Research Article
BibTex RIS Cite
Year 2016, Volume: 4 Issue: 4, 295 - 305, 31.12.2016

Abstract

References

  • Bejancu A, Duggal KL. Real hypersurfaces of indefinite Kaehler manifolds, Int. J. Math & Math Sci., 16 (3), (1993), 545-556.
  • Blair DE, Koufogiorgos T, Sharma R. A classification of 3-dimensional contact metric manifolds with ϕQ=Qϕ, Kodai Math.J., 13 (3)(1990), 391-401.
  • Boeckx E, Buecken P, Vanhecke L. On ϕ-symmetric contact metric spaces, Glasgow Math.J., 41 (1999), 409-416.
  • De UC. On ϕ-symmetric Kenmotsu manifolds, Int. Electron. J. Geom., 1(1) (2008), 33-38.
  • De UC, Ozgur C, Mondal AK. On ϕ-quasiconformally symmetric Sasakian manifolds, Indag. Mathem., N.S., 20 (2), (2009), 191-200.
  • De UC, Sarkar A. On (ϵ)-Kenmotsu manifolds, Hadronic Jour., 32 (2009), 231-242.
  • Duggal KL. Space time manifold and contact structures, Int. J. Math & Math Sci., 13 (1990), 545-554.
  • Kenmotsu K. A class of almost contact Riemannian manifolds, Tohoku Math. J., 24 (1972), 93 - 103.
  • Kumar R, Rani R, Nagaich RK. On sectional curvature of (ϵ)-Sasakian manifolds, Int. J. Math & Math. Sci., 2007 Artcle ID 93562, doi:10.1155/2007/93562.
  • Ojha RH. A note on the M-projective curvature tensor, Indian. J. Pure Appl. Math., 8, 12(1975), 1531-1534.
  • Ojha RH. M-projectively flat Sasakian manifolds, Indian. J. Pure Appl. Math., 17, 4 (1986), 481-484.
  • O’Neill B. Semi-Riemannian Geometry with Applications to relativity, Academic Press, New York, NY, USA, 1983.
  • Perktas SY, Kiliç E, Tripathi MM, Keleş S. On (ϵ)-para Sasakian 3-manifolds, Int. J. Pure Appl. Math., 77, 4 (2012), 485-499.
  • Pokhariyal GP, Mishra RS. Curvature tensor and their relativistic significance II, Yokohama Math. J., 19 (1971), 97-103.
  • Takahashi T. Sasakian manifold with pseudo-Riemannian metric, Tohoku Math. J., 21 (1969), 271-290.
  • Takahashi T. Sasakian ϕ-symmetric spaces, Tohoku Math. J., (2) 29(1)(1977), 91-113.
  • Xufeng X, Xiaoli C. Two theorems on (ϵ)-Sasakian manifolds, Int. J. Math & Math. Sci., 21 (2) (1998), 249-254.

On M-projectively ϕ-symmetric (ϵ)-Kenmotsu manifolds

Year 2016, Volume: 4 Issue: 4, 295 - 305, 31.12.2016

Abstract

Locally and globally M-projectively ϕ-symmetric (ϵ)-Kenmotsu manifolds are studied. We show that a globally M-projectively ϕ-symmetric (ϵ)-Kenmotsu manifold is globally ϕ-symmetric. Some observations for a 3-dimensional locally M-projectively ϕ-symmetric (ϵ)-Kenmotsu manifold are given. We also give an example of a 3-dimensional locally M-projectively ϕ-symmetric (ϵ)-Kenmotsu manifold.

References

  • Bejancu A, Duggal KL. Real hypersurfaces of indefinite Kaehler manifolds, Int. J. Math & Math Sci., 16 (3), (1993), 545-556.
  • Blair DE, Koufogiorgos T, Sharma R. A classification of 3-dimensional contact metric manifolds with ϕQ=Qϕ, Kodai Math.J., 13 (3)(1990), 391-401.
  • Boeckx E, Buecken P, Vanhecke L. On ϕ-symmetric contact metric spaces, Glasgow Math.J., 41 (1999), 409-416.
  • De UC. On ϕ-symmetric Kenmotsu manifolds, Int. Electron. J. Geom., 1(1) (2008), 33-38.
  • De UC, Ozgur C, Mondal AK. On ϕ-quasiconformally symmetric Sasakian manifolds, Indag. Mathem., N.S., 20 (2), (2009), 191-200.
  • De UC, Sarkar A. On (ϵ)-Kenmotsu manifolds, Hadronic Jour., 32 (2009), 231-242.
  • Duggal KL. Space time manifold and contact structures, Int. J. Math & Math Sci., 13 (1990), 545-554.
  • Kenmotsu K. A class of almost contact Riemannian manifolds, Tohoku Math. J., 24 (1972), 93 - 103.
  • Kumar R, Rani R, Nagaich RK. On sectional curvature of (ϵ)-Sasakian manifolds, Int. J. Math & Math. Sci., 2007 Artcle ID 93562, doi:10.1155/2007/93562.
  • Ojha RH. A note on the M-projective curvature tensor, Indian. J. Pure Appl. Math., 8, 12(1975), 1531-1534.
  • Ojha RH. M-projectively flat Sasakian manifolds, Indian. J. Pure Appl. Math., 17, 4 (1986), 481-484.
  • O’Neill B. Semi-Riemannian Geometry with Applications to relativity, Academic Press, New York, NY, USA, 1983.
  • Perktas SY, Kiliç E, Tripathi MM, Keleş S. On (ϵ)-para Sasakian 3-manifolds, Int. J. Pure Appl. Math., 77, 4 (2012), 485-499.
  • Pokhariyal GP, Mishra RS. Curvature tensor and their relativistic significance II, Yokohama Math. J., 19 (1971), 97-103.
  • Takahashi T. Sasakian manifold with pseudo-Riemannian metric, Tohoku Math. J., 21 (1969), 271-290.
  • Takahashi T. Sasakian ϕ-symmetric spaces, Tohoku Math. J., (2) 29(1)(1977), 91-113.
  • Xufeng X, Xiaoli C. Two theorems on (ϵ)-Sasakian manifolds, Int. J. Math & Math. Sci., 21 (2) (1998), 249-254.
There are 17 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Prakasha Doddabhadrappla Gowda

Nagaraja Mahalingappa This is me

Kakasab Mirji This is me

Publication Date December 31, 2016
Published in Issue Year 2016 Volume: 4 Issue: 4

Cite

APA Gowda, P. D., Mahalingappa, N., & Mirji, K. (2016). On M-projectively ϕ-symmetric (ϵ)-Kenmotsu manifolds. New Trends in Mathematical Sciences, 4(4), 295-305.
AMA Gowda PD, Mahalingappa N, Mirji K. On M-projectively ϕ-symmetric (ϵ)-Kenmotsu manifolds. New Trends in Mathematical Sciences. December 2016;4(4):295-305.
Chicago Gowda, Prakasha Doddabhadrappla, Nagaraja Mahalingappa, and Kakasab Mirji. “On M-Projectively ϕ-Symmetric (ϵ)-Kenmotsu Manifolds”. New Trends in Mathematical Sciences 4, no. 4 (December 2016): 295-305.
EndNote Gowda PD, Mahalingappa N, Mirji K (December 1, 2016) On M-projectively ϕ-symmetric (ϵ)-Kenmotsu manifolds. New Trends in Mathematical Sciences 4 4 295–305.
IEEE P. D. Gowda, N. Mahalingappa, and K. Mirji, “On M-projectively ϕ-symmetric (ϵ)-Kenmotsu manifolds”, New Trends in Mathematical Sciences, vol. 4, no. 4, pp. 295–305, 2016.
ISNAD Gowda, Prakasha Doddabhadrappla et al. “On M-Projectively ϕ-Symmetric (ϵ)-Kenmotsu Manifolds”. New Trends in Mathematical Sciences 4/4 (December 2016), 295-305.
JAMA Gowda PD, Mahalingappa N, Mirji K. On M-projectively ϕ-symmetric (ϵ)-Kenmotsu manifolds. New Trends in Mathematical Sciences. 2016;4:295–305.
MLA Gowda, Prakasha Doddabhadrappla et al. “On M-Projectively ϕ-Symmetric (ϵ)-Kenmotsu Manifolds”. New Trends in Mathematical Sciences, vol. 4, no. 4, 2016, pp. 295-0.
Vancouver Gowda PD, Mahalingappa N, Mirji K. On M-projectively ϕ-symmetric (ϵ)-Kenmotsu manifolds. New Trends in Mathematical Sciences. 2016;4(4):295-30.