BibTex RIS Cite

SLANT HELICES IN DUAL LORENTZIAN SPACE D3 1

Year 2016, Volume: 2 Issue: 1, 3 - 10, 02.04.2016
https://doi.org/10.20863/nsd.04519

Abstract

In this paper, we consider a unit speed dual Lorentzian curve a in dual Lorentzian space D31 and denote by {T ,N, B } the dual Frenet frame of a. We say that a is a slant helix if there exists a non-zero dual constant vector …eld U in D 3 1 such that the dual function <N;U> is a dual constant.
Moreover, we give some characterizations of slant helice in terms of their dual
curvatures. Finally, we show that dual tangent indicatrices and dual binormal
indicatrices of slant helices are dual helices.

References

  • Ali, A.T. and Lopez, R., Slant helices in Minkowski space E₁³, J. Korean Math. Soc. 48. 2011; no.1: 159-167.
  • Guggenheimer, H., W., Differential Geometry, McGraw-Hill, New York, 1963.
  • Özkaldı, S., İlarslan K. and Yaylı, Y., On mannheim partner curves in dual Lorentzian space, Hacettepe Journal of Mathematics and Statistics. 40. 2011; 649-661.
  • Kula L. and Yayli, Y., On slant helix and its spherical indicatrix, Appl. Math. Comput. 169. 2005; no.1: 600-607999.
  • O'Neill, B., Semi Riemannian geometry with applications to relativity, London: Academic Press. 1983.
  • Önder, M., Kazaz, M., Kocayiğit, H. and Kilic, O., B₂ slant helix in Euclidian 4-space E⁴, Int. J. Contemp. Math. Sci. 3. 2008; no.29-32: 1433-1440.
  • Önder, M. and Uğurlu, H., Normal and spherical curves in dual space D³, Mediterr. J. Math. 10. 2013; 1527-1537.
  • Özbey, E. and Oral, M., A study on rectifying curves in the dual Lorentzian space, Bull. Korean Math. Soc 46. 2009; no 5: 967-978.
  • Sağlam, D. and Kalkan, Ö., Some characterizations of slant helices in the Minkowski space E_{υ}ⁿ, Comptes rendus de l'Académie bulgare des Sciences.Tome 64. 2011; No 2: 173-184.
  • Lopez, R., Differential geometry of curves and surfaces in Lorentz-Minkowski space, Int. Electronic J. of Geometry . 2014; Vol 7, No.1: 44-107.
  • Uğurlu, H., H. and Çalışkan, A., The study mapping for directed spacelike and timelike lines in Minkowski 3-Space R₁³, Mathematical and Computational Applications, 1. 1996; no 2: 142-148.
  • Veldkamp, G., R., On the use of dual numbers, vectors and matrices in instantaneous spatial kinematics, Mechanism and Machine Theory, 11. 1976; no 2: 141-156.
  • Lee, J.W., Choi, J.H. and Jin, D.H., Slant dual Mannheim partner curves in the dual space, Int, J. Contemp. Math. Sciences, 6(31). 2011; 1535-1544.
  • Şahiner, B.and Önder, M., Slant helices, Darboux helices and similar curves in dual space D³, Mathematica Moravica (In press).

Slant helices in dual Lorentzian Space

Year 2016, Volume: 2 Issue: 1, 3 - 10, 02.04.2016
https://doi.org/10.20863/nsd.04519

Abstract

References

  • Ali, A.T. and Lopez, R., Slant helices in Minkowski space E₁³, J. Korean Math. Soc. 48. 2011; no.1: 159-167.
  • Guggenheimer, H., W., Differential Geometry, McGraw-Hill, New York, 1963.
  • Özkaldı, S., İlarslan K. and Yaylı, Y., On mannheim partner curves in dual Lorentzian space, Hacettepe Journal of Mathematics and Statistics. 40. 2011; 649-661.
  • Kula L. and Yayli, Y., On slant helix and its spherical indicatrix, Appl. Math. Comput. 169. 2005; no.1: 600-607999.
  • O'Neill, B., Semi Riemannian geometry with applications to relativity, London: Academic Press. 1983.
  • Önder, M., Kazaz, M., Kocayiğit, H. and Kilic, O., B₂ slant helix in Euclidian 4-space E⁴, Int. J. Contemp. Math. Sci. 3. 2008; no.29-32: 1433-1440.
  • Önder, M. and Uğurlu, H., Normal and spherical curves in dual space D³, Mediterr. J. Math. 10. 2013; 1527-1537.
  • Özbey, E. and Oral, M., A study on rectifying curves in the dual Lorentzian space, Bull. Korean Math. Soc 46. 2009; no 5: 967-978.
  • Sağlam, D. and Kalkan, Ö., Some characterizations of slant helices in the Minkowski space E_{υ}ⁿ, Comptes rendus de l'Académie bulgare des Sciences.Tome 64. 2011; No 2: 173-184.
  • Lopez, R., Differential geometry of curves and surfaces in Lorentz-Minkowski space, Int. Electronic J. of Geometry . 2014; Vol 7, No.1: 44-107.
  • Uğurlu, H., H. and Çalışkan, A., The study mapping for directed spacelike and timelike lines in Minkowski 3-Space R₁³, Mathematical and Computational Applications, 1. 1996; no 2: 142-148.
  • Veldkamp, G., R., On the use of dual numbers, vectors and matrices in instantaneous spatial kinematics, Mechanism and Machine Theory, 11. 1976; no 2: 141-156.
  • Lee, J.W., Choi, J.H. and Jin, D.H., Slant dual Mannheim partner curves in the dual space, Int, J. Contemp. Math. Sciences, 6(31). 2011; 1535-1544.
  • Şahiner, B.and Önder, M., Slant helices, Darboux helices and similar curves in dual space D³, Mathematica Moravica (In press).
There are 14 citations in total.

Details

Primary Language English
Journal Section Original Articles
Authors

Derya Saglam

Serhat Ozkan This is me

Duygu Ozdamar This is me

Publication Date April 2, 2016
Published in Issue Year 2016 Volume: 2 Issue: 1

Cite

APA Saglam, D., Ozkan, S., & Ozdamar, D. (2016). SLANT HELICES IN DUAL LORENTZIAN SPACE D3 1. Natural Science and Discovery, 2(1), 3-10. https://doi.org/10.20863/nsd.04519
AMA Saglam D, Ozkan S, Ozdamar D. SLANT HELICES IN DUAL LORENTZIAN SPACE D3 1. Nat Sci Discov. April 2016;2(1):3-10. doi:10.20863/nsd.04519
Chicago Saglam, Derya, Serhat Ozkan, and Duygu Ozdamar. “SLANT HELICES IN DUAL LORENTZIAN SPACE D3 1”. Natural Science and Discovery 2, no. 1 (April 2016): 3-10. https://doi.org/10.20863/nsd.04519.
EndNote Saglam D, Ozkan S, Ozdamar D (April 1, 2016) SLANT HELICES IN DUAL LORENTZIAN SPACE D3 1. Natural Science and Discovery 2 1 3–10.
IEEE D. Saglam, S. Ozkan, and D. Ozdamar, “SLANT HELICES IN DUAL LORENTZIAN SPACE D3 1”, Nat Sci Discov, vol. 2, no. 1, pp. 3–10, 2016, doi: 10.20863/nsd.04519.
ISNAD Saglam, Derya et al. “SLANT HELICES IN DUAL LORENTZIAN SPACE D3 1”. Natural Science and Discovery 2/1 (April 2016), 3-10. https://doi.org/10.20863/nsd.04519.
JAMA Saglam D, Ozkan S, Ozdamar D. SLANT HELICES IN DUAL LORENTZIAN SPACE D3 1. Nat Sci Discov. 2016;2:3–10.
MLA Saglam, Derya et al. “SLANT HELICES IN DUAL LORENTZIAN SPACE D3 1”. Natural Science and Discovery, vol. 2, no. 1, 2016, pp. 3-10, doi:10.20863/nsd.04519.
Vancouver Saglam D, Ozkan S, Ozdamar D. SLANT HELICES IN DUAL LORENTZIAN SPACE D3 1. Nat Sci Discov. 2016;2(1):3-10.

Cited By

Associated curves of a Frenet curve in the dual Lorentzian space
Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics
https://doi.org/10.31801/cfsuasmas.877170