Research Article
BibTex RIS Cite

Laguerre polynomial solution of high- order linear Fredholm integro-differential equations

Year 2016, Volume: 4 Issue: 2, 273 - 284, 01.03.2016

Abstract

In this paper, a Laguerre matrix method is developed to find an approximate solution of linear differential, integral and integro-differential equations with variable coefficients under mixed conditions in terms of Laguerre polynomials. For this purpose, Laguerre polynomials are used in the interval [0,b]. The proposed method converts these equations into matrix equations, which correspond to systems of linear algebraic equations with unknown Laguerre coefficients. The solution function is obtained easily by solving these matrix equations. The examples of these kinds of equations are solved by using this new method and the results are discussed and it is seen that the present method is accurate, efficient and applicable.


References

  • Alkan, S., “A new solution method for nonlinear fractional integro-differential equations”, Discrete and Continuous Dynamical Systems - Series S, Vol:8, No:6, 2015.
  • Alkan, S., Yildirim, K., Secer, A., “An efficient algorithm for solving fractional differential equations with boundary conditions”, Open Physics, 14(1), 6-14, 2016
  • D. Zwillinger, Handbook of Differential Equations, Academic Press, 1998.
  • E.W.Weisstein, ”Laguerre Polynomial” From MathWorld-A Wolfram Web Resource.
  • E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley & Sons, 1978.
  • H.A. Mavromatis, R.S. Alassar, Two new associated Laguerre integral results, Appl. Math. Lett. 14 (2001) 903-905 .
  • L. M. Delves, J. L. Mohammed, Computational Methods for Integral Equations, Cambridge University Press, Cambridge, 1985.
  • M. Razzagni, S. Yousefi, Legendre wavelets method for the nonlinear Volterra Fredholm integral equations.
  • MathCAD 14, PTC Inc. 2007.
  • MATLAB 6.5.1, The MathWorks Inc. 2003.
  • M. Mestrovic, The modified decomposition method for eighth-order boundary value problems, Appl. Math. Comput. 188 (2007) 1437-1444.
  • M. Sezer. and D. Setenay (1996), Chebyshev series solutions of Fredholm integral equations, International Journal ofMathematical Educatian in Science and Technology, 27:5, 649-657.
  • M. Sezer, M. Gulsu, Polynomial solution of the most general linear Fredholm-Volterra integro differential-difference equations by means of Taylor collocation method, Appl. Math. Comput., Volume 185, Issue 1, 1 February 2007, Pages 646-657.
  • Mohsen, Adel; El-Gamel, Mohamed. Sinc-collocation Algorithm for Solving Nonlinear Fredholm Integro-differential Equations. British Journal of Mathematics & Computer Science, 2014, 4.12: 1693.
  • N. Kurt, M. C¸ evik, Polynomial solution of the single degree of freedom system by Taylor matrix method, Mech. Res. Commun. 35 (2008) 530-536.
  • N. Kurt, M.Sezer, Polynomial solution of high-order linear Fredholm integro-differential equations with constant coefficients, J. Franklin Inst. 345 (2008) 839-850.
  • O.Coulaud, D.Funaro, O. Kavian, Laguerre Spectral approximation of elliptic problems in exterior domains, Comput. Methods in Appl. Mech. Eng. 80 (1990) 451-458.
  • O. Acan, O. Firat, A. Kurnaz, Y. Keskin, Applications for New Technique Conformable Fractional Reduced Differential Transform Method, J. Comput. Theor. Nanosci. (2016) (Accepted).
  • Olivier Coulaud, Daniele Funaro and Otared Uvian. Laguerre spectral approximation of elliptic problems in exterior domains.Computer methods in applied mechanics and engineering, 80, (1990), 451-458.
  • O. Acan and Y. Keskin. ”Approximate solution of Kuramoto–Sivashinsky equation using reduced differential transform method.” Proceedings of the International Conference on Numerical Analysis and Applied Mathematics 2014 (ICNAAM-2014). Vol. 1648. AIP Publishing, 2015
  • S. Yalc¸ınbas¸, M. Sezer, H. Hilmi Sorkun, Legendre Polinomial Solutions of High-Order Linear Fredholm Integro-Differential Equations, Appl. Math. Comput., In Press, Accept Manuscript, Available online 31 January 2009.
  • S. Lyanaga, Y. Kawada, Encyclopedic Dictionary of Mathematics, MIT Press, 1980.
  • S.B. Trickovic,M.S. Stankovic, A new approach to the orthogonality of the Laguerre and Hermite polynomials, Integral Transform Spec. Funct. 17 (2006) 661-672.
  • Turkyilmazoglu, Mustafa. An effective approach for numerical solutions of high-order Fredholm integro-differential equations. Applied Mathematics and Computation 227 (2014): 384-398.
  • Yuzbasi Suayip. A collocation method based on Bernstein polynomials to solve nonlinear Fredholm–Volterra integro-differential equations. Applied Mathematics and Computation 273 (2016): 142-154.
Year 2016, Volume: 4 Issue: 2, 273 - 284, 01.03.2016

Abstract

References

  • Alkan, S., “A new solution method for nonlinear fractional integro-differential equations”, Discrete and Continuous Dynamical Systems - Series S, Vol:8, No:6, 2015.
  • Alkan, S., Yildirim, K., Secer, A., “An efficient algorithm for solving fractional differential equations with boundary conditions”, Open Physics, 14(1), 6-14, 2016
  • D. Zwillinger, Handbook of Differential Equations, Academic Press, 1998.
  • E.W.Weisstein, ”Laguerre Polynomial” From MathWorld-A Wolfram Web Resource.
  • E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley & Sons, 1978.
  • H.A. Mavromatis, R.S. Alassar, Two new associated Laguerre integral results, Appl. Math. Lett. 14 (2001) 903-905 .
  • L. M. Delves, J. L. Mohammed, Computational Methods for Integral Equations, Cambridge University Press, Cambridge, 1985.
  • M. Razzagni, S. Yousefi, Legendre wavelets method for the nonlinear Volterra Fredholm integral equations.
  • MathCAD 14, PTC Inc. 2007.
  • MATLAB 6.5.1, The MathWorks Inc. 2003.
  • M. Mestrovic, The modified decomposition method for eighth-order boundary value problems, Appl. Math. Comput. 188 (2007) 1437-1444.
  • M. Sezer. and D. Setenay (1996), Chebyshev series solutions of Fredholm integral equations, International Journal ofMathematical Educatian in Science and Technology, 27:5, 649-657.
  • M. Sezer, M. Gulsu, Polynomial solution of the most general linear Fredholm-Volterra integro differential-difference equations by means of Taylor collocation method, Appl. Math. Comput., Volume 185, Issue 1, 1 February 2007, Pages 646-657.
  • Mohsen, Adel; El-Gamel, Mohamed. Sinc-collocation Algorithm for Solving Nonlinear Fredholm Integro-differential Equations. British Journal of Mathematics & Computer Science, 2014, 4.12: 1693.
  • N. Kurt, M. C¸ evik, Polynomial solution of the single degree of freedom system by Taylor matrix method, Mech. Res. Commun. 35 (2008) 530-536.
  • N. Kurt, M.Sezer, Polynomial solution of high-order linear Fredholm integro-differential equations with constant coefficients, J. Franklin Inst. 345 (2008) 839-850.
  • O.Coulaud, D.Funaro, O. Kavian, Laguerre Spectral approximation of elliptic problems in exterior domains, Comput. Methods in Appl. Mech. Eng. 80 (1990) 451-458.
  • O. Acan, O. Firat, A. Kurnaz, Y. Keskin, Applications for New Technique Conformable Fractional Reduced Differential Transform Method, J. Comput. Theor. Nanosci. (2016) (Accepted).
  • Olivier Coulaud, Daniele Funaro and Otared Uvian. Laguerre spectral approximation of elliptic problems in exterior domains.Computer methods in applied mechanics and engineering, 80, (1990), 451-458.
  • O. Acan and Y. Keskin. ”Approximate solution of Kuramoto–Sivashinsky equation using reduced differential transform method.” Proceedings of the International Conference on Numerical Analysis and Applied Mathematics 2014 (ICNAAM-2014). Vol. 1648. AIP Publishing, 2015
  • S. Yalc¸ınbas¸, M. Sezer, H. Hilmi Sorkun, Legendre Polinomial Solutions of High-Order Linear Fredholm Integro-Differential Equations, Appl. Math. Comput., In Press, Accept Manuscript, Available online 31 January 2009.
  • S. Lyanaga, Y. Kawada, Encyclopedic Dictionary of Mathematics, MIT Press, 1980.
  • S.B. Trickovic,M.S. Stankovic, A new approach to the orthogonality of the Laguerre and Hermite polynomials, Integral Transform Spec. Funct. 17 (2006) 661-672.
  • Turkyilmazoglu, Mustafa. An effective approach for numerical solutions of high-order Fredholm integro-differential equations. Applied Mathematics and Computation 227 (2014): 384-398.
  • Yuzbasi Suayip. A collocation method based on Bernstein polynomials to solve nonlinear Fredholm–Volterra integro-differential equations. Applied Mathematics and Computation 273 (2016): 142-154.
There are 25 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Nurcan Baykus Savasaneril This is me

Mehmet Sezer This is me

Publication Date March 1, 2016
Published in Issue Year 2016 Volume: 4 Issue: 2

Cite

APA Savasaneril, N. B., & Sezer, M. (2016). Laguerre polynomial solution of high- order linear Fredholm integro-differential equations. New Trends in Mathematical Sciences, 4(2), 273-284.
AMA Savasaneril NB, Sezer M. Laguerre polynomial solution of high- order linear Fredholm integro-differential equations. New Trends in Mathematical Sciences. March 2016;4(2):273-284.
Chicago Savasaneril, Nurcan Baykus, and Mehmet Sezer. “Laguerre Polynomial Solution of High- Order Linear Fredholm Integro-Differential Equations”. New Trends in Mathematical Sciences 4, no. 2 (March 2016): 273-84.
EndNote Savasaneril NB, Sezer M (March 1, 2016) Laguerre polynomial solution of high- order linear Fredholm integro-differential equations. New Trends in Mathematical Sciences 4 2 273–284.
IEEE N. B. Savasaneril and M. Sezer, “Laguerre polynomial solution of high- order linear Fredholm integro-differential equations”, New Trends in Mathematical Sciences, vol. 4, no. 2, pp. 273–284, 2016.
ISNAD Savasaneril, Nurcan Baykus - Sezer, Mehmet. “Laguerre Polynomial Solution of High- Order Linear Fredholm Integro-Differential Equations”. New Trends in Mathematical Sciences 4/2 (March 2016), 273-284.
JAMA Savasaneril NB, Sezer M. Laguerre polynomial solution of high- order linear Fredholm integro-differential equations. New Trends in Mathematical Sciences. 2016;4:273–284.
MLA Savasaneril, Nurcan Baykus and Mehmet Sezer. “Laguerre Polynomial Solution of High- Order Linear Fredholm Integro-Differential Equations”. New Trends in Mathematical Sciences, vol. 4, no. 2, 2016, pp. 273-84.
Vancouver Savasaneril NB, Sezer M. Laguerre polynomial solution of high- order linear Fredholm integro-differential equations. New Trends in Mathematical Sciences. 2016;4(2):273-84.