Research Article
BibTex RIS Cite
Year 2017, Volume: 5 Issue: 2, 237 - 241, 30.03.2017

Abstract

References

  • O. Endler, Valuation Theory, New York, Springer-Verlag, (1972).
  • E. Munoz Garcia, Holder absolute values are equivalent to classicalones, Proc. Amer. Math. Soc, 127(7), 1967-1971, (1999).
  • J. A. Huckaba, Commutative Rings with Zero Divisors, New York, Marcel Dekker, Inc (1988).
  • M. Knebusch, D. Zhang, Manis Valuations and Prufer Extensions, I. A new chapter in commutative algebra. Lecture Notes in Math. 1791. Berlin, Springer-Verlage, (2002).
  • T. Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, (1991).
  • M. Manis, Valuations on a commutative ring, Proc. Amer. Math. Soc, 20, 193-198, (1969).
  • P. Ribenboim, The theorie des Valuations, Montreal, Less presses de I Universite de Montreal (1964).
  • O. F. G. Schilling, The theory of Valuations, New York, Amer. Math. Soc, Thomas, J. J, (1978). Set theory, New York, Academic press, Inc (1952).

Holder valuation and holder rigidity for right ring of fractions

Year 2017, Volume: 5 Issue: 2, 237 - 241, 30.03.2017

Abstract

The purpose of this article is to introduce the notion of (C1,C2)-Holder Krull valuation on right ring of fractions ( with respect to right denominator set S in a ring R). It is proved that if R is a ring satisfying in Holder rigidity condition, and S a right permutable set of regular elements in R, then the right ring of fractions R′= Q Â(R)  with respect to S satisfies in H¨older  rigidity  condition. This results provide an extension of the Garsia theorem (see [2]) for right ring of fractions.

References

  • O. Endler, Valuation Theory, New York, Springer-Verlag, (1972).
  • E. Munoz Garcia, Holder absolute values are equivalent to classicalones, Proc. Amer. Math. Soc, 127(7), 1967-1971, (1999).
  • J. A. Huckaba, Commutative Rings with Zero Divisors, New York, Marcel Dekker, Inc (1988).
  • M. Knebusch, D. Zhang, Manis Valuations and Prufer Extensions, I. A new chapter in commutative algebra. Lecture Notes in Math. 1791. Berlin, Springer-Verlage, (2002).
  • T. Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, (1991).
  • M. Manis, Valuations on a commutative ring, Proc. Amer. Math. Soc, 20, 193-198, (1969).
  • P. Ribenboim, The theorie des Valuations, Montreal, Less presses de I Universite de Montreal (1964).
  • O. F. G. Schilling, The theory of Valuations, New York, Amer. Math. Soc, Thomas, J. J, (1978). Set theory, New York, Academic press, Inc (1952).
There are 8 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Abdolghafoor Allahyari This is me

Mohammad Hossein Hosseini This is me

Publication Date March 30, 2017
Published in Issue Year 2017 Volume: 5 Issue: 2

Cite

APA Allahyari, A., & Hosseini, M. H. (2017). Holder valuation and holder rigidity for right ring of fractions. New Trends in Mathematical Sciences, 5(2), 237-241.
AMA Allahyari A, Hosseini MH. Holder valuation and holder rigidity for right ring of fractions. New Trends in Mathematical Sciences. March 2017;5(2):237-241.
Chicago Allahyari, Abdolghafoor, and Mohammad Hossein Hosseini. “Holder Valuation and Holder Rigidity for Right Ring of Fractions”. New Trends in Mathematical Sciences 5, no. 2 (March 2017): 237-41.
EndNote Allahyari A, Hosseini MH (March 1, 2017) Holder valuation and holder rigidity for right ring of fractions. New Trends in Mathematical Sciences 5 2 237–241.
IEEE A. Allahyari and M. H. Hosseini, “Holder valuation and holder rigidity for right ring of fractions”, New Trends in Mathematical Sciences, vol. 5, no. 2, pp. 237–241, 2017.
ISNAD Allahyari, Abdolghafoor - Hosseini, Mohammad Hossein. “Holder Valuation and Holder Rigidity for Right Ring of Fractions”. New Trends in Mathematical Sciences 5/2 (March 2017), 237-241.
JAMA Allahyari A, Hosseini MH. Holder valuation and holder rigidity for right ring of fractions. New Trends in Mathematical Sciences. 2017;5:237–241.
MLA Allahyari, Abdolghafoor and Mohammad Hossein Hosseini. “Holder Valuation and Holder Rigidity for Right Ring of Fractions”. New Trends in Mathematical Sciences, vol. 5, no. 2, 2017, pp. 237-41.
Vancouver Allahyari A, Hosseini MH. Holder valuation and holder rigidity for right ring of fractions. New Trends in Mathematical Sciences. 2017;5(2):237-41.