| APA |
Iscan, İ., Turhan, S., & Maden, S. (2016). Some Hermite-Hadamard-Fejer type inequalities for harmonically convex functions via fractional integral. New Trends in Mathematical Sciences, 4(2), 1-10. https://izlik.org/JA24CP85NZ
|
|
| AMA |
1.Iscan İ, Turhan S, Maden S. Some Hermite-Hadamard-Fejer type inequalities for harmonically convex functions via fractional integral. New Trends in Mathematical Sciences. 2016;4(2):1-10. https://izlik.org/JA24CP85NZ
|
|
| Chicago |
Iscan, İmdat, Sercan Turhan, and Selahattin Maden. 2016. “Some Hermite-Hadamard-Fejer Type Inequalities for Harmonically Convex Functions via Fractional Integral”. New Trends in Mathematical Sciences 4 (2): 1-10. https://izlik.org/JA24CP85NZ.
|
|
| EndNote |
Iscan İ, Turhan S, Maden S (March 1, 2016) Some Hermite-Hadamard-Fejer type inequalities for harmonically convex functions via fractional integral. New Trends in Mathematical Sciences 4 2 1–10.
|
|
| IEEE |
[1]İ. Iscan, S. Turhan, and S. Maden, “Some Hermite-Hadamard-Fejer type inequalities for harmonically convex functions via fractional integral”, New Trends in Mathematical Sciences, vol. 4, no. 2, pp. 1–10, Mar. 2016, [Online]. Available: https://izlik.org/JA24CP85NZ
|
|
| ISNAD |
Iscan, İmdat - Turhan, Sercan - Maden, Selahattin. “Some Hermite-Hadamard-Fejer Type Inequalities for Harmonically Convex Functions via Fractional Integral”. New Trends in Mathematical Sciences 4/2 (March 1, 2016): 1-10. https://izlik.org/JA24CP85NZ.
|
|
| JAMA |
1.Iscan İ, Turhan S, Maden S. Some Hermite-Hadamard-Fejer type inequalities for harmonically convex functions via fractional integral. New Trends in Mathematical Sciences. 2016;4:1–10.
|
|
| MLA |
Iscan, İmdat, et al. “Some Hermite-Hadamard-Fejer Type Inequalities for Harmonically Convex Functions via Fractional Integral”. New Trends in Mathematical Sciences, vol. 4, no. 2, Mar. 2016, pp. 1-10, https://izlik.org/JA24CP85NZ.
|
|
| Vancouver |
1.Iscan İ, Turhan S, Maden S. Some Hermite-Hadamard-Fejer type inequalities for harmonically convex functions via fractional integral. New Trends in Mathematical Sciences [Internet]. 2016 Mar. 1;4(2):1-10. Available from: https://izlik.org/JA24CP85NZ
|
|