Review
BibTex RIS Cite

Sodium Glucose Co-Transporter Type 2 Inhibitors: New Option in The Treatment of Diabetes

Year 2018, Volume: 6 Issue: 3, 122 - 139, 13.12.2018

Abstract

Abstract

Type 2 diabetes mellitus (T2DM) is a chronic progressive

disease that causes considerable morbidity and mortality.

Although there are many treatment options for diabetes

treatment, but only about half of the individuals can reach

the target glucose values. Some of the antidiabetic drugs

have side effects like hypoglicemia and weight gain. In

some of the antidiabetic drug side effect of hypoglycemia

and weight gain is observed. Due to such unwanted side

effects; there is a increasing interest in new drugs that act

independently of insülin, and also tolerated compared to

conventional treatment modalities. The renal sodum

glucose co-transporter type 2 (SGLT2) is responsible for

reabsorption of most of the glucose filtered by the kidney.

SGLT2 ihbitors such as dapagliflozin, canagliflozin and

empagliflozin, decrease renal glucose reabsorption,

enhanced urinary glucose excretion. As a result of these,

plasma glucose and glycosylated hemoglobin values are

decrease. Also reductions in weight and blood pressure

have been observed. Recent studies have shown

beneficial effects in cardiovascular diseases. SGLT2

inhibitors are generally well tolerated and safety drugs.

Used as monotherapy or in combination with other

antidiabetic and insülin. The risk of developing

hypoglycemia is low during use of the SGLT2 inhibitors.

Due to increased glucose excretion in the urine, genital

fungal infections and urinary tract infections can ocur,

especially in women. The evidence obtained in clinical

trials; shoved that the SGLT2 inhibitors is a new option for

the treatment of T2DM.

Key words: type 2 diabetes mellitus, sodyum glucose cotransporter

type 2 inhibitors, renal, efficacy.

References

  • REFERANSLAR 1. Guariguata L, Linnenkamp U, Beagley J, Whiting DR, Cho NH. Global estimates of the prevalence of hyperglycaemia in pregnancy for 2013 for the IDF Diabetes Atlas. Diabetes Res Clin Pr. 2014 Feb;103(2):176–85. 2. Matthews DR, Cull CA, Stratton IM, Holman RR, Turner RC. UKPDS 26: Sulphonylurea failure in non-insulin-dependent diabetic patients over six years. UK Prospective Diabetes Study (UKPDS) Group. Diabet Med. 1998 Apr;15(4):297–303. 3. Action to Control Cardiovascular Risk in Diabetes Study Group, Gerstein HC, Miller ME, Byington RP, Goff DC Jr, Bigger JT, Buse JB, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008 Jun 12;358(24):2545–59. 4. Defronzo RA. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 2009;58:773–95. 5. Gerich JE. Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications. Diabet Med 2010;27:136–42. 6. Pfister M, Whaley JM, Zhang L, List JF. Inhibition of SGLT2: a novel strategy for treatment of type 2 diabetes mellitus. Clin Pharmacol Ther 2011;89(4):621–5. 7. List JF, Woo V, Morales E, Tang W, Fiedorek FT. Sodium-glucose cotransport inhibition with dapagliflozin in type 2 diabetes. Diabetes Care. 2009;32(4):650–7. 8. Stumvoll M, Chintalapudi U, Perriello G, et al. Uptake and release of glucose by the human kidney. Postabsorptive rates and responses to epinephrine. J Clin Invest 1995;96:2528–33. 9. Gerich JE. Physiology of glucose homeostasis. Diabetes Obes Metab 2000;2:345–50. 10. Gerich JE, Meyer C, Woerle HJ, et al. Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care 2001;24:382–91. 11. Cersosimo E, Garlick P, Ferretti J. Insulin regulation of renal glucose metabolism in humans. Am J Physiol 1999;276:E78–84. 12. Meyer C, Dostou J, Nadkarni V, et al. Effects of physiological hyperinsulinemia on systemic, renal, and hepatic substrate metabolism. Am J Physiol 1998;275:F915–21. 13. Meyer C, Stumvoll M, Welle S, et al. Relative importance of liver, kidney, and substrates in epinephrine-induced increased gluconeogenesis in humans. Am J Physiol Endocrinol Metab 2003;285:819–26. 14. Meyer C, Dostou JM, Welle SL, et al. Role of human liver, kidney, and skeletal muscle in postprandial glucose homeostasis.Am J Physiol Endocrinol Metab 2002;282:419–27. 15. Wilding JP, Norwood P, T’Joen C, Bastien A, List JF, Fiedorek FT. A study of dapagliflozin in patients with type 2 diabetes receiving high doses of insulin plus insulin sensitizers: applicability of a novel insulin-independent treatment. Diabetes Care. 2009;32(9):1656–62. 16. Bakris GL, Fonseca VA, Sharma K, et al. Renal sodium-glucose transport: role in diabetes mellitus and potential clinical implications. Kidney Int 2009;75:1272–7. 17. Wright EM, Loo DD, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev 2011;91:733–94. 18. Bailey CJ. Renal glucose reabsorption inhibitors to treat diabetes. Trends Pharmacol Sci 2011;32:63–71. 19. Bailey CJ, Iqbal N, T’Joen C, List JF. Dapagliflozin monotherapy in drug-naive patients with diabetes: a randomized-controlled trial of low-dose range. Diabetes Obes Metab. 2012;14(10):951–9. 20. Bailey CJ, Gross JL, Pieters A, Bastien A, List JF. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: a randomised, double-blind, placebo-controlled trial. Lancet. 2010;375(9733):2223–33. 21. Wright EM, Loo DD, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev. 2011;91:733–94. 22. Thorens B, Mueckler M. Glucose transporters in the 21st Century. Am J Physiol Endocrinol Metab. 2010;298:141–5. 23. Vestri S, Okamoto MM, de Freitas HS, et al. Changes in sodium or glucose filtration rate modulate expression of glucose transporters in renal proximal tubular cells of rat. J Membr Biol 2001;182:105–12. 24. Freitas HS, Anhe GF, Melo KF, et al. Na(+)-glucose transporter-2 messenger ribonucleic acid expression in kidney of diabetic rats correlates with glycemic levels: involvement of hepatocyte nuclear factor-1alpha expression and activity. Endocrinology 2008;149:717–24. 25. Tabatabai NM, Sharma M, Blumenthal SS, et al. Enhanced expressions of sodium-glucose cotransporters in the kidneys of diabetic Zucker rats. Diabetes Res Clin Pract 2009;83:27–30. 26. Nair S, Wilding JP. Sodium glucose cotransporter 2 inhibitors as a new treatment for diabetes mellitus. J Clin Endocrinol Metab 2010;95:34–42. 27. Guyton A, Hall J. Textbook of Medical Physiology. Philadelphia, PA: Elsevier Saunders; 2006. 28. Rave K, Nosek L, Posner J, et al. Renal glucose excretion as a function of blood glucose concentration in subjects with type 2 diabetes—results of a hyperglycaemic glucose clamp study. Nephrol Dial Transplant 2006;21:2166–71. 29. Meyer C, Stumvoll M, Nadkarni V, Dostou J, Mitrakou A, Gerich J. Abnormal renal and hepatic glucose metabolism in type 2 diabetes mellitus. J Clin Invest. 1998;102(3):619–24. 30. Meyer C, Woerle HJ, Dostou JM, Welle SL, Gerich JE. Abnormal renal, hepatic, and muscle glucose metabolism following glucose ingestion in type 2 diabetes. Am J Physiol Endocrinol Metab. 2004;287(6):1049–56. 31. Abdul-Ghani MA, Norton L, Defronzo RA. Role of sodium-glucose cotransporter 2 (SGLT 2) inhibitors in the treatment of type 2 diabetes. Endocr Rev. 2011;32(4):515–31. 32. Rahmoune H, Thompson PW, Ward JM, Smith CD, Hong G, Brown J. Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with – SGLT2 inhibitors in type 2 diabetes mellitus non-insulin-dependent diabetes. Diabetes 2005;54(12):3427–34. 33. Ehrenkranz J, Lewis N, Ronald KC, Roth J. Phlorizin: a review. Diabetes Metab Res Rev. 2005;21:31–8. 34. Kalra S. Sodium Glucose Co-Transporter-2 (SGLT2) Inhibitors: A Review of Their Basic and Clinical Pharmacology. Diabetes Ther. 2014 Dec;5(2):355-66. 35. Empagliflozin. www.clinicaltrials.gov. U.S. National Institutes of Health. Retrieved May 8, 2014. 36. Nagata T, Fukazawa M, Honda K, et al. Selective SGLT2 inhibition by tofogliflozin reduces renal glucose reabsorption under hyperglycemic but not under hypo-or euglycemic conditions in rats. Am J Physiol Endocrinol Metab. 2013;304:414–23. 37. Ohtake Y, Sato T, Kobayashi T, et al. Discovery of tofogliflozin, a novel C-arylglucoside with an O-spiroketal ring system, as a highly selective sodium glucose cotransporter 2 (SGLT2) inhibitör for the treatment of type 2 diabetes. J Med Chem. 2012;55:7828–40. 38. Nauck MA. Update on developments with SGLT2 inhibitors in the management of type 2 diabetes. Drug Des Devel Ther. 2014 Sep 11;8:1335-80. 39. Grempler R, Thomas L, Eckhardt M, et al. Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: characterisation and comparison with other SGLT-2 inhibitors. Diabetes Obes Metab. 2012;14(1):83–90. 40. Polidori D, Sha S, Mudaliar S, et al. Canagliflozin lowers postprandial glucose and insulin by delaying intestinal glucose absorption in addition to increasing urinary glucose excretion: results of a randomized, placebo-controlled study. Diabetes Care. 2013;36(8): 2154–61. 41. Komoroski B, Vachharajani N, Feng Y, Li L, Kornhauser D, Pfister M. Dapagliflozin, a novel, selective SGLT2 inhibitor, improved glycemic control over 2 weeks in patients with type 2 diabetes mellitus. Clin Pharmacol Ther. 2009 May;85(5):513–9. 42. Bolinder J, Ljunggren O, Kullberg J et al. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J Clin Endocrinol Metab 2012;97(3):1020–31. 43. Cefalu WT, Leiter LA, Yoon KH et al. Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet 2013;382(9896):941–50. 44. Eckel RH, Kahn SE, Ferrannini E et al. Obesity and type 2 diabetes: what can be unified and what needs to be individualized? Diabetes Care 2011;34(6):1424–30. 45. Lambers Heerspink HJ, de Zeeuw D, Wie L, Leslie B, List J. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab 2013;15(9):853–62. 46. Ptaszynska A, Hardy E, Johnsson E, Parikh S, List J. Effects of dapagliflozin on cardiovascular risk factors. Postgrad Med 2013;125(3):181–9. 47.Ferrannini E, Muscelli E, Frascerra S, et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest 2014;124:499–508. 48. Merovci A, Solis-Herrera C, Daniele G, et al. Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production. J Clin Invest 2014;124:509–14. 49. Forxiga, summary of product characteristics. Available at:http://www.forxiga.eu /sites/default/files/Forxiga%20Summary%20of%20Product%20CharacteristicsSmPC.pdf.Last ccessed September 23, 2014. 50. Farxiga® (dapagliflozin). Full Prescribing Information, Bristol-Myers Squibb and AstraZeneca, Princeton, NJ, and Wilmington, DE, USA, 2014. 51. Mudaliar S, Henry R, Boden G, et al. Changes in insulin sensitivity and insulin secretion with the sodium glucose cotransporter 2 inhibitor dapagliflozin. Diabetes Technol Ther. 2014;16:137–44. 52. Obermeier M, Yao M, Khanna A et al. In vitro characterization and pharmacokinetics of dapagliflozin (BMS-512148), a potent sodium-glucose cotransporter type II inhibitor, in animals and humans. Drug Metab Dispos 2010;38(3):405–14. 53. Kasichayanula S, Liu X, Zhang W et al. Effect of a high-fat meal on the pharmacokinetics of dapagliflozin, a selective SGLT2 inhibitor, in healthy subjects. Diabetes Obes Metab 2011;13(8):770–3. 54. Kasichayanula S, Liu X, Shyu WC et al. Lack of pharmacokinetic interaction between dapagliflozin, a novel sodium-glucose transporter 2 inhibitor, and metformin, pioglitazone, glimepiride or sitagliptin in healthy subjects. Diabetes Obes Metab 2011;13(1):47–54. 55. Kasichayanula S, Chang M, Liu X et al. Lack of pharmacokinetic interactions between dapagliflozin and simvastatin, valsartan, warfarin, or digoxin. Adv Ther 2012;29(2):163–77 56. Dapagliflozin prescribing information, AstraZeneca Pharmaceuticals. 2014. 57. Invokana® (canagliflozin). Full Prescribing Information, Janssen Pharmaceuticals, Titusville, NJ, 2013. 58. Wright EM, Hirayama BA, Loo DF. Active sugar transport in health and disease. J Intern Med 2007;261(1):32–43. 59. Devineni D, Curtin CR, Polidori D et al. Pharmacokinetics and pharmacodynamics of canagliflozin, a sodium glucose co-transporter 2 inhibitor, in subjects with type 2 diabetes mellitus. J Clin Pharmacol 2013;53(6):601–10. 60. Kasichayanula S, Liu X, LaCreta F, Griffen S, Boulton D. Clinical pharmacokinetics and pharmacodynamics of dapagliflozin, a selective inhibitor of sodium-glucose co-transporter type 2. Clin Pharmacokinet. 2014;53:17–27. 61. Neumiller JJ. Empagliflozin: a new sodium-glucose co-transporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. Drugs Context 2014;3:212262. 62. Jardiance® (empagliflozin). Full Prescribing Information, Boehringer Ingelheim Pharmaceuticals and Eli Lilly and Company, Ingelheim, Germany, and Indianapolis, IN, USA, 2014. 63. Scheen AJ. Pharmacokinetic and pharmacodynamic profile of empagliflozin, a sodium glucose co-transporter 2 inhibitor. Clin Pharmacokinet 2014;53(3):213–25. 64. Fujita Y, Inagaki N. Renal sodium glucose cotransporter 2 inhibitors as a novel therapeutic approach to treatment of type 2 diabetes: clinical data and mechanism of action. J Diabetes Invest. 2014;5:265–75. 65. Vasilakou D, Karagiannis T, Athanasiadou E, et al. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2013;159(4):262–74. 66. Clar C, Gill JA, Court R, Waugh N. Systematic review of SGLT2 receptor inhibitors in dual or triple therapy in type 2 diabetes. BMJ Open. 2012;2(5):001007. 67. Berhan A, Barker A. Sodium glucose co-transport 2 inhibitors in the treatment of type 2 diabetes mellitus: a meta-analysis of randomized double-blind controlled trials. BMC Endocr Disord. 2013;13(1):58. 68. Dominguez JH, Camp K, Maianu L, Garvey WT. Glucose transporters of rat proximal tubule: differential expression and subcellular distribution. Am J Physiol. 1992;262(5 Pt 2):807–12. 69. Santer R, Kinner M, Lassen CL, et al. Molecular analysis of the SGLT2 gene in patients with renal glucosuria. J Am Soc Nephrol. 2003;14(11):2873–82. 70. Vasilakou D, Karagiannis T, Athanasiadou E, Mainou M, Liakos A, Bekiari E, et al. A. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med 2013; 159: 262-74. 71. European Medicines Agency [homepage on the Internet]. Forxiga (Dapagliflozin). EMA AssessmentReport.Procedureno.EMEA/H/C/002322;2012.http://www.ema.europa.eu/docs/en_GB/document_library/EPAR__Public_assessment_report/human/002322/WC500136024.pdf.AccessedSeptember 17, 2013. 72. Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2012; 35: 1364-1379. 73. Häring HU, Merker L, Seewaldt-Becker E, Weimer M, Meinicke T, Woerle HJ, et al. Empagliflozin as addon to metformin plus sulfonylurea in patients with type 2 diabetes: a 24-week, randomized, double-blind, placebocontrolled trial. Diabetes Care 2013; 36: 3396-404. 74. Forst T, Guthrie R, Goldenberg R, Yee J, Vijapurkar U, Meininger G, et al. Efficacy and safety of canagliflozin over 52 weeks in patients with type 2 diabetes on background metformin and pioglitazone. Diabetes Obes Metab 2014; 16: 467-77. 75. Nauck MA, Del Prato S, Meier JJ, et al. Dapagliflozin versus glipizide as add-on therapy in patients with type 2 diabetes who have inadequate glycemic control with metformin: a randomized, 52-week, double-blind, active-controlled noninferiority trial. Diabetes Care. 2011;34(9):2015–22. 76. European Medicines Agency [homepage on the Internet]. Canagliflozin. EMA Assessment Report. Procedure.no.EMEA/H/C/002649/0000;2013.Erişim:http://www.ema.europa.eu/docs/en_GB/document_library/EPAR__Public_assessment_report/ human/002649/WC500156457.pdf. Accessed December 3, 2013. 77. Lavalle-González FJ, Januszewicz A, Davidson J, et al. Efficacy and safety of canagliflozin compared with placebo and sitagliptin in patients with type 2 diabetes on background metformin monotherapy: a randomised trial. Diabetologia. 2013;56(12):2582–92. 78. Schernthaner G, Gross JL, Rosenstock J, et al. Canagliflozin compared with sitagliptin for patients with type 2 diabetes who do not have adequate glycemic control with metformin plus sulfonylurea: a 52-week randomized trial. Diabetes Care. 2013;36(9):2508–15. 79. Roden M, Weng J, Eilbracht J, et al. Empagliflozin monotherapy with sitagliptin as an active comparator in patients with type 2 diabetes: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol. 2013;1(3):208–19. 80. Häring HU, Merker L, Seewaldt-Becker E, Weimer M, Meinicke T. Empagliflozin as add-on to metformin for 24 weeks improves glycemic control in patients with type 2 diabetes (T2DM). Diabetes. 2013; 62(Suppl 1):Abstract 1092-P. 81. Ferrannini E, Berk A, Hantel S, et al. Long-term safety and efficacy of empagliflozin, sitagliptin, and metformin: an active-controlled, parallel-group, randomized, 78-week open-label extension study in patients with type 2 diabetes. Diabetes Care. 2013;36(12):4015–21. 82. Häring HU, Merker L, Seewaldt-Becker E, et al. Empagliflozin as add-on to metformin plus sulfonylurea in patients with type 2 diabetes. A 24-week, randomized, double-blind, placebo-controlled trial. Diabetes Care. 2013;36(11):3396–404. 83. Kovacs CS, Seshiah V, Swallow R, et al. Empagliflozin improves glycaemic and weight control as add-on therapy to pioglitazone or pioglitazone plus metformin in patients with type 2 diabetes: a 24-week, randomized, placebo-controlled trial. Diabetes Obes Metab. 2014;16(2):147–58. 84. Ferrannini E, Ramos SJ, Salsali A, Tang W, List JF. Dapagliflozin monotherapy in type 2 diabetic patients with inadequate glycemic control by diet and exercise: a randomized, double-blind, placebo-controlled, phase 3 trial. Diabetes Care. 2010;33(10):2217–24. 85. Stenlöf K, Cefalu WT, Kim KA, et al. Efficacy and safety of canagliflozin monotherapy in subjects with type 2 diabetes mellitus inadequately controlled with diet and exercise. Diabetes Obes Metab. 2013;15(4):372–82. 86. Rosenstock J, Aggarwal N, Polidori D, Zhao Y, Arbit D, Usiskin K, et al. Dose-ranging effects of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, as add-on to metformin in subjects with type 2 diabetes. Diabetes Care 2012; 35: 1232-38. 87. Wilding JP, Woo V, Rohwedder K, Sugg J, Parikh S. Dapagliflozin in patients with type 2 diabetes receiving high doses of insulin: efficacy and safety over 2 years. Diabetes Obes Metab 2014; 16: 124-36. 88. Bolinder J, Ljunggren O, Johansson L, et al. Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin. Diabetes Obes Metab. 2014 Feb;16(2):159-69. 89. Wilding JP, Charpentier G, Hollander P, González-Gálvez G, Mathieu C, Vercruysse F, et al. Efficacy and safety of canagliflozin in patients with type 2 diabetes mellitus inadequately controlled with metformin and sulphonylurea: a randomised trial. Int J Clin Pract. 2013 Dec;67(12):1267–82. 90. Baker WL, Smyth LR, Riche DM, Bourret EM, Chamberlin KW, White WB. Effects of sodium-glucose co-transporter 2 inhibitors on blood pressure: a systematic review and meta-analysis. J Am Soc Hypertens 2014; 8: 262-75. 91. Henry RR, Murray AV, Marmolejo MH, Hennicken D, Ptaszynska A, List JF. Dapagliflozin, metformin XR, or both: initial pharmacotherapy for type 2 diabetes, a randomised controlled trial. Int J Clin Pract 2012; 66: 446-56. 92. Nauck MA, Del Prato S, Meier JJ, Durán-García S, Rohwedder K, Elze M, et al. Dapagliflozin versus glipizide as add-on therapy in patients with type 2 diabetes who have inadequate glycemic control with metformin: a randomized, 52-week, double-blind, active-controlled noninferiority trial. Diabetes Care 2011; 34: 2015-22. 93. Schernthaner G, Gross JL, Rosenstock J, Guarisco M, Fu M, Yee J, et al. Canagliflozin compared with sitagliptin for patients with type 2 diabetes who do not have adequate glycemic control with metformin plus sulfonylurea: a 52-week randomized trial. Diabetes Care 2013; 36: 2508-15. 94. Nyirjesy P, Zhao Y, Ways K, Usiskin K. Evaluation of vulvovaginal symptoms and Candida colonization in women with type 2 diabetes mellitus treated with canagliflozin, a sodium glucose co-transporter 2 inhibitor. Curr Med Res Opin 2012; 28: 1173-8. 95. Nyirjesy P, Sobel JD, Fung A, Mayer C, Capuano G, Ways K, et al. Genital mycotic infections with canagliflozin, a sodium glucose co-transporter 2 inhibitor, in patients with type 2 diabetes mellitus: a pooled analysis of clinical stud studies. Curr Med Res Opin 2014; 30: 1109-19. 96. US Food and Drug Administration [homepage on the Internet]. FDA Briefing Document. NDA 204042.Invokana(Canagliflozin)tablets;2013.http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/EndocrinologicandMetabolicDrugsAdvisoryCommittee/UCM334550.pdf. Accessed March 31, 2014. 97. Kohan DE, Fioretto P, Tang W, List JF. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int 2014; 85: 962-71. 98. Wilding JP, Woo V, Soler NG, Pahor A, Sugg J, Rohwedder Ket al. Long-term efficacy of dapagliflozin in patients with type 2 diabetes mellitus receiving high doses of insulin: a randomized trial. Ann Intern Med 2012; 156: 405-15. 99. Bode B, Stenlöf K, Sullivan D, Fung A, Usiskin K. Efficacy and safety of canagliflozin treatment in older subjects with type 2 diabetes mellitus: a randomized trial. Hosp Pract (1995) 2013;41:72-84. 100. Yale JF, Bakris G, Cariou B, Yue D, David-Neto E, Xi L, et al. Efficacy and safety of canagliflozin in subjects with type 2 diabetes and chronic kidney disease. Diabetes Obes Metab 2013; 15: 463-73. 101. Kasichayanula S, Liu X, Pe Benito M, Yao M, Pfister M, LaCreta FP, et al. The influence of kidney function on dapagliflozin exposure, metabolism and pharmacodynamics in healthy subjects and in patients with type 2 diabetes mellitus. Br J Clin Pharmacol 2013; 76: 432-44. 102. Farxiga (Dapagliflozin). Prescribing information. Bristol- Myers Squibb Company. Princeton, NJ, USA, 2014. 103. Hach T, Gerich J, Salsali A, et al. Empagliflozin improves glycemic parameters and cardiovascular risk factors in patients with type 2 diabetes (T2DM): pooled data from four pivotal phase III trials Diabetes. 2013;62(Suppl 1):Abstract 69-LB. 104. Basile JN. The potential of sodium glucose cotransporter 2 (SGLT2) inhibitors to reduce cardiovascular risk in patients with type 2 diabetes (T2DM). J Diabetes Complications. 2013;27(3):280–6. 105. Rodríguez-Gutiérrez R, Gonzalez-Saldivar G. Canagliflozin. Cleve Clin J Med. 2014;81(2):87–8. 106. Foote C, Perkovic V, Neal B. Effects of SGLT2 inhibitors on cardiovascular outcomes. Diab Vasc Dis Res. 2012;9(2):117–23. 107. Ptaszynska A, Johnsson KM, Apanovitch A-M, Sugg J, Parikh S, List J. Safety of dapagliflozin in clinical trials for T2DM. Diabetes. 2012;61(Suppl 1):Abstract 1011-P. 108. Young AA, Liu Y, McNulty D, et al. Synergistic glucose-lowering effects of SGLT1- and ASBT-inhibitor combinations in ZDF rats. Diabetologia. 2013;56(Suppl 1):S399. Abstract 994. 109. US Food and Drug Administration [homepage on the Internet]. FDA Briefing Document. NDA 202293. Dapagliflozin tablets, 5 and 10 mg 2011.htt://www.fda.gov/downloads/AdvisoryCommitees/ CommitteesMeetingMaterials/drugs/EndocrinologicandMetabolicDrugsAdvisoryCommittee/ucm262994.pdf. Accessed March 31, 2014. 110. Sinclair A, Bode B, Harris S, Vijapurkar U, Mayer C, Fung A, et al. Efficacy and safety of canagliflozin compared with placebo in older patients with type 2 diabetes mellitus: a pooled analysis of clinical studies. BMC Endocr Disord 2014; 14: 37. 111. Leiter LA, Cefalu WT, de Bruin TW, Gause-Nilsson I, Sugg J, Parikh SJ. Dapagliflozin added to usual care in individuals with type 2 diabetes mellitus with preexisting cardiovascular disease: a 24-week, multicenter, randomized, doubleblind, placebo-controlled study with a 28-week extension. J Am Geriatr Soc 2014; 62: 1252-62. 112. Henry RR, Rosenstock J, Chalamandaris A-G, et al. Exploring the potential of dapagliflozin in type 1 diabetes: phase 2a pilot study [abstract]. Diabetes 2013;62:20. 113. Perkins BA, Cherney DZ, Partridge H, et al. Sodium-glucose cotransporter 2 inhibition and glycemic control in type 1 diabetes: results of an 8-week open-label proof-of-concept trial. Diabetes Care 2014;37:1480–3. 114. Peters AL1, Buschur EO2, Buse JB3, Cohan P4, Diner JC3, Hirsch IB5. Euglycemic Diabetic Ketoacidosis: A Potential Complication of Treatment With Sodium-Glucose Cotransporter 2 Inhibition. Diabetes Care 2015 Sep;38(9):1687-93. 115. Garber AJ, Abrahamson MJ, Barzilay JI et al. American Association of Clinical Endocrinologists’ comprehensi ve diabetes management algorithm 2013 consensus statement – executive summary. Endocr Pract 2013;19(3):536–57. 116. Vivian EM. Sodium-glucose co-transporter 2 (SGLT2) inhibitors: a growing class of antidiabetic agents. Drugs Context. 2014 Dec 19;3:212264.

Sodyum Glukoz Ko-Transporter Tip 2 İnhibitörleri: Diyabet Tedavisinde Yeni Seçenek

Year 2018, Volume: 6 Issue: 3, 122 - 139, 13.12.2018

Abstract









Tip
2 Diyabetes Mellitus(T2DM) önemli oranda mortalite ve morbiditiye neden olan
kronik ilerleyici bir hastalıktır. Diyabet tedavisinde çok sayıda tedavi
seçeneği olmasına rağmen, bireylerin ancak yarısında hedef glukoz değerlerine
ulaşılabilmektedir. Antidiyabetik ilaçların bir kısmında yan etki olarak
hipoglisemi ve kilo alımı görülmektedir. Bu gibi istenmeyen yan etkilerden
dolayı; insülinden bağımsız etki edebilecek ve aynı zamanda klasik tedavi
yöntemleriyle karşılaştırıldığında tolere edilebilecek yeni ilaçlara ilgi
artmaktadır. Sodyum glukoz ko-transporter tip 2(SGLT2) böbreklerde filtre
edilen glukozun çoğunun reabsorbe edilmesinden sorumludur. SGLT2 inhibitörleri,
dapagliflozin, canagliflozin ve empagliflozin, böbrek glukoz reabsorbsiyonu
azaltarak, idrarla glukoz atılımını artırırılar. Sonuçta, plazma glukoz ve
glikolize hemoglobin değerlerinde azalmaya neden olurlar. Ayrıca kilo kaybı ve
kan basıncında azalma görülür. SGLT2 inhibitörleri genelde iyi tolere edilen ve
güvenli ilaçlardır. Monoterapi veya diğer oral antidiyabetik ilaçlar ve
insülinle kombine kullanılabilirler. SGLT2 inhibitörlerin kullanımı sırasında
hipoglisemi gelişme riski düşüktür. İdrarda glukoz atılımın artmasına bağlı
olarak, kadınlarda daha fazla olmak üzere, genital mantar enfeksiyonu ile
üriner sistem enfeksiyonu görülebilir. Klinik çalışmalarda elde edilen
kanıtlar; SGLT2 inhibitörlerinin T2DM için yeni bir seçenek olduğunu
göstermektedir.
















References

  • REFERANSLAR 1. Guariguata L, Linnenkamp U, Beagley J, Whiting DR, Cho NH. Global estimates of the prevalence of hyperglycaemia in pregnancy for 2013 for the IDF Diabetes Atlas. Diabetes Res Clin Pr. 2014 Feb;103(2):176–85. 2. Matthews DR, Cull CA, Stratton IM, Holman RR, Turner RC. UKPDS 26: Sulphonylurea failure in non-insulin-dependent diabetic patients over six years. UK Prospective Diabetes Study (UKPDS) Group. Diabet Med. 1998 Apr;15(4):297–303. 3. Action to Control Cardiovascular Risk in Diabetes Study Group, Gerstein HC, Miller ME, Byington RP, Goff DC Jr, Bigger JT, Buse JB, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008 Jun 12;358(24):2545–59. 4. Defronzo RA. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 2009;58:773–95. 5. Gerich JE. Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications. Diabet Med 2010;27:136–42. 6. Pfister M, Whaley JM, Zhang L, List JF. Inhibition of SGLT2: a novel strategy for treatment of type 2 diabetes mellitus. Clin Pharmacol Ther 2011;89(4):621–5. 7. List JF, Woo V, Morales E, Tang W, Fiedorek FT. Sodium-glucose cotransport inhibition with dapagliflozin in type 2 diabetes. Diabetes Care. 2009;32(4):650–7. 8. Stumvoll M, Chintalapudi U, Perriello G, et al. Uptake and release of glucose by the human kidney. Postabsorptive rates and responses to epinephrine. J Clin Invest 1995;96:2528–33. 9. Gerich JE. Physiology of glucose homeostasis. Diabetes Obes Metab 2000;2:345–50. 10. Gerich JE, Meyer C, Woerle HJ, et al. Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care 2001;24:382–91. 11. Cersosimo E, Garlick P, Ferretti J. Insulin regulation of renal glucose metabolism in humans. Am J Physiol 1999;276:E78–84. 12. Meyer C, Dostou J, Nadkarni V, et al. Effects of physiological hyperinsulinemia on systemic, renal, and hepatic substrate metabolism. Am J Physiol 1998;275:F915–21. 13. Meyer C, Stumvoll M, Welle S, et al. Relative importance of liver, kidney, and substrates in epinephrine-induced increased gluconeogenesis in humans. Am J Physiol Endocrinol Metab 2003;285:819–26. 14. Meyer C, Dostou JM, Welle SL, et al. Role of human liver, kidney, and skeletal muscle in postprandial glucose homeostasis.Am J Physiol Endocrinol Metab 2002;282:419–27. 15. Wilding JP, Norwood P, T’Joen C, Bastien A, List JF, Fiedorek FT. A study of dapagliflozin in patients with type 2 diabetes receiving high doses of insulin plus insulin sensitizers: applicability of a novel insulin-independent treatment. Diabetes Care. 2009;32(9):1656–62. 16. Bakris GL, Fonseca VA, Sharma K, et al. Renal sodium-glucose transport: role in diabetes mellitus and potential clinical implications. Kidney Int 2009;75:1272–7. 17. Wright EM, Loo DD, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev 2011;91:733–94. 18. Bailey CJ. Renal glucose reabsorption inhibitors to treat diabetes. Trends Pharmacol Sci 2011;32:63–71. 19. Bailey CJ, Iqbal N, T’Joen C, List JF. Dapagliflozin monotherapy in drug-naive patients with diabetes: a randomized-controlled trial of low-dose range. Diabetes Obes Metab. 2012;14(10):951–9. 20. Bailey CJ, Gross JL, Pieters A, Bastien A, List JF. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: a randomised, double-blind, placebo-controlled trial. Lancet. 2010;375(9733):2223–33. 21. Wright EM, Loo DD, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev. 2011;91:733–94. 22. Thorens B, Mueckler M. Glucose transporters in the 21st Century. Am J Physiol Endocrinol Metab. 2010;298:141–5. 23. Vestri S, Okamoto MM, de Freitas HS, et al. Changes in sodium or glucose filtration rate modulate expression of glucose transporters in renal proximal tubular cells of rat. J Membr Biol 2001;182:105–12. 24. Freitas HS, Anhe GF, Melo KF, et al. Na(+)-glucose transporter-2 messenger ribonucleic acid expression in kidney of diabetic rats correlates with glycemic levels: involvement of hepatocyte nuclear factor-1alpha expression and activity. Endocrinology 2008;149:717–24. 25. Tabatabai NM, Sharma M, Blumenthal SS, et al. Enhanced expressions of sodium-glucose cotransporters in the kidneys of diabetic Zucker rats. Diabetes Res Clin Pract 2009;83:27–30. 26. Nair S, Wilding JP. Sodium glucose cotransporter 2 inhibitors as a new treatment for diabetes mellitus. J Clin Endocrinol Metab 2010;95:34–42. 27. Guyton A, Hall J. Textbook of Medical Physiology. Philadelphia, PA: Elsevier Saunders; 2006. 28. Rave K, Nosek L, Posner J, et al. Renal glucose excretion as a function of blood glucose concentration in subjects with type 2 diabetes—results of a hyperglycaemic glucose clamp study. Nephrol Dial Transplant 2006;21:2166–71. 29. Meyer C, Stumvoll M, Nadkarni V, Dostou J, Mitrakou A, Gerich J. Abnormal renal and hepatic glucose metabolism in type 2 diabetes mellitus. J Clin Invest. 1998;102(3):619–24. 30. Meyer C, Woerle HJ, Dostou JM, Welle SL, Gerich JE. Abnormal renal, hepatic, and muscle glucose metabolism following glucose ingestion in type 2 diabetes. Am J Physiol Endocrinol Metab. 2004;287(6):1049–56. 31. Abdul-Ghani MA, Norton L, Defronzo RA. Role of sodium-glucose cotransporter 2 (SGLT 2) inhibitors in the treatment of type 2 diabetes. Endocr Rev. 2011;32(4):515–31. 32. Rahmoune H, Thompson PW, Ward JM, Smith CD, Hong G, Brown J. Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with – SGLT2 inhibitors in type 2 diabetes mellitus non-insulin-dependent diabetes. Diabetes 2005;54(12):3427–34. 33. Ehrenkranz J, Lewis N, Ronald KC, Roth J. Phlorizin: a review. Diabetes Metab Res Rev. 2005;21:31–8. 34. Kalra S. Sodium Glucose Co-Transporter-2 (SGLT2) Inhibitors: A Review of Their Basic and Clinical Pharmacology. Diabetes Ther. 2014 Dec;5(2):355-66. 35. Empagliflozin. www.clinicaltrials.gov. U.S. National Institutes of Health. Retrieved May 8, 2014. 36. Nagata T, Fukazawa M, Honda K, et al. Selective SGLT2 inhibition by tofogliflozin reduces renal glucose reabsorption under hyperglycemic but not under hypo-or euglycemic conditions in rats. Am J Physiol Endocrinol Metab. 2013;304:414–23. 37. Ohtake Y, Sato T, Kobayashi T, et al. Discovery of tofogliflozin, a novel C-arylglucoside with an O-spiroketal ring system, as a highly selective sodium glucose cotransporter 2 (SGLT2) inhibitör for the treatment of type 2 diabetes. J Med Chem. 2012;55:7828–40. 38. Nauck MA. Update on developments with SGLT2 inhibitors in the management of type 2 diabetes. Drug Des Devel Ther. 2014 Sep 11;8:1335-80. 39. Grempler R, Thomas L, Eckhardt M, et al. Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: characterisation and comparison with other SGLT-2 inhibitors. Diabetes Obes Metab. 2012;14(1):83–90. 40. Polidori D, Sha S, Mudaliar S, et al. Canagliflozin lowers postprandial glucose and insulin by delaying intestinal glucose absorption in addition to increasing urinary glucose excretion: results of a randomized, placebo-controlled study. Diabetes Care. 2013;36(8): 2154–61. 41. Komoroski B, Vachharajani N, Feng Y, Li L, Kornhauser D, Pfister M. Dapagliflozin, a novel, selective SGLT2 inhibitor, improved glycemic control over 2 weeks in patients with type 2 diabetes mellitus. Clin Pharmacol Ther. 2009 May;85(5):513–9. 42. Bolinder J, Ljunggren O, Kullberg J et al. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J Clin Endocrinol Metab 2012;97(3):1020–31. 43. Cefalu WT, Leiter LA, Yoon KH et al. Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet 2013;382(9896):941–50. 44. Eckel RH, Kahn SE, Ferrannini E et al. Obesity and type 2 diabetes: what can be unified and what needs to be individualized? Diabetes Care 2011;34(6):1424–30. 45. Lambers Heerspink HJ, de Zeeuw D, Wie L, Leslie B, List J. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab 2013;15(9):853–62. 46. Ptaszynska A, Hardy E, Johnsson E, Parikh S, List J. Effects of dapagliflozin on cardiovascular risk factors. Postgrad Med 2013;125(3):181–9. 47.Ferrannini E, Muscelli E, Frascerra S, et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest 2014;124:499–508. 48. Merovci A, Solis-Herrera C, Daniele G, et al. Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production. J Clin Invest 2014;124:509–14. 49. Forxiga, summary of product characteristics. Available at:http://www.forxiga.eu /sites/default/files/Forxiga%20Summary%20of%20Product%20CharacteristicsSmPC.pdf.Last ccessed September 23, 2014. 50. Farxiga® (dapagliflozin). Full Prescribing Information, Bristol-Myers Squibb and AstraZeneca, Princeton, NJ, and Wilmington, DE, USA, 2014. 51. Mudaliar S, Henry R, Boden G, et al. Changes in insulin sensitivity and insulin secretion with the sodium glucose cotransporter 2 inhibitor dapagliflozin. Diabetes Technol Ther. 2014;16:137–44. 52. Obermeier M, Yao M, Khanna A et al. In vitro characterization and pharmacokinetics of dapagliflozin (BMS-512148), a potent sodium-glucose cotransporter type II inhibitor, in animals and humans. Drug Metab Dispos 2010;38(3):405–14. 53. Kasichayanula S, Liu X, Zhang W et al. Effect of a high-fat meal on the pharmacokinetics of dapagliflozin, a selective SGLT2 inhibitor, in healthy subjects. Diabetes Obes Metab 2011;13(8):770–3. 54. Kasichayanula S, Liu X, Shyu WC et al. Lack of pharmacokinetic interaction between dapagliflozin, a novel sodium-glucose transporter 2 inhibitor, and metformin, pioglitazone, glimepiride or sitagliptin in healthy subjects. Diabetes Obes Metab 2011;13(1):47–54. 55. Kasichayanula S, Chang M, Liu X et al. Lack of pharmacokinetic interactions between dapagliflozin and simvastatin, valsartan, warfarin, or digoxin. Adv Ther 2012;29(2):163–77 56. Dapagliflozin prescribing information, AstraZeneca Pharmaceuticals. 2014. 57. Invokana® (canagliflozin). Full Prescribing Information, Janssen Pharmaceuticals, Titusville, NJ, 2013. 58. Wright EM, Hirayama BA, Loo DF. Active sugar transport in health and disease. J Intern Med 2007;261(1):32–43. 59. Devineni D, Curtin CR, Polidori D et al. Pharmacokinetics and pharmacodynamics of canagliflozin, a sodium glucose co-transporter 2 inhibitor, in subjects with type 2 diabetes mellitus. J Clin Pharmacol 2013;53(6):601–10. 60. Kasichayanula S, Liu X, LaCreta F, Griffen S, Boulton D. Clinical pharmacokinetics and pharmacodynamics of dapagliflozin, a selective inhibitor of sodium-glucose co-transporter type 2. Clin Pharmacokinet. 2014;53:17–27. 61. Neumiller JJ. Empagliflozin: a new sodium-glucose co-transporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. Drugs Context 2014;3:212262. 62. Jardiance® (empagliflozin). Full Prescribing Information, Boehringer Ingelheim Pharmaceuticals and Eli Lilly and Company, Ingelheim, Germany, and Indianapolis, IN, USA, 2014. 63. Scheen AJ. Pharmacokinetic and pharmacodynamic profile of empagliflozin, a sodium glucose co-transporter 2 inhibitor. Clin Pharmacokinet 2014;53(3):213–25. 64. Fujita Y, Inagaki N. Renal sodium glucose cotransporter 2 inhibitors as a novel therapeutic approach to treatment of type 2 diabetes: clinical data and mechanism of action. J Diabetes Invest. 2014;5:265–75. 65. Vasilakou D, Karagiannis T, Athanasiadou E, et al. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2013;159(4):262–74. 66. Clar C, Gill JA, Court R, Waugh N. Systematic review of SGLT2 receptor inhibitors in dual or triple therapy in type 2 diabetes. BMJ Open. 2012;2(5):001007. 67. Berhan A, Barker A. Sodium glucose co-transport 2 inhibitors in the treatment of type 2 diabetes mellitus: a meta-analysis of randomized double-blind controlled trials. BMC Endocr Disord. 2013;13(1):58. 68. Dominguez JH, Camp K, Maianu L, Garvey WT. Glucose transporters of rat proximal tubule: differential expression and subcellular distribution. Am J Physiol. 1992;262(5 Pt 2):807–12. 69. Santer R, Kinner M, Lassen CL, et al. Molecular analysis of the SGLT2 gene in patients with renal glucosuria. J Am Soc Nephrol. 2003;14(11):2873–82. 70. Vasilakou D, Karagiannis T, Athanasiadou E, Mainou M, Liakos A, Bekiari E, et al. A. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med 2013; 159: 262-74. 71. European Medicines Agency [homepage on the Internet]. Forxiga (Dapagliflozin). EMA AssessmentReport.Procedureno.EMEA/H/C/002322;2012.http://www.ema.europa.eu/docs/en_GB/document_library/EPAR__Public_assessment_report/human/002322/WC500136024.pdf.AccessedSeptember 17, 2013. 72. Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2012; 35: 1364-1379. 73. Häring HU, Merker L, Seewaldt-Becker E, Weimer M, Meinicke T, Woerle HJ, et al. Empagliflozin as addon to metformin plus sulfonylurea in patients with type 2 diabetes: a 24-week, randomized, double-blind, placebocontrolled trial. Diabetes Care 2013; 36: 3396-404. 74. Forst T, Guthrie R, Goldenberg R, Yee J, Vijapurkar U, Meininger G, et al. Efficacy and safety of canagliflozin over 52 weeks in patients with type 2 diabetes on background metformin and pioglitazone. Diabetes Obes Metab 2014; 16: 467-77. 75. Nauck MA, Del Prato S, Meier JJ, et al. Dapagliflozin versus glipizide as add-on therapy in patients with type 2 diabetes who have inadequate glycemic control with metformin: a randomized, 52-week, double-blind, active-controlled noninferiority trial. Diabetes Care. 2011;34(9):2015–22. 76. European Medicines Agency [homepage on the Internet]. Canagliflozin. EMA Assessment Report. Procedure.no.EMEA/H/C/002649/0000;2013.Erişim:http://www.ema.europa.eu/docs/en_GB/document_library/EPAR__Public_assessment_report/ human/002649/WC500156457.pdf. Accessed December 3, 2013. 77. Lavalle-González FJ, Januszewicz A, Davidson J, et al. Efficacy and safety of canagliflozin compared with placebo and sitagliptin in patients with type 2 diabetes on background metformin monotherapy: a randomised trial. Diabetologia. 2013;56(12):2582–92. 78. Schernthaner G, Gross JL, Rosenstock J, et al. Canagliflozin compared with sitagliptin for patients with type 2 diabetes who do not have adequate glycemic control with metformin plus sulfonylurea: a 52-week randomized trial. Diabetes Care. 2013;36(9):2508–15. 79. Roden M, Weng J, Eilbracht J, et al. Empagliflozin monotherapy with sitagliptin as an active comparator in patients with type 2 diabetes: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol. 2013;1(3):208–19. 80. Häring HU, Merker L, Seewaldt-Becker E, Weimer M, Meinicke T. Empagliflozin as add-on to metformin for 24 weeks improves glycemic control in patients with type 2 diabetes (T2DM). Diabetes. 2013; 62(Suppl 1):Abstract 1092-P. 81. Ferrannini E, Berk A, Hantel S, et al. Long-term safety and efficacy of empagliflozin, sitagliptin, and metformin: an active-controlled, parallel-group, randomized, 78-week open-label extension study in patients with type 2 diabetes. Diabetes Care. 2013;36(12):4015–21. 82. Häring HU, Merker L, Seewaldt-Becker E, et al. Empagliflozin as add-on to metformin plus sulfonylurea in patients with type 2 diabetes. A 24-week, randomized, double-blind, placebo-controlled trial. Diabetes Care. 2013;36(11):3396–404. 83. Kovacs CS, Seshiah V, Swallow R, et al. Empagliflozin improves glycaemic and weight control as add-on therapy to pioglitazone or pioglitazone plus metformin in patients with type 2 diabetes: a 24-week, randomized, placebo-controlled trial. Diabetes Obes Metab. 2014;16(2):147–58. 84. Ferrannini E, Ramos SJ, Salsali A, Tang W, List JF. Dapagliflozin monotherapy in type 2 diabetic patients with inadequate glycemic control by diet and exercise: a randomized, double-blind, placebo-controlled, phase 3 trial. Diabetes Care. 2010;33(10):2217–24. 85. Stenlöf K, Cefalu WT, Kim KA, et al. Efficacy and safety of canagliflozin monotherapy in subjects with type 2 diabetes mellitus inadequately controlled with diet and exercise. Diabetes Obes Metab. 2013;15(4):372–82. 86. Rosenstock J, Aggarwal N, Polidori D, Zhao Y, Arbit D, Usiskin K, et al. Dose-ranging effects of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, as add-on to metformin in subjects with type 2 diabetes. Diabetes Care 2012; 35: 1232-38. 87. Wilding JP, Woo V, Rohwedder K, Sugg J, Parikh S. Dapagliflozin in patients with type 2 diabetes receiving high doses of insulin: efficacy and safety over 2 years. Diabetes Obes Metab 2014; 16: 124-36. 88. Bolinder J, Ljunggren O, Johansson L, et al. Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin. Diabetes Obes Metab. 2014 Feb;16(2):159-69. 89. Wilding JP, Charpentier G, Hollander P, González-Gálvez G, Mathieu C, Vercruysse F, et al. Efficacy and safety of canagliflozin in patients with type 2 diabetes mellitus inadequately controlled with metformin and sulphonylurea: a randomised trial. Int J Clin Pract. 2013 Dec;67(12):1267–82. 90. Baker WL, Smyth LR, Riche DM, Bourret EM, Chamberlin KW, White WB. Effects of sodium-glucose co-transporter 2 inhibitors on blood pressure: a systematic review and meta-analysis. J Am Soc Hypertens 2014; 8: 262-75. 91. Henry RR, Murray AV, Marmolejo MH, Hennicken D, Ptaszynska A, List JF. Dapagliflozin, metformin XR, or both: initial pharmacotherapy for type 2 diabetes, a randomised controlled trial. Int J Clin Pract 2012; 66: 446-56. 92. Nauck MA, Del Prato S, Meier JJ, Durán-García S, Rohwedder K, Elze M, et al. Dapagliflozin versus glipizide as add-on therapy in patients with type 2 diabetes who have inadequate glycemic control with metformin: a randomized, 52-week, double-blind, active-controlled noninferiority trial. Diabetes Care 2011; 34: 2015-22. 93. Schernthaner G, Gross JL, Rosenstock J, Guarisco M, Fu M, Yee J, et al. Canagliflozin compared with sitagliptin for patients with type 2 diabetes who do not have adequate glycemic control with metformin plus sulfonylurea: a 52-week randomized trial. Diabetes Care 2013; 36: 2508-15. 94. Nyirjesy P, Zhao Y, Ways K, Usiskin K. Evaluation of vulvovaginal symptoms and Candida colonization in women with type 2 diabetes mellitus treated with canagliflozin, a sodium glucose co-transporter 2 inhibitor. Curr Med Res Opin 2012; 28: 1173-8. 95. Nyirjesy P, Sobel JD, Fung A, Mayer C, Capuano G, Ways K, et al. Genital mycotic infections with canagliflozin, a sodium glucose co-transporter 2 inhibitor, in patients with type 2 diabetes mellitus: a pooled analysis of clinical stud studies. Curr Med Res Opin 2014; 30: 1109-19. 96. US Food and Drug Administration [homepage on the Internet]. FDA Briefing Document. NDA 204042.Invokana(Canagliflozin)tablets;2013.http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/EndocrinologicandMetabolicDrugsAdvisoryCommittee/UCM334550.pdf. Accessed March 31, 2014. 97. Kohan DE, Fioretto P, Tang W, List JF. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int 2014; 85: 962-71. 98. Wilding JP, Woo V, Soler NG, Pahor A, Sugg J, Rohwedder Ket al. Long-term efficacy of dapagliflozin in patients with type 2 diabetes mellitus receiving high doses of insulin: a randomized trial. Ann Intern Med 2012; 156: 405-15. 99. Bode B, Stenlöf K, Sullivan D, Fung A, Usiskin K. Efficacy and safety of canagliflozin treatment in older subjects with type 2 diabetes mellitus: a randomized trial. Hosp Pract (1995) 2013;41:72-84. 100. Yale JF, Bakris G, Cariou B, Yue D, David-Neto E, Xi L, et al. Efficacy and safety of canagliflozin in subjects with type 2 diabetes and chronic kidney disease. Diabetes Obes Metab 2013; 15: 463-73. 101. Kasichayanula S, Liu X, Pe Benito M, Yao M, Pfister M, LaCreta FP, et al. The influence of kidney function on dapagliflozin exposure, metabolism and pharmacodynamics in healthy subjects and in patients with type 2 diabetes mellitus. Br J Clin Pharmacol 2013; 76: 432-44. 102. Farxiga (Dapagliflozin). Prescribing information. Bristol- Myers Squibb Company. Princeton, NJ, USA, 2014. 103. Hach T, Gerich J, Salsali A, et al. Empagliflozin improves glycemic parameters and cardiovascular risk factors in patients with type 2 diabetes (T2DM): pooled data from four pivotal phase III trials Diabetes. 2013;62(Suppl 1):Abstract 69-LB. 104. Basile JN. The potential of sodium glucose cotransporter 2 (SGLT2) inhibitors to reduce cardiovascular risk in patients with type 2 diabetes (T2DM). J Diabetes Complications. 2013;27(3):280–6. 105. Rodríguez-Gutiérrez R, Gonzalez-Saldivar G. Canagliflozin. Cleve Clin J Med. 2014;81(2):87–8. 106. Foote C, Perkovic V, Neal B. Effects of SGLT2 inhibitors on cardiovascular outcomes. Diab Vasc Dis Res. 2012;9(2):117–23. 107. Ptaszynska A, Johnsson KM, Apanovitch A-M, Sugg J, Parikh S, List J. Safety of dapagliflozin in clinical trials for T2DM. Diabetes. 2012;61(Suppl 1):Abstract 1011-P. 108. Young AA, Liu Y, McNulty D, et al. Synergistic glucose-lowering effects of SGLT1- and ASBT-inhibitor combinations in ZDF rats. Diabetologia. 2013;56(Suppl 1):S399. Abstract 994. 109. US Food and Drug Administration [homepage on the Internet]. FDA Briefing Document. NDA 202293. Dapagliflozin tablets, 5 and 10 mg 2011.htt://www.fda.gov/downloads/AdvisoryCommitees/ CommitteesMeetingMaterials/drugs/EndocrinologicandMetabolicDrugsAdvisoryCommittee/ucm262994.pdf. Accessed March 31, 2014. 110. Sinclair A, Bode B, Harris S, Vijapurkar U, Mayer C, Fung A, et al. Efficacy and safety of canagliflozin compared with placebo in older patients with type 2 diabetes mellitus: a pooled analysis of clinical studies. BMC Endocr Disord 2014; 14: 37. 111. Leiter LA, Cefalu WT, de Bruin TW, Gause-Nilsson I, Sugg J, Parikh SJ. Dapagliflozin added to usual care in individuals with type 2 diabetes mellitus with preexisting cardiovascular disease: a 24-week, multicenter, randomized, doubleblind, placebo-controlled study with a 28-week extension. J Am Geriatr Soc 2014; 62: 1252-62. 112. Henry RR, Rosenstock J, Chalamandaris A-G, et al. Exploring the potential of dapagliflozin in type 1 diabetes: phase 2a pilot study [abstract]. Diabetes 2013;62:20. 113. Perkins BA, Cherney DZ, Partridge H, et al. Sodium-glucose cotransporter 2 inhibition and glycemic control in type 1 diabetes: results of an 8-week open-label proof-of-concept trial. Diabetes Care 2014;37:1480–3. 114. Peters AL1, Buschur EO2, Buse JB3, Cohan P4, Diner JC3, Hirsch IB5. Euglycemic Diabetic Ketoacidosis: A Potential Complication of Treatment With Sodium-Glucose Cotransporter 2 Inhibition. Diabetes Care 2015 Sep;38(9):1687-93. 115. Garber AJ, Abrahamson MJ, Barzilay JI et al. American Association of Clinical Endocrinologists’ comprehensi ve diabetes management algorithm 2013 consensus statement – executive summary. Endocr Pract 2013;19(3):536–57. 116. Vivian EM. Sodium-glucose co-transporter 2 (SGLT2) inhibitors: a growing class of antidiabetic agents. Drugs Context. 2014 Dec 19;3:212264.
There are 1 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Review
Authors

Uğur Alp Göksu

Publication Date December 13, 2018
Published in Issue Year 2018 Volume: 6 Issue: 3

Cite

APA Göksu, U. A. (2018). Sodyum Glukoz Ko-Transporter Tip 2 İnhibitörleri: Diyabet Tedavisinde Yeni Seçenek. Namık Kemal Tıp Dergisi, 6(3), 122-139.
AMA Göksu UA. Sodyum Glukoz Ko-Transporter Tip 2 İnhibitörleri: Diyabet Tedavisinde Yeni Seçenek. NKMJ. December 2018;6(3):122-139.
Chicago Göksu, Uğur Alp. “Sodyum Glukoz Ko-Transporter Tip 2 İnhibitörleri: Diyabet Tedavisinde Yeni Seçenek”. Namık Kemal Tıp Dergisi 6, no. 3 (December 2018): 122-39.
EndNote Göksu UA (December 1, 2018) Sodyum Glukoz Ko-Transporter Tip 2 İnhibitörleri: Diyabet Tedavisinde Yeni Seçenek. Namık Kemal Tıp Dergisi 6 3 122–139.
IEEE U. A. Göksu, “Sodyum Glukoz Ko-Transporter Tip 2 İnhibitörleri: Diyabet Tedavisinde Yeni Seçenek”, NKMJ, vol. 6, no. 3, pp. 122–139, 2018.
ISNAD Göksu, Uğur Alp. “Sodyum Glukoz Ko-Transporter Tip 2 İnhibitörleri: Diyabet Tedavisinde Yeni Seçenek”. Namık Kemal Tıp Dergisi 6/3 (December 2018), 122-139.
JAMA Göksu UA. Sodyum Glukoz Ko-Transporter Tip 2 İnhibitörleri: Diyabet Tedavisinde Yeni Seçenek. NKMJ. 2018;6:122–139.
MLA Göksu, Uğur Alp. “Sodyum Glukoz Ko-Transporter Tip 2 İnhibitörleri: Diyabet Tedavisinde Yeni Seçenek”. Namık Kemal Tıp Dergisi, vol. 6, no. 3, 2018, pp. 122-39.
Vancouver Göksu UA. Sodyum Glukoz Ko-Transporter Tip 2 İnhibitörleri: Diyabet Tedavisinde Yeni Seçenek. NKMJ. 2018;6(3):122-39.