Research Article
BibTex RIS Cite

Numerical simulation for SI model with variable-order fractional

Year 2016, Volume: 4 Issue: 2, 45 - 55, 01.03.2016

Abstract

In this paper numerical studies for the variable-order fractional delay differential equations are presented. Adams-Bashforth-Moulton algorithm has been extended to study this problem, where the derivative is defined in the Caputo variable-order fractional sense. Numerical test examples are presented to demonstrate utility of the method. Chaotic behaviors are observed in variable-order one dimensional delayed systems.

References

  • E. Fridman, L. Fridman and E. Shustin, Steady modes in relay control systems with time delay and periodic disturbances, J. Dyn. Sys., Meas., Control, 122(4), 732-737, 2000.
  • L. C. Davis, Modification of the optimal velocity traffic model to include delay due to driver reaction time, Physica A, 319, 557-567, 2002.
  • Y. Kuang, Delay differential equations with applications in population biology, Academic Press, Boston, San Diego, New York, 1993.
  • I. Epstein and Y. Luo, Differential delay equations in chemical kinetics. Nonlinear models: the cross-shaped phase diagram and the oregonator, J. Chem. Phys., 95, 244-254, 1991.
  • S. Bhalekar, V. Daftardar-Gejji, A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order, Journal of Fractional Calculus and Applications, 1(5), 1-9, 2011.
  • K. Diethelm, The Analysis of Fractional Differential Equations, Springer, Berlin, Germany, 2010.
  • K. Diethelm, N. J. Ford, and A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynamics, 29, 3-22, 2002.
  • C. F. M. Coimbra, Mechanics with variable-order differential operators, Annulet der Physic, 12(11-12), 692-703, 2003.
  • C. F. Lorenzo, T.T. Hartley, The vector linear fractional initialization problem, National Aeronautics and Space Administration, Glenn Research Center, 1999.
  • R. Lin, F. Liu , V. Anh, I. Turner, Stability and convergence of a new explicit FDM for the variable-order nonlinear fractional diffusion equation, Applied Mathematics and Computation, 212, 435-445, 2009.
  • S. Ma, Y. Xu, and W. Yue, Numerical solutions of a variable-order fractional financial system, Hindawi Publishing Corporation Journal of Applied Mathematics, 14, 1-15, 2012.
  • P. L. Butzer and U.Westphal, An introduction to fractional calculus, World Scientific, Singapore, 2000.
  • S. Umarov and S. Steinberg, Variable order differential equations with piecewise constant order function and diffusion with changing modes, Zeitschrift Analysis and Anwendungen, 28(4), 131-150, 2009.
  • N. H. Sweilam, A. M. Nagy, T. A. Assiri and N.Y.Ali, Numerical Simulations For Variable-Order Fractional Nonlinear Delay Differential equations Journal of Fractional Calculus and Applications,6(1) Jan. 2015, pp. 71-82.
  • M. M. Khader, N. H. Sweilam, A. M. S. Mahdy and N. K. Abdel Moniem, Numerical Simulation for the Fractional SIRC Model and Influenza A, Applied Mathematics & Information Sciences Appl. Math. Inf. Sci. 3, 1-8 (2014).
  • N. H. Sweilam, A. M. Nagy, T. A. Assiri and N.Y.Ali, Numerical simulations for Variable-order fractional nonlinear delay differential equations, 6, 71-82, 2015.
Year 2016, Volume: 4 Issue: 2, 45 - 55, 01.03.2016

Abstract

References

  • E. Fridman, L. Fridman and E. Shustin, Steady modes in relay control systems with time delay and periodic disturbances, J. Dyn. Sys., Meas., Control, 122(4), 732-737, 2000.
  • L. C. Davis, Modification of the optimal velocity traffic model to include delay due to driver reaction time, Physica A, 319, 557-567, 2002.
  • Y. Kuang, Delay differential equations with applications in population biology, Academic Press, Boston, San Diego, New York, 1993.
  • I. Epstein and Y. Luo, Differential delay equations in chemical kinetics. Nonlinear models: the cross-shaped phase diagram and the oregonator, J. Chem. Phys., 95, 244-254, 1991.
  • S. Bhalekar, V. Daftardar-Gejji, A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order, Journal of Fractional Calculus and Applications, 1(5), 1-9, 2011.
  • K. Diethelm, The Analysis of Fractional Differential Equations, Springer, Berlin, Germany, 2010.
  • K. Diethelm, N. J. Ford, and A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynamics, 29, 3-22, 2002.
  • C. F. M. Coimbra, Mechanics with variable-order differential operators, Annulet der Physic, 12(11-12), 692-703, 2003.
  • C. F. Lorenzo, T.T. Hartley, The vector linear fractional initialization problem, National Aeronautics and Space Administration, Glenn Research Center, 1999.
  • R. Lin, F. Liu , V. Anh, I. Turner, Stability and convergence of a new explicit FDM for the variable-order nonlinear fractional diffusion equation, Applied Mathematics and Computation, 212, 435-445, 2009.
  • S. Ma, Y. Xu, and W. Yue, Numerical solutions of a variable-order fractional financial system, Hindawi Publishing Corporation Journal of Applied Mathematics, 14, 1-15, 2012.
  • P. L. Butzer and U.Westphal, An introduction to fractional calculus, World Scientific, Singapore, 2000.
  • S. Umarov and S. Steinberg, Variable order differential equations with piecewise constant order function and diffusion with changing modes, Zeitschrift Analysis and Anwendungen, 28(4), 131-150, 2009.
  • N. H. Sweilam, A. M. Nagy, T. A. Assiri and N.Y.Ali, Numerical Simulations For Variable-Order Fractional Nonlinear Delay Differential equations Journal of Fractional Calculus and Applications,6(1) Jan. 2015, pp. 71-82.
  • M. M. Khader, N. H. Sweilam, A. M. S. Mahdy and N. K. Abdel Moniem, Numerical Simulation for the Fractional SIRC Model and Influenza A, Applied Mathematics & Information Sciences Appl. Math. Inf. Sci. 3, 1-8 (2014).
  • N. H. Sweilam, A. M. Nagy, T. A. Assiri and N.Y.Ali, Numerical simulations for Variable-order fractional nonlinear delay differential equations, 6, 71-82, 2015.
There are 16 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Hanaa Abdel Hameed Asfour This is me

Mohamed Gamal M. Ibrahim This is me

Publication Date March 1, 2016
Published in Issue Year 2016 Volume: 4 Issue: 2

Cite

APA Asfour, H. A. H., & Ibrahim, M. G. M. (2016). Numerical simulation for SI model with variable-order fractional. New Trends in Mathematical Sciences, 4(2), 45-55.
AMA Asfour HAH, Ibrahim MGM. Numerical simulation for SI model with variable-order fractional. New Trends in Mathematical Sciences. March 2016;4(2):45-55.
Chicago Asfour, Hanaa Abdel Hameed, and Mohamed Gamal M. Ibrahim. “Numerical Simulation for SI Model With Variable-Order Fractional”. New Trends in Mathematical Sciences 4, no. 2 (March 2016): 45-55.
EndNote Asfour HAH, Ibrahim MGM (March 1, 2016) Numerical simulation for SI model with variable-order fractional. New Trends in Mathematical Sciences 4 2 45–55.
IEEE H. A. H. Asfour and M. G. M. Ibrahim, “Numerical simulation for SI model with variable-order fractional”, New Trends in Mathematical Sciences, vol. 4, no. 2, pp. 45–55, 2016.
ISNAD Asfour, Hanaa Abdel Hameed - Ibrahim, Mohamed Gamal M. “Numerical Simulation for SI Model With Variable-Order Fractional”. New Trends in Mathematical Sciences 4/2 (March 2016), 45-55.
JAMA Asfour HAH, Ibrahim MGM. Numerical simulation for SI model with variable-order fractional. New Trends in Mathematical Sciences. 2016;4:45–55.
MLA Asfour, Hanaa Abdel Hameed and Mohamed Gamal M. Ibrahim. “Numerical Simulation for SI Model With Variable-Order Fractional”. New Trends in Mathematical Sciences, vol. 4, no. 2, 2016, pp. 45-55.
Vancouver Asfour HAH, Ibrahim MGM. Numerical simulation for SI model with variable-order fractional. New Trends in Mathematical Sciences. 2016;4(2):45-5.