Research Article
BibTex RIS Cite

Kurutulmuş üzüm posasında fenoliklerin ve antioksidan özelliklerin yakın kızılötesi spektroskopisi ile belirlenmesi

Year 2025, Volume: 14 Issue: 4, 1530 - 1541, 15.10.2025

Abstract

Bu çalışmada, kurutulmuş üzüm posası tozlarında biyoaktif özelliklerin belirlenmesinde, yakın kızılötesi (NIR) spektroskopisi ile kısmi en küçük kareler regresyonunun (PLSR) potansiyeli değerlendirilmiştir. Kırmızı–pembe ve mor–siyah üzümlerden elde edilen 24 örnek, toplam monomerik antosiyaninler, fenolikler, flavonoidler, proantosiyanidinler ve antioksidan kapasite açısından CUPRAC (cupric reducing antioxidant capacity) ve DPPH (2,2-difenil-1-pikrilhidrazil) yöntemleriyle analiz edilmiştir. Kimyasal analizler, mor–siyah üzüm posasında fenolik ve antioksidan düzeylerinin daha yüksek olduğunu göstermiştir. NIR spektrumlarından elde edilen PLSR modelleri, tüm parametreler için güçlü kalibrasyon ve çapraz doğrulama ile umut verici sonuçlar ortaya koymuştur. Bulgular, NIR spektroskopisinin geleneksel ıslak kimya yöntemlerine basit, tahribatsız ve çevre dostu bir alternatif sunduğunu göstermektedir. Ayrıca bu yaklaşım, üzüm posasında biyoaktif bileşiklerin izlenmesini sağlayarak tarımsal-endüstriyel yan ürünlerin sürdürülebilir biçimde değerlendirilmesine katkı sunabilir.

References

  • J. Wen, Vitaceae. In: K. Kubitzki (Ed.). The Families and Genera of Vascular Plants. Volume IX: Flowering Plants-Eudicots, 467-479. Springer-Verlag, Berlin, 2007.
  • M. J. Abarghuei, Y. Rouzbehan and D. Alipour, The influence of the grape pomace on the ruminal parameters of sheep. Livestock Science, 132, (1-3), 73-79, 2010. https://doi.org/10.1016/j.livsci.2010.05.002.
  • K. L. Christ and R. L. Burritt, Critical environmental concerns in wine production: an integrative review. Journal of Cleaner Production, 53, 232-242, 2013. https://doi.org/10.1016/j.jclepro.2013.04.007.
  • P. Cuccia, Ethics+ economy+ environment= sustainability: Gambero Rosso on the front lines with a new concept of sustainability. Wine Economics and Policy, 4 (1), 69-70, 2015. https://doi.org/10.1016/j.wep.2015.05.003.
  • TÜİK, Meyveler, içecek ve baharat bitkileri üretim miktarları. https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2022- 45504, (Erişim Tarihi: Temmuz, 2023).
  • A. Cerda-Carrasco, R. Lopez-Solis, H. Nunez-Kalasic, A. Pena-Neira and E. Obreque-Slier, Phenolic composition and antioxidant capacity of pomaces from four grape varieties (Vitis vinifera L.). Journal of the Science of Food and Agriculture, 95 (7), 1521-1527, 2015. https://doi.org/10.1002/jsfa.6856.
  • A. Hubner, F. Sobreira, A. Vetore Neto, C. Pinto, M. F. Dario, I. Díaz, F. R. Lourenço, C. Rosado, A. R. Baby and E. M. Bacchi, The synergistic behavior of antioxidant phenolic compounds obtained from winemaking waste’s valorization, increased the efficacy of a sunscreen system. Antioxidants, 8, (11), 530, 2019. https://doi.org/ 10.3390/antiox8110530.
  • A. R. Fontana, A. Antoniolli and R. Bottini, Grape pomace as a sustainable source of bioactive compounds: extraction, characterization, and biotechnological applications of phenolics. Journal of Agricultural and Food Chemistry, 61 (38), 8987-9003, 2013. https://doi.org/ 10.1021/jf402586f.
  • M. Bordiga, F. Travaglia and M. Locatelli, Valorisation of grape pomace: an approach that is increasingly reaching its maturity. International Journal of Food Science and Technology, 54 (4), 933-942, 2019. https://doi.org/ 10.1111/ijfs.14118.
  • R. Marchiani, M. Bertolino, S. Belviso, M. Giordano, D. Ghirardello, L. Torri, M. Piochi and G. Zeppa, Yogurt enrichment with grape pomace: Effect of grape cultivar on physicochemical, microbiological and sensory properties, Journal of Food Quality, 39 (2), 77-89, 2015. https://doi.org/10.1111/jfq.12181.
  • S. Kallithraka, J. Bakker and M. N. Clifford, Evidence that salivary proteins are involved in astringency. Journal of Sensory Studies, 13, 29-43, 2007. https://doi.org/10.1111/j.1745-459X.1998.tb00073.x.
  • R. Boulton, The copigmentation of anthocyanins and its role in the color of red wine: a critical review. American Journal of Enology and Viticulture, 522 (2), 67-87, 2001. https://doi.org/10.5344/ajev.2001.52.2.67.
  • M. Gómez-Míguez, S. González-Manzano, M. T. Escribano-Bailón, F. J. Heredia and C. Santos-Buelga, Influence of different phenolic copigments on the color of malvidin 3-Glucoside. Journal of Agricultural and Food Chemistry, 54 (15), 5422-5429, 2006. https://doi.org/ 10.1021/jf0604586.
  • S. Preys, G. Mazerolles, P. Courcoux, A. Samson, U. Fischer and M. Hanafi, Relationship between polyphenolic composition and some sensory properties in red wines using multiway analyses. Analytica Chimica Acta, 563 (1), 126-136, 2006. https://doi.org/10.1016/j.aca.2005.10.082.
  • S. Kataria and F. I. Shaikh, Design of drying chamber for grape drying and drying process. Bav Food World, 34, 56–60, 2007.
  • K. Dwyer, F. Hosseinian and M. R. Rod, The market potential of grape waste alternatives. Journal of Food Research, 3 (2), 91-91, 2014. https://doi.org/10.5539/jfr.v3n2p91.
  • A. Rózek, I. Achaerandio, C. Güell, F. López and M. Ferrando, Use of commercial grape phenolic extracts to supplement solid foodstuff. LWT-Food Science and Technology, 43 (4), 623-631, 2010. https://doi.org/ 10.1016/j.lwt.2009.11.002.
  • F. B. Shinagawa, F. C. D. Santana, L. R. O. Torres and J. Mancini-Filho, Grape seed oil: a potential functional food. Food Science and Technology, 35 (3), 399-406, 2015. https://doi.org/10.1590/1678-457X.6826.
  • J. Shi, J. Yu, J. Pohorly, J. C. Young, M. Bryan and Y. Wu, Optimization of the extraction of polyphenols from grape seed meal by aqueous ethanol solution. Food, Agriculture & Environment, 1 (2), 42-47, 2003.
  • M. M. Selani, C. J. Contreras-Castillo, L. D. Shirahigue, C. R. Gallo, M. Plata-Oviedo and N. D. Montes-Villanueva, Wine industry residues extracts as natural antioxidants in raw and cooked chicken meat during frozen storage. Meat Science, 88, 397–403, 2011. https://doi.org/10.1016/j.meatsci.2011.01.017.
  • M. Hayta, G. Özuğur, H. Etgü and I. T. Şeker, Effect of grape (Vitis vinifera L.) pomace on the quality, total phenolic content and anti-radical activity of bread. Journal of Food Processing and Preservation, 38 (3), 980-985, 2014. https://doi.org/ 10.1111/jfpp.12054.
  • V. Sant'Anna, F.D.P. Christiano, and L.D.F. Marczak, The effect of the incorporation of grape marc powder in fettuccini pasta properties, LWT-Food Science Technology 58 (2), 497–501, 2014. https://doi.org/10.1016/j.lwt.2014.04.008.
  • C. Beres, G. N. S. Costa, I. Cabezudo, N. K. da Silva-James, A. S. C. Teles, A. P. G. Cruz, C. Mellinger-Silva, R. V. Tonon, L. M. C. Cabral and S. P. Freitas, Towards integral utilization of grape pomace from winemaking process: A review. Waste Management, 68, 581–594, 2017. https://doi.org/10.1016/j. wasman.2017.07.017.
  • J. Herrera, A. Guesalaga and E. Agosin, Shortwave near infrared spectroscopy for non-destructive determination of maturity of wine grapes. Measurement Science and Technology, 14 (5), 689-697, 2003. https://doi.org/10.1088/0957-0233/14/5/320.
  • V. González-Caballero, M-T. Sánchez, M-I. López and D. Pérez-Marín, First steps towards the development of a non-destructive technique for the quality control of wine grapes during on-vine ripening and on arrival at the winery. Journal of Food Engineering, 101 (29, 158-165, 2010. https://doi.org/ 10.1016/j.jfoodeng.2010.06.016.
  • B. M. Nicolaï, K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K. I. Theron and J. Lammertyn, Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biology and Technology, 46 (2), 99-118, 2007. https://doi.org/10.1016/j.postharvbio.2007.06.024.
  • K. Ali, F. Maltese, A. M. Fortes, M. S. Pais, Y. H. Choi and R. Verpoorte, Monitoring biochemical changes during grape berry development in Portuguese cultivars by NMR spectroscopy. Food Chemistry, 124 (4), 1760-1769, 2011. https://doi.org/10.1016/j.foodchem.2010.08.015.
  • M. Blanco, and I. Villarroya, NIR spectroscopy: A rapid-response analytical tool. Trends in Analytical Chemistry, 21 (4), 240–250, 2002. https://doi.org/10.1016/S0165-9936(02)00404-1.
  • C. M. McGoverin, J. Weeranantanaphan, G. Downey and M. Manley, Review: the application of near infrared spectroscopy to the measurement of bioactive compounds in food commodities. Journal of Near Infrared Spectroscopy, 18 (2), 87-111, 2010. https://doi.org/10.1255/jnirs.874.
  • R. Gallego-Ferrer J. M. Hernandez-Hierro, J. C. Rivas-Gonzalo and M. T. Bailon-Escribano, Feasibility study on the use of near infrared spectroscopy to determine flavanols in grape seeds. Talanta 82 (5), 1778–1783, 2010. https://doi.org/10.1016/j.talanta.2010.07.063.
  • M. I. Rouxinol, M. R. Martins, G. C. Murta, J. M. Barroso and A. E. Rato, Quality Assessment of RedWine Grapes through NIR Spectroscopy. Agronomy, 12 (3), 637, 2022. https://doi.org/10.3390/agronomy12030637.
  • R. N. M. J. Pascoa, S. Machado, Magalhaes, L. M. Magalhaes and J. A. Lopes, Value Adding to Red Grape Pomace Exploiting Eco-friendly FT-NIR Spectroscopy Technique, Food Bioprocess Technology, 8, 865–874, 2014. https://doi.org/10.1007/s11947-014-1454-z.
  • E. Whitacre, J. Oliver, R. van den Broek, P. van Engelen, B. Kremers and B. van der Horst, Predictive analysis of cocoa procyanidins using nearinfrared spectroscopy techniques. Journal of Food Science, 68, 2618-2622, 2006. https://doi.org/10.1111/j.1365-2621.2003.tb05779.x.
  • Q. Chen, J. Zhao, M. Liu, J. Cai and J. Liu, Determination of total polyphenols content in green tea using FT-NIR spectroscopy and different PLS algorithms. Journal of Pharmaceutical and Biomedical Analysis, 46, 568-573, 2007. https://doi.org/10.1016/j.jpba.2007.10.031.
  • M. M. Giusti and R. E. Wrolstad, ‘’Unit F1.2. Anthocyanins Characterizition and Measurement with UV-Visible Spectroscopy’’. R.E. Wrolstad and S.J. Schwartz (Eds) In: Current Protocols in Food Analytical Chemistry. (pp 1-13), John Wiley & Sons: New York, 2001.
  • V. L. Singleton and J. A. Rossi, Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158, 1965. https://doi.org/10.5344/ajev.1965.16.3.144.
  • C. C. Chang, M. H. Yang, H. M. Wen and J. C. Chern, Estimation of total flavonoid content in propolis by two complementary colorimetric methods, Journal of Food and Drug Analysis. 10 (3), 178-182, 2002. https://doi.org/10.38212/2224-6614.2748.
  • T. Froehlicher, T. Hennebelle, F. Martin-Nizard, P. Cleenewerck, J-L. Hilbert, F. Trotin and S. Grec, Phenolic profiles and antioxidative effects of hawthorn cell suspensions, fresh fruits, and medicinal dried parts. Food Chemistry, 115 (3), 897– 903, 2009. https://doi.org/ 10.1016/j.foodchem.2009.01.004.
  • R. Apak, K. Güçlü, B. Demirata, M. Özyürek, S. E. Çelik, B. Bektaşoğlu, K. I. Berker and D. Özyurt, Comparative evaluation of various total antioxidant capacity assays applied to phenolic compunds with the CUPRAC assay. Molecules, 12 (7), 1496-1547, 2007. https://doi.org/ 10.3390/12071496.
  • S. Benvenuti, F. Pellati, M. Melegari and D. Bertelli, Polyphenols, anthocyanins, ascorbic acid and radical scavenging activity of rubus, ribes and aronia. Journal of Food Science, 69 (3), 164–169, 2006. https://doi.org/10.1111/j.1365-2621.2004.tb13352.x.
  • I. T. Jolliffe and J. Cadima, Principal component analysis: a review and recent developments. Philosophical transactions of the royal society A: Mathematical, Physical and Engineering Sciences, 374 (2065), 20150202, 2016. https://doi.org/10.1098/rsta.2015.0202.
  • S. Dejong, PLS fits Closer Than PCR. Journal Of Chemometrics, 7, 551–557, 1993. https://doi.org/10.1002/cem.1180070608.
  • L. Moseholm, Analysis of air-pollution plant-exposure data-the softindependent modeling of class analogy (SIMCA) and partial least-squares modeling with latent variable (PLS) approaches. Environmental Pollution, 53 (1-4), 313–331, 1988. https://doi.org/10.1016/0269-7491(88)90043-7.
  • P. C. Williams, Near-Infrared technology getting the best out of light. a short course in the practical İmplementation of Near Infrared Spectroscopy for the user. Canada, Nanaimo, 109, 2003.
  • P. Denev, M. Ciz, G. Ambrozova, A. Lojek, I. Yanakieva and M. Kratchanova, Solid-phase extraction of berries’ anthocyanins and evaluation of their antioxidative properties, Food Chemistry, 123 (4), 1055-1061, 2010. https://doi.org/ 10.1016/j.foodchem.2010.05.061.
  • C. Xu, Y. Zhang, L. Cao and J. Lu, Phenolic compounds and antioxidant properties of different grape cultivars grown in China, Food Chemistry, 119 (4), 1557-1565, 2010. https://doi.org/ 10.1016/j.foodchem.2009.09.042.
  • M. Özden and H. Vardin, Şanlıurfa koşullarında yetiştirilen bazı şaraplık üzüm çeşitlerinin kalite ve fitokimyasal özellikleri. Harran Üniversitesi Ziraat Fakültesi Dergisi, 13 (2), 1-27, 2009.
  • X. Zhao, H. Zhu, G. Zhang and W. Tang, Effect of superfine grinding on the physicochemical properties and antioxidant activity of red grape pomace powders, Powder Technology 286, 838–844, 2015. https://doi.org/10.1016/j.powtec.2015.09.025.
  • V. Georgiev, A. Ananga and Tsolova, Recent advances and uses of grape flavonoids as nutraceuticals. Nutrients, 6 (1), 391-415, 2014. https://doi.org/10.3390/nu6010391.
  • M. J. Cho, L. R. Howard, R. L. Prior and J. R. Clark, Flavonoid glycosides and antioxidant capacity of various blackberry, blueberry and red grape genotypes determined by high-performance liquid chromatography/mass spectrometry. Journal of the Science of Food and Agriculture, 84 (13), 1771-1782, 2004. https://doi.org/10.1002/jsfa.1885.
  • C. Conde, P. Silva, N. Fontes, A. C. P. Dias, R. M. Tavares, M. J. Sousa, A. Agasse, S. Delrot and H. Gerós, Biochemical changes throughout grape berry development and fruit and wine quality. Food, 1 (1), 1-22, 2007.
  • S. R. F. Iora, G. M. Maciel, A. A. F. Zielinski, M. V. Silva, P. V. Pontes, C. W. I. Haminiuk and D. Granato, Evaluation of the bioactive compounds and the antioxidant capacity of grape pomace. International Journal of Food Science & Technology, 50, 62-69, 2014. https://doi.org/ 10.1111/ijfs.12583.
  • D. P. Makris, G. Boskou and N. K. Andrikopoulos, Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. Journal of Food Composition and Analysis, 20 (2), 125-132, 2007. https://doi.org/10.1016/j.jfca.2006.04.010.
  • B. Yılmaz, Üzüm posası ekstraktının nanofiber film üretiminde kullanım olanaklarının araştırılması. Yüksek Lisans Tezi, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı, Kayseri, Türkiye, 2024.
  • B. Darıcı, Şarap üretiminde kükürtdioksite alternatif olabilecek farklı bitkisel ekstraktların şarap kalitesine etkileri. Yüksek Lisans Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı, İzmir, Türkiye, 2019.
  • K. Kasırga, Karadut ve siyah üzüm posası katkılı sığır burgerlerin raf ömrü süresince kalite parametrelerindeki değişimin belirlenmesi. Yüksek Lisans Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı, Konya, Türkiye, 2024.
  • A. Zeb, Concept, mechanism, and applications of phenolic antioxidants in foods. Journal of Food Biochemistry, 44 (1) 13394, 2020. https://doi.org/10.1111/jfbc.13394.
  • G. Soudad, M. A. E. Faten, M. H. Emad and H. Doha, Antioxidant activity of phenolic compounds from different grape wastes. Food Processing and Technology, 5 (52), 100296, 2014. https://doi.org/10.4172/2157-7110.1000296.
  • K. J. Olejar, A. Ricci, S. Swift, Z. Zujovic, K. C. Gordon, B. Fedrizzi, A. Versari and P. A. Kilmartin, Characterization of an antioxidant and antimicrobial extract from cool climate, white grape marc. Antioxidants, 8 (7), 232, 2019. https://doi.org/10.3390/antiox8070232.
  • I. I Rockenbach, E. Rodrigues, L. V. Gonzaga, V. Caliari, M. I. Genovese, A. E. S. S. Gonçalves and R. Fett, Phenolic compounds content and antioxidant activity in pomace from selected red grapes (Vitis vinifera L. and Vitis labrusca L.) widely produced in Brazil. Food Chemistry, 127 (1), 174-179, 2011. https://doi.org/10.1016/j.foodchem.2010.12.137.
  • C. E. Luchian, V. V. Cotea, L. Vlase, A. M. Toiu, L. C. Colibaba, I. E. Raschip, G. Nadaş, A. M. Gheldiu, C. Tuchiluş and L. Rotaru, Antioxidant and antimicrobial effects of grape pomace extracts. BIO Web of Conferences, 15, 04006, 2019. https://doi.org/10.1051/bioconf/20191504006.
  • B. Bozan, G. Tosun and D. Özcan, Study of polyphenol content in the seeds of red grape (Vitis vinifera L.) varieties cultivated in Turkey and their antiradical activity, Food chemistry, 109 (2), 426-430, 2008. https://doi.org/ 10.1016/j.foodchem.2007.12.056.
  • B. Muik, B. Lendl, A. Molina-Díaz, L. Pérez-Villarejo and M. J. Ayora-Cañada, Determination of oil and water content in olive pomace using near infrared and Raman spectrometry. A comparative study. Analytical and Bioanalytical Chemistry, 379 (1), 35-41, 2004. https://doi.org/10.1007/s00216-004-2493-5.
  • A. S. Barros, A. Nunes, J. Martins and I. Delgadillo, Determination of oil and water in olive and olive pomace by NIR and multivariate analysis. Sensing and Instrumentation for Food Quality and Safety, 3 (3), 180-186, 2009. https://doi.org/10.1007/s11694-009-9083-3.
  • R. N. Páscoa, M. A. Nunes, F. Reszczyński, A. S. Costa, M. B. P. Oliveira and R. C. Alves, Near infrared (NIR) spectroscopy as a tool to assess blends composition and discriminate antioxidant activity of olive pomace cultivars. Waste and Biomass Valorization, 12 (9), 4901-4913, 2021. https://doi.org/10.1007/s12649-021-01386-1.
  • R. Ferrer-Gallego, J. M. Hernández-Hierro, J. C. Rivas-Gonzalo and M. T. Escribano-Bailón, Determination of Phenolic Compounds of Grape Skins during Ripening by NIRSpectroscopy. LWT- Food Science and Technology, 44 (4), 847-857, 2011. https://doi.org/10.1016/j.lwt.2010.12.001.
  • D. Cozzolino, R. G. Dambergs, L. Janik, W. U. Cynkar and M. Gishen, Analysis of grapes and wine by near infrared spectroscopy. Journal of Near Infrared Spectroscopy, 14 (1), 279-289, 2006. https://doi.org/10.1255/jnirs.679.

Quantification of phenolics and antioxidant properties in dried grape pomace by near infrared spectroscopy

Year 2025, Volume: 14 Issue: 4, 1530 - 1541, 15.10.2025

Abstract

This study evaluated the potential of near-infrared (NIR) spectroscopy, combined with partial least squares regression (PLSR) to quantify bioactive properties in dried grape pomace powders. Twenty-four samples of red-pink and purple-black grapes were examined for total monomeric anthocyanins, phenolics, flavonoids, proanthocyanidins, and antioxidant capacity utilizing CUPRAC (cupric reducing antioxidant capacity) and DPPH (2,2-diphenyl-1-picrylhydrazyl) assays. Chemical analyses verified higher phenolic and antioxidant contents in purple-black pomace than red-pink. PLSR models from NIR spectra produced promising results, showing strong calibration and cross-validation for all analytes. These outcomes indicate that NIR spectroscopy provides a simple, nondestructive, and eco-friendly alternative to conventional wet chemistry methods. Moreover, the approach offers potential for monitoring bioactive compounds in grape pomace, thereby supporting the valorization of agro-industrial residues as sustainable sources of phenolics and antioxidants for food, nutraceutical, and cosmetic applications.

References

  • J. Wen, Vitaceae. In: K. Kubitzki (Ed.). The Families and Genera of Vascular Plants. Volume IX: Flowering Plants-Eudicots, 467-479. Springer-Verlag, Berlin, 2007.
  • M. J. Abarghuei, Y. Rouzbehan and D. Alipour, The influence of the grape pomace on the ruminal parameters of sheep. Livestock Science, 132, (1-3), 73-79, 2010. https://doi.org/10.1016/j.livsci.2010.05.002.
  • K. L. Christ and R. L. Burritt, Critical environmental concerns in wine production: an integrative review. Journal of Cleaner Production, 53, 232-242, 2013. https://doi.org/10.1016/j.jclepro.2013.04.007.
  • P. Cuccia, Ethics+ economy+ environment= sustainability: Gambero Rosso on the front lines with a new concept of sustainability. Wine Economics and Policy, 4 (1), 69-70, 2015. https://doi.org/10.1016/j.wep.2015.05.003.
  • TÜİK, Meyveler, içecek ve baharat bitkileri üretim miktarları. https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2022- 45504, (Erişim Tarihi: Temmuz, 2023).
  • A. Cerda-Carrasco, R. Lopez-Solis, H. Nunez-Kalasic, A. Pena-Neira and E. Obreque-Slier, Phenolic composition and antioxidant capacity of pomaces from four grape varieties (Vitis vinifera L.). Journal of the Science of Food and Agriculture, 95 (7), 1521-1527, 2015. https://doi.org/10.1002/jsfa.6856.
  • A. Hubner, F. Sobreira, A. Vetore Neto, C. Pinto, M. F. Dario, I. Díaz, F. R. Lourenço, C. Rosado, A. R. Baby and E. M. Bacchi, The synergistic behavior of antioxidant phenolic compounds obtained from winemaking waste’s valorization, increased the efficacy of a sunscreen system. Antioxidants, 8, (11), 530, 2019. https://doi.org/ 10.3390/antiox8110530.
  • A. R. Fontana, A. Antoniolli and R. Bottini, Grape pomace as a sustainable source of bioactive compounds: extraction, characterization, and biotechnological applications of phenolics. Journal of Agricultural and Food Chemistry, 61 (38), 8987-9003, 2013. https://doi.org/ 10.1021/jf402586f.
  • M. Bordiga, F. Travaglia and M. Locatelli, Valorisation of grape pomace: an approach that is increasingly reaching its maturity. International Journal of Food Science and Technology, 54 (4), 933-942, 2019. https://doi.org/ 10.1111/ijfs.14118.
  • R. Marchiani, M. Bertolino, S. Belviso, M. Giordano, D. Ghirardello, L. Torri, M. Piochi and G. Zeppa, Yogurt enrichment with grape pomace: Effect of grape cultivar on physicochemical, microbiological and sensory properties, Journal of Food Quality, 39 (2), 77-89, 2015. https://doi.org/10.1111/jfq.12181.
  • S. Kallithraka, J. Bakker and M. N. Clifford, Evidence that salivary proteins are involved in astringency. Journal of Sensory Studies, 13, 29-43, 2007. https://doi.org/10.1111/j.1745-459X.1998.tb00073.x.
  • R. Boulton, The copigmentation of anthocyanins and its role in the color of red wine: a critical review. American Journal of Enology and Viticulture, 522 (2), 67-87, 2001. https://doi.org/10.5344/ajev.2001.52.2.67.
  • M. Gómez-Míguez, S. González-Manzano, M. T. Escribano-Bailón, F. J. Heredia and C. Santos-Buelga, Influence of different phenolic copigments on the color of malvidin 3-Glucoside. Journal of Agricultural and Food Chemistry, 54 (15), 5422-5429, 2006. https://doi.org/ 10.1021/jf0604586.
  • S. Preys, G. Mazerolles, P. Courcoux, A. Samson, U. Fischer and M. Hanafi, Relationship between polyphenolic composition and some sensory properties in red wines using multiway analyses. Analytica Chimica Acta, 563 (1), 126-136, 2006. https://doi.org/10.1016/j.aca.2005.10.082.
  • S. Kataria and F. I. Shaikh, Design of drying chamber for grape drying and drying process. Bav Food World, 34, 56–60, 2007.
  • K. Dwyer, F. Hosseinian and M. R. Rod, The market potential of grape waste alternatives. Journal of Food Research, 3 (2), 91-91, 2014. https://doi.org/10.5539/jfr.v3n2p91.
  • A. Rózek, I. Achaerandio, C. Güell, F. López and M. Ferrando, Use of commercial grape phenolic extracts to supplement solid foodstuff. LWT-Food Science and Technology, 43 (4), 623-631, 2010. https://doi.org/ 10.1016/j.lwt.2009.11.002.
  • F. B. Shinagawa, F. C. D. Santana, L. R. O. Torres and J. Mancini-Filho, Grape seed oil: a potential functional food. Food Science and Technology, 35 (3), 399-406, 2015. https://doi.org/10.1590/1678-457X.6826.
  • J. Shi, J. Yu, J. Pohorly, J. C. Young, M. Bryan and Y. Wu, Optimization of the extraction of polyphenols from grape seed meal by aqueous ethanol solution. Food, Agriculture & Environment, 1 (2), 42-47, 2003.
  • M. M. Selani, C. J. Contreras-Castillo, L. D. Shirahigue, C. R. Gallo, M. Plata-Oviedo and N. D. Montes-Villanueva, Wine industry residues extracts as natural antioxidants in raw and cooked chicken meat during frozen storage. Meat Science, 88, 397–403, 2011. https://doi.org/10.1016/j.meatsci.2011.01.017.
  • M. Hayta, G. Özuğur, H. Etgü and I. T. Şeker, Effect of grape (Vitis vinifera L.) pomace on the quality, total phenolic content and anti-radical activity of bread. Journal of Food Processing and Preservation, 38 (3), 980-985, 2014. https://doi.org/ 10.1111/jfpp.12054.
  • V. Sant'Anna, F.D.P. Christiano, and L.D.F. Marczak, The effect of the incorporation of grape marc powder in fettuccini pasta properties, LWT-Food Science Technology 58 (2), 497–501, 2014. https://doi.org/10.1016/j.lwt.2014.04.008.
  • C. Beres, G. N. S. Costa, I. Cabezudo, N. K. da Silva-James, A. S. C. Teles, A. P. G. Cruz, C. Mellinger-Silva, R. V. Tonon, L. M. C. Cabral and S. P. Freitas, Towards integral utilization of grape pomace from winemaking process: A review. Waste Management, 68, 581–594, 2017. https://doi.org/10.1016/j. wasman.2017.07.017.
  • J. Herrera, A. Guesalaga and E. Agosin, Shortwave near infrared spectroscopy for non-destructive determination of maturity of wine grapes. Measurement Science and Technology, 14 (5), 689-697, 2003. https://doi.org/10.1088/0957-0233/14/5/320.
  • V. González-Caballero, M-T. Sánchez, M-I. López and D. Pérez-Marín, First steps towards the development of a non-destructive technique for the quality control of wine grapes during on-vine ripening and on arrival at the winery. Journal of Food Engineering, 101 (29, 158-165, 2010. https://doi.org/ 10.1016/j.jfoodeng.2010.06.016.
  • B. M. Nicolaï, K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K. I. Theron and J. Lammertyn, Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biology and Technology, 46 (2), 99-118, 2007. https://doi.org/10.1016/j.postharvbio.2007.06.024.
  • K. Ali, F. Maltese, A. M. Fortes, M. S. Pais, Y. H. Choi and R. Verpoorte, Monitoring biochemical changes during grape berry development in Portuguese cultivars by NMR spectroscopy. Food Chemistry, 124 (4), 1760-1769, 2011. https://doi.org/10.1016/j.foodchem.2010.08.015.
  • M. Blanco, and I. Villarroya, NIR spectroscopy: A rapid-response analytical tool. Trends in Analytical Chemistry, 21 (4), 240–250, 2002. https://doi.org/10.1016/S0165-9936(02)00404-1.
  • C. M. McGoverin, J. Weeranantanaphan, G. Downey and M. Manley, Review: the application of near infrared spectroscopy to the measurement of bioactive compounds in food commodities. Journal of Near Infrared Spectroscopy, 18 (2), 87-111, 2010. https://doi.org/10.1255/jnirs.874.
  • R. Gallego-Ferrer J. M. Hernandez-Hierro, J. C. Rivas-Gonzalo and M. T. Bailon-Escribano, Feasibility study on the use of near infrared spectroscopy to determine flavanols in grape seeds. Talanta 82 (5), 1778–1783, 2010. https://doi.org/10.1016/j.talanta.2010.07.063.
  • M. I. Rouxinol, M. R. Martins, G. C. Murta, J. M. Barroso and A. E. Rato, Quality Assessment of RedWine Grapes through NIR Spectroscopy. Agronomy, 12 (3), 637, 2022. https://doi.org/10.3390/agronomy12030637.
  • R. N. M. J. Pascoa, S. Machado, Magalhaes, L. M. Magalhaes and J. A. Lopes, Value Adding to Red Grape Pomace Exploiting Eco-friendly FT-NIR Spectroscopy Technique, Food Bioprocess Technology, 8, 865–874, 2014. https://doi.org/10.1007/s11947-014-1454-z.
  • E. Whitacre, J. Oliver, R. van den Broek, P. van Engelen, B. Kremers and B. van der Horst, Predictive analysis of cocoa procyanidins using nearinfrared spectroscopy techniques. Journal of Food Science, 68, 2618-2622, 2006. https://doi.org/10.1111/j.1365-2621.2003.tb05779.x.
  • Q. Chen, J. Zhao, M. Liu, J. Cai and J. Liu, Determination of total polyphenols content in green tea using FT-NIR spectroscopy and different PLS algorithms. Journal of Pharmaceutical and Biomedical Analysis, 46, 568-573, 2007. https://doi.org/10.1016/j.jpba.2007.10.031.
  • M. M. Giusti and R. E. Wrolstad, ‘’Unit F1.2. Anthocyanins Characterizition and Measurement with UV-Visible Spectroscopy’’. R.E. Wrolstad and S.J. Schwartz (Eds) In: Current Protocols in Food Analytical Chemistry. (pp 1-13), John Wiley & Sons: New York, 2001.
  • V. L. Singleton and J. A. Rossi, Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158, 1965. https://doi.org/10.5344/ajev.1965.16.3.144.
  • C. C. Chang, M. H. Yang, H. M. Wen and J. C. Chern, Estimation of total flavonoid content in propolis by two complementary colorimetric methods, Journal of Food and Drug Analysis. 10 (3), 178-182, 2002. https://doi.org/10.38212/2224-6614.2748.
  • T. Froehlicher, T. Hennebelle, F. Martin-Nizard, P. Cleenewerck, J-L. Hilbert, F. Trotin and S. Grec, Phenolic profiles and antioxidative effects of hawthorn cell suspensions, fresh fruits, and medicinal dried parts. Food Chemistry, 115 (3), 897– 903, 2009. https://doi.org/ 10.1016/j.foodchem.2009.01.004.
  • R. Apak, K. Güçlü, B. Demirata, M. Özyürek, S. E. Çelik, B. Bektaşoğlu, K. I. Berker and D. Özyurt, Comparative evaluation of various total antioxidant capacity assays applied to phenolic compunds with the CUPRAC assay. Molecules, 12 (7), 1496-1547, 2007. https://doi.org/ 10.3390/12071496.
  • S. Benvenuti, F. Pellati, M. Melegari and D. Bertelli, Polyphenols, anthocyanins, ascorbic acid and radical scavenging activity of rubus, ribes and aronia. Journal of Food Science, 69 (3), 164–169, 2006. https://doi.org/10.1111/j.1365-2621.2004.tb13352.x.
  • I. T. Jolliffe and J. Cadima, Principal component analysis: a review and recent developments. Philosophical transactions of the royal society A: Mathematical, Physical and Engineering Sciences, 374 (2065), 20150202, 2016. https://doi.org/10.1098/rsta.2015.0202.
  • S. Dejong, PLS fits Closer Than PCR. Journal Of Chemometrics, 7, 551–557, 1993. https://doi.org/10.1002/cem.1180070608.
  • L. Moseholm, Analysis of air-pollution plant-exposure data-the softindependent modeling of class analogy (SIMCA) and partial least-squares modeling with latent variable (PLS) approaches. Environmental Pollution, 53 (1-4), 313–331, 1988. https://doi.org/10.1016/0269-7491(88)90043-7.
  • P. C. Williams, Near-Infrared technology getting the best out of light. a short course in the practical İmplementation of Near Infrared Spectroscopy for the user. Canada, Nanaimo, 109, 2003.
  • P. Denev, M. Ciz, G. Ambrozova, A. Lojek, I. Yanakieva and M. Kratchanova, Solid-phase extraction of berries’ anthocyanins and evaluation of their antioxidative properties, Food Chemistry, 123 (4), 1055-1061, 2010. https://doi.org/ 10.1016/j.foodchem.2010.05.061.
  • C. Xu, Y. Zhang, L. Cao and J. Lu, Phenolic compounds and antioxidant properties of different grape cultivars grown in China, Food Chemistry, 119 (4), 1557-1565, 2010. https://doi.org/ 10.1016/j.foodchem.2009.09.042.
  • M. Özden and H. Vardin, Şanlıurfa koşullarında yetiştirilen bazı şaraplık üzüm çeşitlerinin kalite ve fitokimyasal özellikleri. Harran Üniversitesi Ziraat Fakültesi Dergisi, 13 (2), 1-27, 2009.
  • X. Zhao, H. Zhu, G. Zhang and W. Tang, Effect of superfine grinding on the physicochemical properties and antioxidant activity of red grape pomace powders, Powder Technology 286, 838–844, 2015. https://doi.org/10.1016/j.powtec.2015.09.025.
  • V. Georgiev, A. Ananga and Tsolova, Recent advances and uses of grape flavonoids as nutraceuticals. Nutrients, 6 (1), 391-415, 2014. https://doi.org/10.3390/nu6010391.
  • M. J. Cho, L. R. Howard, R. L. Prior and J. R. Clark, Flavonoid glycosides and antioxidant capacity of various blackberry, blueberry and red grape genotypes determined by high-performance liquid chromatography/mass spectrometry. Journal of the Science of Food and Agriculture, 84 (13), 1771-1782, 2004. https://doi.org/10.1002/jsfa.1885.
  • C. Conde, P. Silva, N. Fontes, A. C. P. Dias, R. M. Tavares, M. J. Sousa, A. Agasse, S. Delrot and H. Gerós, Biochemical changes throughout grape berry development and fruit and wine quality. Food, 1 (1), 1-22, 2007.
  • S. R. F. Iora, G. M. Maciel, A. A. F. Zielinski, M. V. Silva, P. V. Pontes, C. W. I. Haminiuk and D. Granato, Evaluation of the bioactive compounds and the antioxidant capacity of grape pomace. International Journal of Food Science & Technology, 50, 62-69, 2014. https://doi.org/ 10.1111/ijfs.12583.
  • D. P. Makris, G. Boskou and N. K. Andrikopoulos, Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. Journal of Food Composition and Analysis, 20 (2), 125-132, 2007. https://doi.org/10.1016/j.jfca.2006.04.010.
  • B. Yılmaz, Üzüm posası ekstraktının nanofiber film üretiminde kullanım olanaklarının araştırılması. Yüksek Lisans Tezi, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı, Kayseri, Türkiye, 2024.
  • B. Darıcı, Şarap üretiminde kükürtdioksite alternatif olabilecek farklı bitkisel ekstraktların şarap kalitesine etkileri. Yüksek Lisans Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı, İzmir, Türkiye, 2019.
  • K. Kasırga, Karadut ve siyah üzüm posası katkılı sığır burgerlerin raf ömrü süresince kalite parametrelerindeki değişimin belirlenmesi. Yüksek Lisans Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı, Konya, Türkiye, 2024.
  • A. Zeb, Concept, mechanism, and applications of phenolic antioxidants in foods. Journal of Food Biochemistry, 44 (1) 13394, 2020. https://doi.org/10.1111/jfbc.13394.
  • G. Soudad, M. A. E. Faten, M. H. Emad and H. Doha, Antioxidant activity of phenolic compounds from different grape wastes. Food Processing and Technology, 5 (52), 100296, 2014. https://doi.org/10.4172/2157-7110.1000296.
  • K. J. Olejar, A. Ricci, S. Swift, Z. Zujovic, K. C. Gordon, B. Fedrizzi, A. Versari and P. A. Kilmartin, Characterization of an antioxidant and antimicrobial extract from cool climate, white grape marc. Antioxidants, 8 (7), 232, 2019. https://doi.org/10.3390/antiox8070232.
  • I. I Rockenbach, E. Rodrigues, L. V. Gonzaga, V. Caliari, M. I. Genovese, A. E. S. S. Gonçalves and R. Fett, Phenolic compounds content and antioxidant activity in pomace from selected red grapes (Vitis vinifera L. and Vitis labrusca L.) widely produced in Brazil. Food Chemistry, 127 (1), 174-179, 2011. https://doi.org/10.1016/j.foodchem.2010.12.137.
  • C. E. Luchian, V. V. Cotea, L. Vlase, A. M. Toiu, L. C. Colibaba, I. E. Raschip, G. Nadaş, A. M. Gheldiu, C. Tuchiluş and L. Rotaru, Antioxidant and antimicrobial effects of grape pomace extracts. BIO Web of Conferences, 15, 04006, 2019. https://doi.org/10.1051/bioconf/20191504006.
  • B. Bozan, G. Tosun and D. Özcan, Study of polyphenol content in the seeds of red grape (Vitis vinifera L.) varieties cultivated in Turkey and their antiradical activity, Food chemistry, 109 (2), 426-430, 2008. https://doi.org/ 10.1016/j.foodchem.2007.12.056.
  • B. Muik, B. Lendl, A. Molina-Díaz, L. Pérez-Villarejo and M. J. Ayora-Cañada, Determination of oil and water content in olive pomace using near infrared and Raman spectrometry. A comparative study. Analytical and Bioanalytical Chemistry, 379 (1), 35-41, 2004. https://doi.org/10.1007/s00216-004-2493-5.
  • A. S. Barros, A. Nunes, J. Martins and I. Delgadillo, Determination of oil and water in olive and olive pomace by NIR and multivariate analysis. Sensing and Instrumentation for Food Quality and Safety, 3 (3), 180-186, 2009. https://doi.org/10.1007/s11694-009-9083-3.
  • R. N. Páscoa, M. A. Nunes, F. Reszczyński, A. S. Costa, M. B. P. Oliveira and R. C. Alves, Near infrared (NIR) spectroscopy as a tool to assess blends composition and discriminate antioxidant activity of olive pomace cultivars. Waste and Biomass Valorization, 12 (9), 4901-4913, 2021. https://doi.org/10.1007/s12649-021-01386-1.
  • R. Ferrer-Gallego, J. M. Hernández-Hierro, J. C. Rivas-Gonzalo and M. T. Escribano-Bailón, Determination of Phenolic Compounds of Grape Skins during Ripening by NIRSpectroscopy. LWT- Food Science and Technology, 44 (4), 847-857, 2011. https://doi.org/10.1016/j.lwt.2010.12.001.
  • D. Cozzolino, R. G. Dambergs, L. Janik, W. U. Cynkar and M. Gishen, Analysis of grapes and wine by near infrared spectroscopy. Journal of Near Infrared Spectroscopy, 14 (1), 279-289, 2006. https://doi.org/10.1255/jnirs.679.
There are 67 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Articles
Authors

Hüseyin Ayvaz 0000-0001-9705-6921

Muhammed Ali Doğan 0000-0002-5524-7567

Early Pub Date October 13, 2025
Publication Date October 15, 2025
Submission Date August 29, 2025
Acceptance Date September 23, 2025
Published in Issue Year 2025 Volume: 14 Issue: 4

Cite

APA Ayvaz, H., & Doğan, M. A. (2025). Quantification of phenolics and antioxidant properties in dried grape pomace by near infrared spectroscopy. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(4), 1530-1541. https://doi.org/10.28948/ngumuh.1773992
AMA Ayvaz H, Doğan MA. Quantification of phenolics and antioxidant properties in dried grape pomace by near infrared spectroscopy. NOHU J. Eng. Sci. October 2025;14(4):1530-1541. doi:10.28948/ngumuh.1773992
Chicago Ayvaz, Hüseyin, and Muhammed Ali Doğan. “Quantification of Phenolics and Antioxidant Properties in Dried Grape Pomace by Near Infrared Spectroscopy”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, no. 4 (October 2025): 1530-41. https://doi.org/10.28948/ngumuh.1773992.
EndNote Ayvaz H, Doğan MA (October 1, 2025) Quantification of phenolics and antioxidant properties in dried grape pomace by near infrared spectroscopy. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 4 1530–1541.
IEEE H. Ayvaz and M. A. Doğan, “Quantification of phenolics and antioxidant properties in dried grape pomace by near infrared spectroscopy”, NOHU J. Eng. Sci., vol. 14, no. 4, pp. 1530–1541, 2025, doi: 10.28948/ngumuh.1773992.
ISNAD Ayvaz, Hüseyin - Doğan, Muhammed Ali. “Quantification of Phenolics and Antioxidant Properties in Dried Grape Pomace by Near Infrared Spectroscopy”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/4 (October2025), 1530-1541. https://doi.org/10.28948/ngumuh.1773992.
JAMA Ayvaz H, Doğan MA. Quantification of phenolics and antioxidant properties in dried grape pomace by near infrared spectroscopy. NOHU J. Eng. Sci. 2025;14:1530–1541.
MLA Ayvaz, Hüseyin and Muhammed Ali Doğan. “Quantification of Phenolics and Antioxidant Properties in Dried Grape Pomace by Near Infrared Spectroscopy”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 14, no. 4, 2025, pp. 1530-41, doi:10.28948/ngumuh.1773992.
Vancouver Ayvaz H, Doğan MA. Quantification of phenolics and antioxidant properties in dried grape pomace by near infrared spectroscopy. NOHU J. Eng. Sci. 2025;14(4):1530-41.

download