Numerical simulation for SI model with variable-order fractional
Year 2016,
Volume: 4 Issue: 2, 45 - 55, 01.03.2016
Hanaa Abdel Hameed Asfour
Mohamed Gamal M. Ibrahim
Abstract
In this paper numerical studies for the variable-order fractional delay differential equations are presented. Adams-Bashforth-Moulton algorithm has been extended to study this problem, where the derivative is defined in the Caputo variable-order fractional sense. Numerical test examples are presented to demonstrate utility of the method. Chaotic behaviors are observed in variable-order one dimensional delayed systems.
References
- E. Fridman, L. Fridman and E. Shustin, Steady modes in relay control systems with time delay and periodic disturbances, J. Dyn.
Sys., Meas., Control, 122(4), 732-737, 2000.
- L. C. Davis, Modification of the optimal velocity traffic model to include delay due to driver reaction time, Physica A, 319,
557-567, 2002.
- Y. Kuang, Delay differential equations with applications in population biology, Academic Press, Boston, San Diego, New York,
1993.
- I. Epstein and Y. Luo, Differential delay equations in chemical kinetics. Nonlinear models: the cross-shaped phase diagram and
the oregonator, J. Chem. Phys., 95, 244-254, 1991.
- S. Bhalekar, V. Daftardar-Gejji, A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order,
Journal of Fractional Calculus and Applications, 1(5), 1-9, 2011.
- K. Diethelm, The Analysis of Fractional Differential Equations, Springer, Berlin, Germany, 2010.
- K. Diethelm, N. J. Ford, and A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential
equations, Nonlinear Dynamics, 29, 3-22, 2002.
- C. F. M. Coimbra, Mechanics with variable-order differential operators, Annulet der Physic, 12(11-12), 692-703, 2003.
- C. F. Lorenzo, T.T. Hartley, The vector linear fractional initialization problem, National Aeronautics and Space Administration,
Glenn Research Center, 1999.
- R. Lin, F. Liu , V. Anh, I. Turner, Stability and convergence of a new explicit FDM for the variable-order nonlinear fractional
diffusion equation, Applied Mathematics and Computation, 212, 435-445, 2009.
- S. Ma, Y. Xu, and W. Yue, Numerical solutions of a variable-order fractional financial system, Hindawi Publishing Corporation
Journal of Applied Mathematics, 14, 1-15, 2012.
- P. L. Butzer and U.Westphal, An introduction to fractional calculus, World Scientific, Singapore, 2000.
- S. Umarov and S. Steinberg, Variable order differential equations with piecewise constant order function and diffusion with
changing modes, Zeitschrift Analysis and Anwendungen, 28(4), 131-150, 2009.
- N. H. Sweilam, A. M. Nagy, T. A. Assiri and N.Y.Ali, Numerical Simulations For Variable-Order Fractional Nonlinear Delay
Differential equations Journal of Fractional Calculus and Applications,6(1) Jan. 2015, pp. 71-82.
- M. M. Khader, N. H. Sweilam, A. M. S. Mahdy and N. K. Abdel Moniem, Numerical Simulation for the Fractional SIRC Model
and Influenza A, Applied Mathematics & Information Sciences Appl. Math. Inf. Sci. 3, 1-8 (2014).
- N. H. Sweilam, A. M. Nagy, T. A. Assiri and N.Y.Ali, Numerical simulations for Variable-order fractional nonlinear delay
differential equations, 6, 71-82, 2015.
Year 2016,
Volume: 4 Issue: 2, 45 - 55, 01.03.2016
Hanaa Abdel Hameed Asfour
Mohamed Gamal M. Ibrahim
References
- E. Fridman, L. Fridman and E. Shustin, Steady modes in relay control systems with time delay and periodic disturbances, J. Dyn.
Sys., Meas., Control, 122(4), 732-737, 2000.
- L. C. Davis, Modification of the optimal velocity traffic model to include delay due to driver reaction time, Physica A, 319,
557-567, 2002.
- Y. Kuang, Delay differential equations with applications in population biology, Academic Press, Boston, San Diego, New York,
1993.
- I. Epstein and Y. Luo, Differential delay equations in chemical kinetics. Nonlinear models: the cross-shaped phase diagram and
the oregonator, J. Chem. Phys., 95, 244-254, 1991.
- S. Bhalekar, V. Daftardar-Gejji, A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order,
Journal of Fractional Calculus and Applications, 1(5), 1-9, 2011.
- K. Diethelm, The Analysis of Fractional Differential Equations, Springer, Berlin, Germany, 2010.
- K. Diethelm, N. J. Ford, and A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential
equations, Nonlinear Dynamics, 29, 3-22, 2002.
- C. F. M. Coimbra, Mechanics with variable-order differential operators, Annulet der Physic, 12(11-12), 692-703, 2003.
- C. F. Lorenzo, T.T. Hartley, The vector linear fractional initialization problem, National Aeronautics and Space Administration,
Glenn Research Center, 1999.
- R. Lin, F. Liu , V. Anh, I. Turner, Stability and convergence of a new explicit FDM for the variable-order nonlinear fractional
diffusion equation, Applied Mathematics and Computation, 212, 435-445, 2009.
- S. Ma, Y. Xu, and W. Yue, Numerical solutions of a variable-order fractional financial system, Hindawi Publishing Corporation
Journal of Applied Mathematics, 14, 1-15, 2012.
- P. L. Butzer and U.Westphal, An introduction to fractional calculus, World Scientific, Singapore, 2000.
- S. Umarov and S. Steinberg, Variable order differential equations with piecewise constant order function and diffusion with
changing modes, Zeitschrift Analysis and Anwendungen, 28(4), 131-150, 2009.
- N. H. Sweilam, A. M. Nagy, T. A. Assiri and N.Y.Ali, Numerical Simulations For Variable-Order Fractional Nonlinear Delay
Differential equations Journal of Fractional Calculus and Applications,6(1) Jan. 2015, pp. 71-82.
- M. M. Khader, N. H. Sweilam, A. M. S. Mahdy and N. K. Abdel Moniem, Numerical Simulation for the Fractional SIRC Model
and Influenza A, Applied Mathematics & Information Sciences Appl. Math. Inf. Sci. 3, 1-8 (2014).
- N. H. Sweilam, A. M. Nagy, T. A. Assiri and N.Y.Ali, Numerical simulations for Variable-order fractional nonlinear delay
differential equations, 6, 71-82, 2015.