papain., Brewers Digest. 45, 70, 1970.
  • E.A. Raspopova, A.A. Krasnoshtanova, Characterizing the properties and evaluating the efficiency of biocatalysts based on immobilized fungal amylase, Catalysis in Industry. 8, 75–80, 2016. https://doi.org/10.1134/S2070050416010104.
  • I. Benucci, M.C. Caso, T. Bavaro, S. Masci, M. Keršienė, M. Esti, Prolyl endopeptidase from Aspergillus niger immobilized on a food-grade carrier for the production of gluten-reduced beer, Food Control. 110, 106987, 2020. https://doi.org/10.1016/j.foodcont.2019.106987.
  • R. Willaert, H. Verachtert, K. van den Bremt, F. Delvaux, G. Derdelinckx, Bioflavouring of Foods and Beverages, Applications of Cell Immobilisation Biotechnology, Springer, Dordrecht, pp. 355–372, 2005.
  • A. Durieux, X. Nicolay, J.-P. Simon, Application of Immobilisation Technology to Cider Production: A Review, Applications of Cell Immobilisation Biotechnology, Springer, Dordrecht, pp. 275–284, 2005. https://doi.org/10.1007/1-4020-3363-X_16.
  • C. Caldini, F. Bonomi, P.G. Pifferi, G. Lanzarini, Y.M. Galante, Kinetic and immobilization studies on fungal glycosidases for aroma enhancement in wine, Enzyme and Microbial Technology. 16, 286–291, 1994. https://doi.org/10.1016/0141-0229(94)90168-6.
  • G. Spagna, R.N. Barbagallo, A. Martino, P.G. Pifferi, A simple method for purifying glycosidases: α-l-rhamnopyranosidase from Aspergillus niger to increase the aroma of Moscato wine, Enzyme and Microbial Technology. 27, 522–530, 2000. https://doi.org/10.1016/S0141-0229(00)00236-2.
  • K.P. Dhake, D.D. Thakare, B.M. Bhanage, Lipase: A potential biocatalyst for the synthesis of valuable flavour and fragrance ester compounds, Flavour and Fragrance Journal. 28, 71–83, 2013. https://doi.org/10.1002/ffj.3140.
  • C.M.F. Soares, H.F. de Castro, J.E. Itako, F.F. de Moraes, G.M. Zanin, Characterization of Sol-Gel Bioencapsulates for Ester Hydrolysis and Synthesis, in: B.H. Davison, B.R. Evans, M. Finkelstein, J.D. McMillan (Eds.), Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals, Humana Press, pp. 845–859, Totowa, NJ, 2005. https://doi.org/10.1007/978-1-59259-991-2_72.
  • A.R.M. Yahya, W.A. Anderson, M. Moo-Young, Ester synthesis in lipase-catalyzed reactions, Enzyme and Microbial Technology. 23, 438–450, 1998. https://doi.org/10.1016/S0141-0229(98)00065-9.
  • S.H. Krishna, B. Manohar, S. Divakar, N.G. Karanth, Lipase-catalyzed synthesis of isoamyl butyrate: Optimization by response surface methodology, J Amer Oil Chem Soc. 76, 1483–1488, 1999. https://doi.org/10.1007/s11746-999-0189-x.
  • A. Sadighi, S.F. Motevalizadeh, M. Hosseini, A. Ramazani, L. Gorgannezhad, H. Nadri, B. Deiham, M.R. Ganjali, A. Shafiee, M.A. Faramarzi, M. Khoobi, Metal-Chelate Immobilization of Lipase onto Polyethylenimine Coated MCM-41 for Apple Flavor Synthesis, Applied Biochemistry and Biotechnology. 182, 1371–1389, 2017. https://doi.org/10.1007/s12010-017-2404-9.
  • N.C.A. Silva, J.S. Miranda, I.C.A. Bolina, W.C. Silva, D.B. Hirata, H.F. de Castro, A.A. Mendes, Immobilization of porcine pancreatic lipase on poly-hydroxybutyrate particles for the production of ethyl esters from macaw palm oils and pineapple flavor, Biochemical Engineering Journal. 82, 139–149, 2014. https://doi.org/10.1016/j.bej.2013.11.015.
  • K. Oyama, S. Irino, N. Hagi, [46] Production of aspartame by immobilized thermoase, Methods in Enzymology, Academic Press, pp. 503–516, 1987. https://doi.org/10.1016/S0076-6879(87)36048-3.
  • R. Das, H. Mishra, A. Srivastava, A.M. Kayastha, Covalent immobilization of Β-amylase onto functionalized molybdenum sulfide nanosheets, its kinetics and stability studies: A gateway to boost enzyme application, Chemical Engineering Journal. 328, 215–227, 2017. https://doi.org/10.1016/j.cej.2017.07.019.
  • Z. Grosová, M. Rosenberg, M. Rebroš, M. Šipocz, B. Sedláčková, Entrapment of β-galactosidase in polyvinylalcohol hydrogel, Biotechnology Letters. 30, 763–767, 2008. https://doi.org/10.1007/s10529-007-9606-0.
  • X.Y. Chen, M.G. Gänzle, Lactose and lactose-derived oligosaccharides: More than prebiotics?, International Dairy Journal. 67, 61–72, 2017. https://doi.org/10.1016/j.idairyj.2016.10.001.
  • Z. Kovács, E. Benjamins, K. Grau, A.U. Rehman, M. Ebrahimi, P. Czermak, Recent developments in manufacturing oligosaccharides with prebiotic functions, Advances in Biochemical Engineering/Biotechnology. 143, 257–295, 2013. https://doi.org/10.1007/10_2013_237.
  • R. Reshmi, G. Sanjay, S. Sugunan, Immobilization of α-amylase on zirconia: A heterogeneous biocatalyst for starch hydrolysis, Catalysis Communications. 8, 393–399, 2007. https://doi.org/10.1016/j.catcom.2006.07.009.
  • T. Noda, S. Furuta, I. Suda, Sweet potato β-amylase immobilized on chitosan beads and its application in the semi-continuous production of maltose, Carbohydrate Polymers. 44, 189–195, 2001. https://doi.org/10.1016/S0144-8617(00)00226-5.
  • A.S. Rani, M.L.M. Das, S. Satyanarayana, Preparation and characterization of amyloglucosidase adsorbed on activated charcoal, Journal of Molecular Catalysis B: Enzymatic. 10, 471–476, 2000. https://doi.org/10.1016/S1381-1177(99)00116-2.
  • G.D. Kibarer, G. Akovali, Optimization studies on the features of an activated charcoal-supported urease system, Biomaterials. 17, 1473–1479, 1996. https://doi.org/10.1016/0142-9612(96)89771-7.
  • M.-K. Chang, G. Abraham, V.T. John, Production of cocoa butter-like fat from interesterification of vegetable oils, Journal of the American Oil Chemists’ Society. 67, 832–834, 1990. https://doi.org/10.1007/BF02540501.
  • R. Aravindan, P. Anbumathi, T. Viruthagiri, Lipase applications in food industry, IJBT Vol.6(2). 2007.
  • N. Sawamura, Transesterification of Fats and Oils, Annals of the New York Academy of Sciences. 542, 266–269, 1988. https://doi.org/10.1111/j.1749-6632.1988.tb25840.x.
  • J. Pedroche, M.M. Yust, H. Lqari, J. Girón-Calle, J. Vioque, M. Alaiz, F. Millán, Production and characterization of casein hydrolysates with a high amino acid Fischer’s ratio using immobilized proteases, International Dairy Journal. 14, 527–533, 2004. https://doi.org/10.1016/j.idairyj.2003.11.002.
  • X.L. Huang, G.L. Catignani, H.E. Swaisgood, Improved Emulsifying Properties of β-Barrel Domain Peptides Obtained by Membrane-Fractionation of a Limited Tryptic Hydrolysate of β-Lactoglobulin, J. Agric. Food Chem. 44, 3437–3443, 1996. https://doi.org/10.1021/jf960038o.
  • E.-L. Ticu, D. Vercaigne-Marko, R. Froidevaux, A. Huma, V. Artenie, D. Guillochon, Use of a protease-modified-alumina complex to design a continuous stirred tank reactor for producing bioactive hydrolysates, Process Biochemistry. 40, 2841–2848, 2005. https://doi.org/10.1016/j.procbio.2005.01.003.
  • P.C. Lorenzen, E. Schlimme, Characterization of trypsin immobilized on oxirane-acrylic beads for obtaining phosphopeptides from casein, Z Ernahrungswiss. 34, 118–130, 1995. https://doi.org/10.1007/bf01636945.
  • O. Park, H.E. Swaisgood, J.C. Allen, Calcium Binding of Phosphopeptides Derived from Hydrolysis of a αs-Casein or β-Casein Using Immobilized Trypsin, Journal of Dairy Science. 81, 2850–2857, 1998. https://doi.org/10.3168/jds.S0022-0302(98)75844-8.
  • K. Garg, A.C.B. Sharma, Continous Production of Citric Acid by Immobilized Whole Cells of Aspergillus Niger, J. Gen. Appl. Microbiol. 38, 605–615, 1992. https://doi.org/10.2323/jgam.38.605.
There are 144 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Review Articles
Authors

Beyza Türköz 0000-0002-4777-8843

Ayse Özçelik 0000-0003-0867-0466

Erkan Karacabey 0000-0002-0428-2039

Early Pub Date July 9, 2024
Publication Date July 15, 2024
Submission Date May 21, 2024
Acceptance Date June 26, 2024
Published in Issue Year 2024 Volume: 13 Issue: 3

Cite

APA Türköz, B., Özçelik, A., & Karacabey, E. (2024). Gıda endüstrisinde immobilize enzim uygulamaları. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(3), 1056-1073. https://doi.org/10.28948/ngumuh.1487845
AMA Türköz B, Özçelik A, Karacabey E. Gıda endüstrisinde immobilize enzim uygulamaları. NOHU J. Eng. Sci. July 2024;13(3):1056-1073. doi:10.28948/ngumuh.1487845
Chicago Türköz, Beyza, Ayse Özçelik, and Erkan Karacabey. “Gıda endüstrisinde Immobilize Enzim Uygulamaları”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, no. 3 (July 2024): 1056-73. https://doi.org/10.28948/ngumuh.1487845.
EndNote Türköz B, Özçelik A, Karacabey E (July 1, 2024) Gıda endüstrisinde immobilize enzim uygulamaları. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 3 1056–1073.
IEEE B. Türköz, A. Özçelik, and E. Karacabey, “Gıda endüstrisinde immobilize enzim uygulamaları”, NOHU J. Eng. Sci., vol. 13, no. 3, pp. 1056–1073, 2024, doi: 10.28948/ngumuh.1487845.
ISNAD Türköz, Beyza et al. “Gıda endüstrisinde Immobilize Enzim Uygulamaları”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/3 (July 2024), 1056-1073. https://doi.org/10.28948/ngumuh.1487845.
JAMA Türköz B, Özçelik A, Karacabey E. Gıda endüstrisinde immobilize enzim uygulamaları. NOHU J. Eng. Sci. 2024;13:1056–1073.
MLA Türköz, Beyza et al. “Gıda endüstrisinde Immobilize Enzim Uygulamaları”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 13, no. 3, 2024, pp. 1056-73, doi:10.28948/ngumuh.1487845.
Vancouver Türköz B, Özçelik A, Karacabey E. Gıda endüstrisinde immobilize enzim uygulamaları. NOHU J. Eng. Sci. 2024;13(3):1056-73.

download