Research Article
BibTex RIS Cite

An approach for practical realization of fractional-order oscillators

Year 2024, Volume: 13 Issue: 4, 1342 - 1346, 15.10.2024
https://doi.org/10.28948/ngumuh.1336490

Abstract

In this study, an approach for the practical implementation of fractional-order oscillators has been proposed. In this approach, a first-order approximation function is derived in the s-domain to satisfy the fractional integral operator, then this function is discretized and transferred to the z-domain. This allows the continuous-time dynamic equations of the oscillator to be transformed into discrete-time difference equations, making it feasible for realization on digital platforms. The advantage of difference equations lies in the ease with which their coefficients can be updated based on changes in the fractional order. The feasibility of the proposed approach is tested on the Van der Pol (VdP) oscillator. The difference equations of the fractional-order VdP oscillator have been obtained by using the proposed method. These difference equations are used in numerical simulations. Furthermore, the equations are tested on a microcontroller application board, and the proposed method is experimentally validated also.

References

  • D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods. World Scientific, 2012. https://doi.org/10.1142/10044
  • M. Dalir, and M. Bashour, Applications of fractional calculus. Applied Mathematical Sciences, 4(21), 1021–1032, 2010.
  • H. Sun, Y. Zhang, D. Baleanu, W. Chen, and Y. Chen, A new collection of real world applications of fractional calculus in science and engineering. Communications in Nonlinear Science and Numerical Simulation, 64, 213–231, 2018. https://doi.org/10. 1016/j.cnsns.2018.04.019
  • C. Li, and F. Zeng, Numerical Methods for Fractional calculus. CRC Press, 2015.
  • G. Carlson, and C. Halijak, Approximation of fractional capacitors (1/s)^(1/n) by a regular Newton process. IEEE Transactions on Circuit Theory, 11(2), 210–213, 1964. https://doi.org/10.1109/TCT.1964. 1082270
  • M. S. Semary, M. E. Fouda, H. N. Hassan, and A. G. Radwan, Realization of fractional-order capacitor based on passive symmetric network. Journal of Advanced Research, 18, 147–159, 2019. https://doi. org/10.1016/j.jare.2019.02.004
  • B. van der Pol, The nonlinear theory of electric oscillations. Proc. IRE 22, 1051–1086, 1934.
  • J. H. He, The simpler, the better: Analytical methods for nonlinear oscillators and fractional oscillators. Journal of Low Frequency Noise, Vibration and Active Control, 38(3–4), 1252–1260, 2019. https://doi.org/10. 1177/1461348419844
  • M. Li, Three classes of fractional oscillators. Symmetry, 10(2), 40, 2018. https://doi.org/10.3390/ sym10020040
  • İ. E. Saçu, and M. Alçı, An electronically controllable fractional multivibrator. IETE Journal of Research, 67(3), 313–321, 2021. https://doi.org/10.1080/ 03772063.2018.1548909
  • B. van der Pol, A theory of the amplitude of free and forced triode vibrations. Radio Review, 1, 701–710, 754–762, 1920.
  • R. S. Barbosa, J. A. T. Machado, B. M. Vinagre, and A. J. Calderón, Analysis of the Van der Pol oscillator containing derivatives of fractional order. Journal of Vibration and Control, 13(9–10), 1291–1301, 2007. https://doi.org/10.1177/1077546307077463
  • M.S. Tavazoei and M. Haeri, A note on the stability of fractional order systems. Math. Comput. Simul., 79(5), 1566–1576, 2009. https://doi.org/10.1016/j.matcom. 2008.07.003
  • B. T. Krishna, Studies on fractional order differentiators and integrators: a survey. Signal Processing, 91, 386–426, 2011. https://doi.org/10.1016 /j.sigpro.2010.06.022
  • M. A. Al-Alaoui, Al-Alaoui operator and the new transformation polynomials for discretization of analogue systems. Electr Eng, 90, 455–467, 2008. 10.1007/s00202-007-0092-0

Fraksiyonel dereceli osilatörlerin pratik gerçekleştirimi için bir yaklaşım

Year 2024, Volume: 13 Issue: 4, 1342 - 1346, 15.10.2024
https://doi.org/10.28948/ngumuh.1336490

Abstract

Bu çalışmada, fraksiyonel dereceli osilatörlerin pratik gerçekleştirimi için bir yaklaşım önerilmektedir. Bu yaklaşımda, fraksiyonel integral operatörünü sağlamak için s-domeninde birinci dereceden bir yaklaşıklık fonksiyonu türetilmekte daha sonra bu fonksiyon ayrıklaştırma işlemine tabi tutularak z-domenine aktarılmaktadır. Böylece ilgili osilatörün sürekli zamanlı dinamik denklemleri fark denklemlerine dönüştürülerek dijital platformlarda gerçekleştirilebilme imkanı elde edilmektedir. Fark denklemlerinin avantajı, katsayılarının fraksiyonel derecenin değişimine bağlı olarak hızlıca güncellenebilmesidir. Önerilen yaklaşımın uygulanabilirliği Van der Pol (VdP) osilatüründe test edilmiştir. Önerilen yöntem kullanılarak fraksiyonel VdP osilatörünün fark eşitlikleri elde edilmiştir. Nümerik benzetimlerde bu fark denklemlerinden faydalanılmıştır. Ayrıca denklemler bir mikroişlemci uygulama kartında test edilerek önerilen yöntem deneysel olarak da doğrulanmıştır.

References

  • D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods. World Scientific, 2012. https://doi.org/10.1142/10044
  • M. Dalir, and M. Bashour, Applications of fractional calculus. Applied Mathematical Sciences, 4(21), 1021–1032, 2010.
  • H. Sun, Y. Zhang, D. Baleanu, W. Chen, and Y. Chen, A new collection of real world applications of fractional calculus in science and engineering. Communications in Nonlinear Science and Numerical Simulation, 64, 213–231, 2018. https://doi.org/10. 1016/j.cnsns.2018.04.019
  • C. Li, and F. Zeng, Numerical Methods for Fractional calculus. CRC Press, 2015.
  • G. Carlson, and C. Halijak, Approximation of fractional capacitors (1/s)^(1/n) by a regular Newton process. IEEE Transactions on Circuit Theory, 11(2), 210–213, 1964. https://doi.org/10.1109/TCT.1964. 1082270
  • M. S. Semary, M. E. Fouda, H. N. Hassan, and A. G. Radwan, Realization of fractional-order capacitor based on passive symmetric network. Journal of Advanced Research, 18, 147–159, 2019. https://doi. org/10.1016/j.jare.2019.02.004
  • B. van der Pol, The nonlinear theory of electric oscillations. Proc. IRE 22, 1051–1086, 1934.
  • J. H. He, The simpler, the better: Analytical methods for nonlinear oscillators and fractional oscillators. Journal of Low Frequency Noise, Vibration and Active Control, 38(3–4), 1252–1260, 2019. https://doi.org/10. 1177/1461348419844
  • M. Li, Three classes of fractional oscillators. Symmetry, 10(2), 40, 2018. https://doi.org/10.3390/ sym10020040
  • İ. E. Saçu, and M. Alçı, An electronically controllable fractional multivibrator. IETE Journal of Research, 67(3), 313–321, 2021. https://doi.org/10.1080/ 03772063.2018.1548909
  • B. van der Pol, A theory of the amplitude of free and forced triode vibrations. Radio Review, 1, 701–710, 754–762, 1920.
  • R. S. Barbosa, J. A. T. Machado, B. M. Vinagre, and A. J. Calderón, Analysis of the Van der Pol oscillator containing derivatives of fractional order. Journal of Vibration and Control, 13(9–10), 1291–1301, 2007. https://doi.org/10.1177/1077546307077463
  • M.S. Tavazoei and M. Haeri, A note on the stability of fractional order systems. Math. Comput. Simul., 79(5), 1566–1576, 2009. https://doi.org/10.1016/j.matcom. 2008.07.003
  • B. T. Krishna, Studies on fractional order differentiators and integrators: a survey. Signal Processing, 91, 386–426, 2011. https://doi.org/10.1016 /j.sigpro.2010.06.022
  • M. A. Al-Alaoui, Al-Alaoui operator and the new transformation polynomials for discretization of analogue systems. Electr Eng, 90, 455–467, 2008. 10.1007/s00202-007-0092-0
There are 15 citations in total.

Details

Primary Language Turkish
Subjects Electronics
Journal Section Research Articles
Authors

İbrahim Ethem Saçu 0000-0002-8627-8278

Early Pub Date September 9, 2024
Publication Date October 15, 2024
Submission Date August 2, 2023
Acceptance Date August 21, 2024
Published in Issue Year 2024 Volume: 13 Issue: 4

Cite

APA Saçu, İ. E. (2024). Fraksiyonel dereceli osilatörlerin pratik gerçekleştirimi için bir yaklaşım. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(4), 1342-1346. https://doi.org/10.28948/ngumuh.1336490
AMA Saçu İE. Fraksiyonel dereceli osilatörlerin pratik gerçekleştirimi için bir yaklaşım. NOHU J. Eng. Sci. October 2024;13(4):1342-1346. doi:10.28948/ngumuh.1336490
Chicago Saçu, İbrahim Ethem. “Fraksiyonel Dereceli osilatörlerin Pratik gerçekleştirimi için Bir yaklaşım”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, no. 4 (October 2024): 1342-46. https://doi.org/10.28948/ngumuh.1336490.
EndNote Saçu İE (October 1, 2024) Fraksiyonel dereceli osilatörlerin pratik gerçekleştirimi için bir yaklaşım. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 4 1342–1346.
IEEE İ. E. Saçu, “Fraksiyonel dereceli osilatörlerin pratik gerçekleştirimi için bir yaklaşım”, NOHU J. Eng. Sci., vol. 13, no. 4, pp. 1342–1346, 2024, doi: 10.28948/ngumuh.1336490.
ISNAD Saçu, İbrahim Ethem. “Fraksiyonel Dereceli osilatörlerin Pratik gerçekleştirimi için Bir yaklaşım”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/4 (October 2024), 1342-1346. https://doi.org/10.28948/ngumuh.1336490.
JAMA Saçu İE. Fraksiyonel dereceli osilatörlerin pratik gerçekleştirimi için bir yaklaşım. NOHU J. Eng. Sci. 2024;13:1342–1346.
MLA Saçu, İbrahim Ethem. “Fraksiyonel Dereceli osilatörlerin Pratik gerçekleştirimi için Bir yaklaşım”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 13, no. 4, 2024, pp. 1342-6, doi:10.28948/ngumuh.1336490.
Vancouver Saçu İE. Fraksiyonel dereceli osilatörlerin pratik gerçekleştirimi için bir yaklaşım. NOHU J. Eng. Sci. 2024;13(4):1342-6.

download