BibTex RIS Cite

On a special type nearly quasi-Einstein manifold

Year 2013, Volume: 1 Issue: 1, 100 - 105, 01.04.2013

Abstract

In the present paper, we consider a special type of nearly quasi-Einstein manifold denoted byN(QE)n. Most of the sections are based on some properties ofN(QE)n. We give some theorems about these manifolds. In the last section, a special type

References

  • Chaki, M. C., Maity, R. K., On quasi-Einstein manifolds, Publ. Math. Debrecen, 57, (2000), 297-306.
  • De, U. C., Gazi, A. K., On nearly quasi-Einstein manifolds, Novi Sad J. Math., 38(2), (2008), 115-121.
  • De, U. C., Guha, N., Kamilya, D, On generalized Ricci-recurrent manifolds, Tensor N. S., 56, (1995), 312-317.
  • Deszcz, R., Glogowska, M., Hotlos, M., Senturk, Z., On certain quasi-Einstein semisymmetric hypersurfaces, Annales Univ. Sci. Budapest. Eotvos Sect. Math., 41, (1998), 151-164.
  • Gazi, A. K., De, U. C., On the existence of nearly quasi-Einstein manifolds, Novi Sad J. Math., 39(2), (2009), 111-117.
  • Patterson, E. M., Some theorems on Ricci recurrent spaces, J. London Math. Soc., 27, (1952), 287-295.
  • Prakasha, D. G., Bagewadi, C. S., On nearly quasi-Einstein manifolds, Mathematica Pannonica, 21(2), (2010), 265-273.
  • Singh, R. N., Pandey, M. K., Gautam, D., On nearly quasi Einstein manifold, Int. Journal of Math. Analysis., 5(36), (2011), 1767-1773.
  • Walker, M., Penrose, R., On quadratic first integrals of the geodesic equations for type {22} spacetimes, Commun. Math. Phys., 18, (1970), 265- 274.
  • Yano, K., On the torse-forming directions in Riemannian spaces, Proc. Imp. Acad., 20(6), (1944), 340-345.

On a Special Type Nearly Quasi-Einstein Manifold

Year 2013, Volume: 1 Issue: 1, 100 - 105, 01.04.2013

Abstract

References

  • Chaki, M. C., Maity, R. K., On quasi-Einstein manifolds, Publ. Math. Debrecen, 57, (2000), 297-306.
  • De, U. C., Gazi, A. K., On nearly quasi-Einstein manifolds, Novi Sad J. Math., 38(2), (2008), 115-121.
  • De, U. C., Guha, N., Kamilya, D, On generalized Ricci-recurrent manifolds, Tensor N. S., 56, (1995), 312-317.
  • Deszcz, R., Glogowska, M., Hotlos, M., Senturk, Z., On certain quasi-Einstein semisymmetric hypersurfaces, Annales Univ. Sci. Budapest. Eotvos Sect. Math., 41, (1998), 151-164.
  • Gazi, A. K., De, U. C., On the existence of nearly quasi-Einstein manifolds, Novi Sad J. Math., 39(2), (2009), 111-117.
  • Patterson, E. M., Some theorems on Ricci recurrent spaces, J. London Math. Soc., 27, (1952), 287-295.
  • Prakasha, D. G., Bagewadi, C. S., On nearly quasi-Einstein manifolds, Mathematica Pannonica, 21(2), (2010), 265-273.
  • Singh, R. N., Pandey, M. K., Gautam, D., On nearly quasi Einstein manifold, Int. Journal of Math. Analysis., 5(36), (2011), 1767-1773.
  • Walker, M., Penrose, R., On quadratic first integrals of the geodesic equations for type {22} spacetimes, Commun. Math. Phys., 18, (1970), 265- 274.
  • Yano, K., On the torse-forming directions in Riemannian spaces, Proc. Imp. Acad., 20(6), (1944), 340-345.
There are 10 citations in total.

Details

Authors

Fusun Ozen Zengin This is me

Bahar Kirik This is me

Publication Date April 1, 2013
Published in Issue Year 2013 Volume: 1 Issue: 1

Cite

APA Zengin, F. O., & Kirik, B. (2013). On a Special Type Nearly Quasi-Einstein Manifold. New Trends in Mathematical Sciences, 1(1), 100-105.
AMA Zengin FO, Kirik B. On a Special Type Nearly Quasi-Einstein Manifold. New Trends in Mathematical Sciences. April 2013;1(1):100-105.
Chicago Zengin, Fusun Ozen, and Bahar Kirik. “On a Special Type Nearly Quasi-Einstein Manifold”. New Trends in Mathematical Sciences 1, no. 1 (April 2013): 100-105.
EndNote Zengin FO, Kirik B (April 1, 2013) On a Special Type Nearly Quasi-Einstein Manifold. New Trends in Mathematical Sciences 1 1 100–105.
IEEE F. O. Zengin and B. Kirik, “On a Special Type Nearly Quasi-Einstein Manifold”, New Trends in Mathematical Sciences, vol. 1, no. 1, pp. 100–105, 2013.
ISNAD Zengin, Fusun Ozen - Kirik, Bahar. “On a Special Type Nearly Quasi-Einstein Manifold”. New Trends in Mathematical Sciences 1/1 (April2013), 100-105.
JAMA Zengin FO, Kirik B. On a Special Type Nearly Quasi-Einstein Manifold. New Trends in Mathematical Sciences. 2013;1:100–105.
MLA Zengin, Fusun Ozen and Bahar Kirik. “On a Special Type Nearly Quasi-Einstein Manifold”. New Trends in Mathematical Sciences, vol. 1, no. 1, 2013, pp. 100-5.
Vancouver Zengin FO, Kirik B. On a Special Type Nearly Quasi-Einstein Manifold. New Trends in Mathematical Sciences. 2013;1(1):100-5.