Research Article
BibTex RIS Cite

Küçük Hücreli Olmayan Akciğer Kanseri Hücrelerinde Let-7B- 5P’nin Apoptotik Genler ile İlişkisinin Araştırılması

Year 2019, Volume: 7 Issue: 2, 61 - 71, 27.08.2019

Abstract

Amaç: Akciğer kanseri dünya
genelinde kansere bağlı gerçekleşen ölümlerde kadınlarda ve erkeklerde ilk
sıralarda yer almaktadır. Güncel
gelişmeler göz ününde bulundurulduğunda, erken tanı ve yeni hedeflenen
ajanların sayısının artmasına rağmen akciğer kanseri halen erken teşhis
edilememekte ve etkin bir şekilde tedavi edilememektedir. Dolayısıyla, akciğer
kanserinin tanısı için doğru ve güvenilir belirteçlere ihtiyaç duyulmaktadır.
Ayrıca, akciğer kanserinde let-7b-5p’nin rolü ve terapötik potansiyelini ortaya
koyan çalışmaların oldukça yetersiz olduğu gözükmektedir. Bu nedenle, apoptoz
ile ilişkili genler ve let-7b-5p arasındaki etkileşimlerin belirlenmesi ve bu
miRNA’nın apoptozdaki olası rollerinin ortaya konulması son derece önem arz
etmektedir. Bu çalışmada, A549 hücrelerinde let-7b-5p’nin ifade seviyesi miRNA
mimik uygulaması ile arttırılarak apoptoz ile ilişkili genler ile ilişkisinin
araştırılması amaçlanmıştır.



Materyal ve Metot: Let-7b-5p’nin
hedefi olabilecek apoptoz ile ilişkili genler online veri tabanlarından
biyoinformatik araçlarla belirlenmiştir. A549 akciğer kanseri hücreleri normal
kültür koşullarında çoğaltılmıştır. Let-7b-5p’nin ifade seviyesinin A549
hücrelerinde arttırılması amacıyla, let-7b-5p mimiği hücrelere HiPerFect
transfeksiyon ajanı ile transfekte edilmiş ve sonrasında toplam RNA ve miRNA
izolasyonları yapılmıştır. Daha sonra, elde edilen RNA’lardan let-7b-5p ve apoptoz
ilişkili genlerin ifade seviyeleri qPCR yöntemi ile belirlenmiştir.



Bulgular: Küçük
hücreli olmayan akciğer kanseri hücrelerinde let-7b-5p’nin ifade seviyesinin
arttırılmasının ardından BCL2, RB1, XIAP, CASP9, TP53 ve PTEN genlerinin ifade
seviyelerinin kontrol gruplarına kıyasla düştüğü bulunmuştur. Bunun aksine BAX
geninin ifade seviyesinin arttığı ve CASP3 ve BCL2L1 genlerinin ifade
seviyelerinde herhangi bir değişim olmadığı bulunmuştur. In silico analizler
sonucunda TP53 geninin 3’ UTR bölgesinde iki farklı pozisyonda let-7b-5p
bağlanma alanı olduğu gösterilmiştir.



Sonuç: Sonuç olarak elde ettiğimiz
bulgular let-7b-5p’nin apoptoz mekanizmasında yer alan genleri
hedefleyebileceğini ve bu miRNA’nın akciğer kanserinin tanı ve/veya tedavisine
yönelik önemli bir biyobelirteç olabileceğine işaret etmektedir. 

References

  • Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin D, Piñeros M et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. International journal of cancer. 2019;144(8):1941-1953.
  • Goulart BH, Ramsey SD. Moving beyond the national lung screening trial: discussing strategies for implementation of lung cancer screening programs. The oncologist. 2013;18(8):941-946.
  • Church TR, Black WC, Aberle DR, Berg CD, Clingan KL, Duan F, et al. Results of initial low-dose computed tomographic screening for lung cancer. The New England journal of medicine. 2013;368(21):1980-1991.
  • Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nature reviews. Genetics. 2010;11(9):597-610.
  • Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. cell. 1993;75(5):843-854.
  • Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425(6956):415.
  • Lund E, Güttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. science. 2004;303(5654):95-98.
  • Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nature reviews cancer. 2006;6(4):259.
  • Akao Y, Nakagawa Y, Naoe T. let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biological & pharmaceutical bulletin. 2006;29(5):903-906.
  • Park SM, Shell S, Radjabi AR, Schickel R, Feig C, Boyerinas B, et al. Let-7 prevents early cancer progression by suppressing expression of the embryonic gene HMGA2. Cell cycle (Georgetown, Tex.). 2007;6(21):2585-2590.
  • Balzeau J, Menezes MR, Cao S, Hagan JP. The LIN28/let-7 Pathway in Cancer. Frontiers in genetics. 2017;8(31).
  • Mayr C, Hemann MT, Bartel DP. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science. 2007;315(5818):1576-1579.
  • Wu KL, Tsai YM, Lien CT, Kuo PL. The Roles of MicroRNA in Lung Cancer. International journal of molecular sciences. 2019;20(7):1611.
  • Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C. et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 2007;131(6):1109-1123.
  • Karagkouni D, Paraskevopoulou MD, Chatzopoulos S, Vlachos IS, Tastsoglou S, Kanellos I. et al. DIANA-TarBase v8: a decade-long collection of experimentally supported miRNA–gene interactions. Nucleic acids research. 2017;46(D1):D239-D245.
  • Laganà A, Forte S, Giudice A, Arena M, Puglisi PL, Giugno R. et al. miRo: a miRNA knowledge base. Database. 2009;2009
  • Wong N, Wang X. miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic acids research. 2014;43(D1):D146-D152.
  • Chou CH, Shrestha S, Yang CD, Chang NW, Lin YL, Liao KW. et al. miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic acids research. 2017;46(D1):D296-D302.
  • Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C T method. Nature protocols. 2008;3(6):1101.
  • Peng J, Mo R, Ma J, Fan J. let-7b and let-7c are determinants of intrinsic chemoresistance in renal cell carcinoma. World journal of surgical oncology. 2015;13(175).
  • Xu H, Liu C, Zhang Y, Guo X, Liu Z, Luo Z, et al. Let-7b-5p regulates proliferation and apoptosis in multiple myeloma by targeting IGF1R. Acta biochimica et biophysica Sinica. 2014;46(11):965-972.
  • Zhang H, Zong Y, Qiu G, Jia R, Xu X, Wang F. et al. Silencing Lin28 promotes apoptosis in colorectal cancer cells by upregulating let7c targeting of antiapoptotic BCL2L1. Molecular medicine reports. 2018;17(4):5143-5149.
  • Hu X, Guo J, Zheng L, Li C, Zheng TM, Tanyi JL. et al. The heterochronic microRNA let-7 inhibits cell motility by regulating the genes in the actin cytoskeleton pathway in breast cancer. Molecular cancer research : MCR. 2013;11(3):240-250.
  • Edmonds MD, Eischen CM. Differences in miRNA expression in early stage lung adenocarcinomas that did and did not relapse. PloS one. 2014;9(7):e101802.
  • Jusufović E, Rijavec M, Keser D, Korošec P, Sodja E, Iljazović E. et al. let-7b and miR-126 are down-regulated in tumor tissue and correlate with microvessel density and survival outcomes in non–small–cell lung cancer. PloS one. 2012;7(9):e45577.
  • Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A. et al. RAS is regulated by the let-7 microRNA family. Cell. 2005;120(5):635-647.
  • Trang P, Medina PP Wiggins JF, Ruffino L, Kelnar K, Omotola M. et al. Regression of murine lung tumors by the let-7 microRNA. Oncogene. 2010;29(11):1580.
  • Chin LJ, Ratner E, Leng S, Zhai R, Nallur S, Babar I. et al. A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non–small cell lung cancer risk. Cancer research. 2008;68(20):8535-8540.
  • Hubaux R, Becker-Santos DD, Enfield KS, Lam S, Lam WL, Martinez VD. MicroRNAs as biomarkers for clinical features of lung cancer. Metabolomics: open access. 2012;2(3):1000108.
  • Undi RB, Gutti U, Gutti RK. Role of let-7b/Fzd4 axis in mitochondrial biogenesis through wnt signaling: In neonatal and adult megakaryocytes. The international journal of biochemistry & cell biology. 2016;79(61-68).
  • Yan Y, Xie R, Zhang Q, Zhu X, Han J, Xia R. Bcl-xL/Bak interaction and regulation by miRNA let-7b in the intrinsic apoptotic pathway of stored platelets. Platelets. 2019;30(1):75-80.
  • Liu L, Huang L, He J, Cai S, Weng Y, Huang S. et al. PTEN inhibits non-small cell lung cancer cell growth by promoting G0/G1 arrest and cell apoptosis. Oncology letters. 2019;17(1):1333-1340.
  • Yu T, Liu L, Li J, Yan M, Lin H, Liu Y. et al. MiRNA-10a is upregulated in NSCLC and may promote cancer by targeting PTEN. Oncotarget. 2015;6(30):30239-30250.
  • Saffari M, Ghaderian SMH, Omrani MD, Afsharpad M, Shankaie K, Samadaian N. The Association of miR-let 7b and miR-548 with PTEN in Prostate Cancer. Urology journal. 2018.
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. cell. 2011;144(5):646-674.
  • Dalmay T, Edwards D. MicroRNAs and the hallmarks of cancer. Oncogene. 2006;25(46):6170.
  • Chakraborty S, Mazumdar M, Mukherjee S, Bhattacharjee P, Adhikary A, Manna A. et al. Restoration of p53/miR‐34a regulatory axis decreases survival advantage and ensures Bax‐dependent apoptosis of non‐small cell lung carcinoma cells. FEBS letters. 2014;588(4):549-559.
  • Song C, Lu P, Sun G, Yang L, Wang Z, Wang Z. miR-34a sensitizes lung cancer cells to cisplatin via p53/miR-34a/MYCN axis. Biochemical and biophysical research communications. 2017;482(1):22-27.
Year 2019, Volume: 7 Issue: 2, 61 - 71, 27.08.2019

Abstract

References

  • Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin D, Piñeros M et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. International journal of cancer. 2019;144(8):1941-1953.
  • Goulart BH, Ramsey SD. Moving beyond the national lung screening trial: discussing strategies for implementation of lung cancer screening programs. The oncologist. 2013;18(8):941-946.
  • Church TR, Black WC, Aberle DR, Berg CD, Clingan KL, Duan F, et al. Results of initial low-dose computed tomographic screening for lung cancer. The New England journal of medicine. 2013;368(21):1980-1991.
  • Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nature reviews. Genetics. 2010;11(9):597-610.
  • Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. cell. 1993;75(5):843-854.
  • Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425(6956):415.
  • Lund E, Güttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. science. 2004;303(5654):95-98.
  • Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nature reviews cancer. 2006;6(4):259.
  • Akao Y, Nakagawa Y, Naoe T. let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biological & pharmaceutical bulletin. 2006;29(5):903-906.
  • Park SM, Shell S, Radjabi AR, Schickel R, Feig C, Boyerinas B, et al. Let-7 prevents early cancer progression by suppressing expression of the embryonic gene HMGA2. Cell cycle (Georgetown, Tex.). 2007;6(21):2585-2590.
  • Balzeau J, Menezes MR, Cao S, Hagan JP. The LIN28/let-7 Pathway in Cancer. Frontiers in genetics. 2017;8(31).
  • Mayr C, Hemann MT, Bartel DP. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science. 2007;315(5818):1576-1579.
  • Wu KL, Tsai YM, Lien CT, Kuo PL. The Roles of MicroRNA in Lung Cancer. International journal of molecular sciences. 2019;20(7):1611.
  • Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C. et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 2007;131(6):1109-1123.
  • Karagkouni D, Paraskevopoulou MD, Chatzopoulos S, Vlachos IS, Tastsoglou S, Kanellos I. et al. DIANA-TarBase v8: a decade-long collection of experimentally supported miRNA–gene interactions. Nucleic acids research. 2017;46(D1):D239-D245.
  • Laganà A, Forte S, Giudice A, Arena M, Puglisi PL, Giugno R. et al. miRo: a miRNA knowledge base. Database. 2009;2009
  • Wong N, Wang X. miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic acids research. 2014;43(D1):D146-D152.
  • Chou CH, Shrestha S, Yang CD, Chang NW, Lin YL, Liao KW. et al. miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic acids research. 2017;46(D1):D296-D302.
  • Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C T method. Nature protocols. 2008;3(6):1101.
  • Peng J, Mo R, Ma J, Fan J. let-7b and let-7c are determinants of intrinsic chemoresistance in renal cell carcinoma. World journal of surgical oncology. 2015;13(175).
  • Xu H, Liu C, Zhang Y, Guo X, Liu Z, Luo Z, et al. Let-7b-5p regulates proliferation and apoptosis in multiple myeloma by targeting IGF1R. Acta biochimica et biophysica Sinica. 2014;46(11):965-972.
  • Zhang H, Zong Y, Qiu G, Jia R, Xu X, Wang F. et al. Silencing Lin28 promotes apoptosis in colorectal cancer cells by upregulating let7c targeting of antiapoptotic BCL2L1. Molecular medicine reports. 2018;17(4):5143-5149.
  • Hu X, Guo J, Zheng L, Li C, Zheng TM, Tanyi JL. et al. The heterochronic microRNA let-7 inhibits cell motility by regulating the genes in the actin cytoskeleton pathway in breast cancer. Molecular cancer research : MCR. 2013;11(3):240-250.
  • Edmonds MD, Eischen CM. Differences in miRNA expression in early stage lung adenocarcinomas that did and did not relapse. PloS one. 2014;9(7):e101802.
  • Jusufović E, Rijavec M, Keser D, Korošec P, Sodja E, Iljazović E. et al. let-7b and miR-126 are down-regulated in tumor tissue and correlate with microvessel density and survival outcomes in non–small–cell lung cancer. PloS one. 2012;7(9):e45577.
  • Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A. et al. RAS is regulated by the let-7 microRNA family. Cell. 2005;120(5):635-647.
  • Trang P, Medina PP Wiggins JF, Ruffino L, Kelnar K, Omotola M. et al. Regression of murine lung tumors by the let-7 microRNA. Oncogene. 2010;29(11):1580.
  • Chin LJ, Ratner E, Leng S, Zhai R, Nallur S, Babar I. et al. A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non–small cell lung cancer risk. Cancer research. 2008;68(20):8535-8540.
  • Hubaux R, Becker-Santos DD, Enfield KS, Lam S, Lam WL, Martinez VD. MicroRNAs as biomarkers for clinical features of lung cancer. Metabolomics: open access. 2012;2(3):1000108.
  • Undi RB, Gutti U, Gutti RK. Role of let-7b/Fzd4 axis in mitochondrial biogenesis through wnt signaling: In neonatal and adult megakaryocytes. The international journal of biochemistry & cell biology. 2016;79(61-68).
  • Yan Y, Xie R, Zhang Q, Zhu X, Han J, Xia R. Bcl-xL/Bak interaction and regulation by miRNA let-7b in the intrinsic apoptotic pathway of stored platelets. Platelets. 2019;30(1):75-80.
  • Liu L, Huang L, He J, Cai S, Weng Y, Huang S. et al. PTEN inhibits non-small cell lung cancer cell growth by promoting G0/G1 arrest and cell apoptosis. Oncology letters. 2019;17(1):1333-1340.
  • Yu T, Liu L, Li J, Yan M, Lin H, Liu Y. et al. MiRNA-10a is upregulated in NSCLC and may promote cancer by targeting PTEN. Oncotarget. 2015;6(30):30239-30250.
  • Saffari M, Ghaderian SMH, Omrani MD, Afsharpad M, Shankaie K, Samadaian N. The Association of miR-let 7b and miR-548 with PTEN in Prostate Cancer. Urology journal. 2018.
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. cell. 2011;144(5):646-674.
  • Dalmay T, Edwards D. MicroRNAs and the hallmarks of cancer. Oncogene. 2006;25(46):6170.
  • Chakraborty S, Mazumdar M, Mukherjee S, Bhattacharjee P, Adhikary A, Manna A. et al. Restoration of p53/miR‐34a regulatory axis decreases survival advantage and ensures Bax‐dependent apoptosis of non‐small cell lung carcinoma cells. FEBS letters. 2014;588(4):549-559.
  • Song C, Lu P, Sun G, Yang L, Wang Z, Wang Z. miR-34a sensitizes lung cancer cells to cisplatin via p53/miR-34a/MYCN axis. Biochemical and biophysical research communications. 2017;482(1):22-27.
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Orginal Article
Authors

Esra Bozgeyik

Publication Date August 27, 2019
Published in Issue Year 2019 Volume: 7 Issue: 2

Cite

APA Bozgeyik, E. (2019). Küçük Hücreli Olmayan Akciğer Kanseri Hücrelerinde Let-7B- 5P’nin Apoptotik Genler ile İlişkisinin Araştırılması. Namık Kemal Tıp Dergisi, 7(2), 61-71.
AMA Bozgeyik E. Küçük Hücreli Olmayan Akciğer Kanseri Hücrelerinde Let-7B- 5P’nin Apoptotik Genler ile İlişkisinin Araştırılması. NKMJ. August 2019;7(2):61-71.
Chicago Bozgeyik, Esra. “Küçük Hücreli Olmayan Akciğer Kanseri Hücrelerinde Let-7B- 5P’nin Apoptotik Genler Ile İlişkisinin Araştırılması”. Namık Kemal Tıp Dergisi 7, no. 2 (August 2019): 61-71.
EndNote Bozgeyik E (August 1, 2019) Küçük Hücreli Olmayan Akciğer Kanseri Hücrelerinde Let-7B- 5P’nin Apoptotik Genler ile İlişkisinin Araştırılması. Namık Kemal Tıp Dergisi 7 2 61–71.
IEEE E. Bozgeyik, “Küçük Hücreli Olmayan Akciğer Kanseri Hücrelerinde Let-7B- 5P’nin Apoptotik Genler ile İlişkisinin Araştırılması”, NKMJ, vol. 7, no. 2, pp. 61–71, 2019.
ISNAD Bozgeyik, Esra. “Küçük Hücreli Olmayan Akciğer Kanseri Hücrelerinde Let-7B- 5P’nin Apoptotik Genler Ile İlişkisinin Araştırılması”. Namık Kemal Tıp Dergisi 7/2 (August 2019), 61-71.
JAMA Bozgeyik E. Küçük Hücreli Olmayan Akciğer Kanseri Hücrelerinde Let-7B- 5P’nin Apoptotik Genler ile İlişkisinin Araştırılması. NKMJ. 2019;7:61–71.
MLA Bozgeyik, Esra. “Küçük Hücreli Olmayan Akciğer Kanseri Hücrelerinde Let-7B- 5P’nin Apoptotik Genler Ile İlişkisinin Araştırılması”. Namık Kemal Tıp Dergisi, vol. 7, no. 2, 2019, pp. 61-71.
Vancouver Bozgeyik E. Küçük Hücreli Olmayan Akciğer Kanseri Hücrelerinde Let-7B- 5P’nin Apoptotik Genler ile İlişkisinin Araştırılması. NKMJ. 2019;7(2):61-7.