Applications of a theorem by Ky Fan in the theory of weighted Laplacian graph energy
Year 2017,
Volume: 5 Issue: 3, 322 - 331, 01.07.2017
Reza Sharafdini
Alireza Ataei
Habibeh Panahbar
Abstract
The energy of a graph G is equal to the sum of the absolute values of the eigenvalues of G, which in turn is equal to the sum of the singular values of the adjacency matrix of G. Let X, Y and Z be matrices, such that X+Y=Z. The Ky Fan theorem establishes an inequality between the sum of the singular values of Z and the sum of the sum of the singular values of X and Y. This theorem is applied in the theory of graph energy, resulting in several new inequalities.
References
- Aleksic, T. Upper bounds for Laplacian energy of graphs. MATCH Commun. Math. Comput. Chem. 2008, 60, 435–439.
- Bell, F. K. A Note on the Irregularity of Graphs. Linear Algebra Appl. 1992, 161,45–54.
- Cavers, M. S. The normalized laplacian matrix and general randic index of graphs. Ph.D. Thesis, University of Regina, Regina, Saskatchewan, 2010.
- Das, C. K., Mojallala, S.A., Gutman, I. On energy and Laplacian energy of bipartite graphs. Appl. Math. Comput. 2016, 273, 759–766.
- Cvetkovic, Doob, M., Sachs, H. Spectra of Graphs-Theory and Application. third ed.; Johann Ambrosius Barth Verlag, Heidelberg: Leipzig, 1995.
- Day, J., So, W. Singular value inequality and graph energy change. El. J. Linear Algebra 2007, 16, 291–297.
- Abreu, N. N. M. de, Vinagre, C. M., Bonifacio, A. S., Gutman, I. The Laplacian energy of some Laplacian integral graphs. MATCH Commun. Math. Comput. Chem. 2008, 60, 447–460.
- Fan, K. Maximum properties and inequalities for the eigenvalues of completely continuous operators. Proc. Nat. Acad. Sci.U.S.A. 1951, (37), 760–766.
- Fan, K., Hoffman, A. J. Some metric inequalities in the space of matrices. Proc. Amer. Math. Soc. 1955 6, 111–116.
- Gohber, I.; Krein, M. Introduction to the Theory of Linear Nonselfadjoint Operators. Amer. Math. Soc. Providence. 1969.
- Grone, R.; Merris, R. The Laplacian spectrum of a graph II. SIAM J. Discrete Math. 1994, 7, 221–229.
- Grone, R.; Merris, R.; Sunder, V.S. The Laplacian spectrum of a graph. SIAM J. Matrix Anal. Appl. 1990, 11, 218–238.
- Gutman, I. The energy of a Graph, Old and New Results. In Algebraic Combinatorics and Applications; A., Betten.; A., Kohnert.; R., Laue.; A., Wassermann.;Eds.; Springer-Verlag: Berlin, 2001; pp. 196–211.
- Gutman, I. The energy of a graph. Ber. Math.-Statist. Sekt. Forschungsz. Graz. 1978, 103, 1–22.
- Gutman, I.; Abreu, N.M.M. de; Vinagre, C.T.M.; Bonifacio, A.S.; Radenkovic, S. Relation between energy and Laplacian energy. MATCH Commun. Math. Comput. Chem. 2008, 59, 343–354.
- Gutman, I.; Polansky, O.E. Mathematical Concepts in Organic Chemistry. Springer-Verlag: Berlin, 1986; Chapter 8.
- Gutman, I.; Zare Firoozabadi, S.; de la Pena, J.A.; Rada, J. On the energy of regular graphs. MATCH Commun. Math. Comput. Chem. 2007, 57, 435–442.
- Gutman, I.; Zhou, B. Laplacian energy of a graph. Linear Algebra Appl. 2006, 414, 29–37.
- Gutman, I.; Paule, P. The variance of the vertex degrees of randomly generated graphs. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 2002, 13, 30–35.
- Horn, R.; Johnson, C. Matrix Analysis. Cambridge Univ. Press: Cambridge, 1989.
- Indulal, G.; Vijayakumar, A. A note on energy of some graphs. MATCH Commun. Math. Comput. Chem. 2008, 59, 269–274.
- Merris, R. A survey of graph Laplacians. Linear Multilinear Algebra 1995, 39, 19–31.
- Merris, R. Laplacian matrices of graphs: a survey. Linear Algebra Appl. 1994, 197–198, 143–176.
- Mohar, B., The Laplacian spectrum of graphs. In Graph Theory, Combinatorics, and Applications; Alavi, Y.; Chartrand, G.; Oellermann, O.R.; Schwenk, A.J., Eds.; Wiley: New York, 1991; pp. 871–898.
- Mohar, B., Graph Laplacians. In Topics in Algebraic Graph Theory; Brualdi, L.W.; Wilson, R.J., Eds.; Cambridge Univ. Press: Cambridge, 2004; pp. 113–136.
- Nikiforov, V. The energy of graphs and matrices. J. Math. Anal. Appl. 2007, 326, 1472–1475.
- Robbiano, M.; Jiménez, R. Applications of a theorem by Ky Fan in the theory of Laplacian energy of graphs. MATCH Commun. Math. Comput. Chem. 2009, 62, 537–552.
- So, W.; Robbiano, M.; Abreu, N.M.M. de; Gutman, I. Applications of the Ky Fan theorem in the theory of graph energy. Linear Algebra Appl. 2010, 432, 2163–2169.
- Li, X.; Shi, Y.; Gutman I. Graph Energy, Springer, New York, 2012.
- Sharafdini, R.; Panahbar, H. Vertex weighted Laplacian graph energy and other topological indices. J. Math. Nanosci. 2016, 6, 49–57.
- Sharafdini, R.; Panahbar, H. On the weighted version of Laplacian energy of graphs. manuscript.
- Thompson, R.C. Convex and concave functions of singular values of matrix sums. Pacific J. Math. 1976, 66, 285–290.
- Thompson, R.C. The case of equality in the matrix-valued triangle inequalitity. Pacific J. Math. 1979, 82, 279–280.
- Zhou, B.; Gutman, I.; Aleksic, T. A note on Laplacian energy of graphs. MATCH Commun. Math. Comput. Chem. 2008, 60, 441–446.
Year 2017,
Volume: 5 Issue: 3, 322 - 331, 01.07.2017
Reza Sharafdini
Alireza Ataei
Habibeh Panahbar
References
- Aleksic, T. Upper bounds for Laplacian energy of graphs. MATCH Commun. Math. Comput. Chem. 2008, 60, 435–439.
- Bell, F. K. A Note on the Irregularity of Graphs. Linear Algebra Appl. 1992, 161,45–54.
- Cavers, M. S. The normalized laplacian matrix and general randic index of graphs. Ph.D. Thesis, University of Regina, Regina, Saskatchewan, 2010.
- Das, C. K., Mojallala, S.A., Gutman, I. On energy and Laplacian energy of bipartite graphs. Appl. Math. Comput. 2016, 273, 759–766.
- Cvetkovic, Doob, M., Sachs, H. Spectra of Graphs-Theory and Application. third ed.; Johann Ambrosius Barth Verlag, Heidelberg: Leipzig, 1995.
- Day, J., So, W. Singular value inequality and graph energy change. El. J. Linear Algebra 2007, 16, 291–297.
- Abreu, N. N. M. de, Vinagre, C. M., Bonifacio, A. S., Gutman, I. The Laplacian energy of some Laplacian integral graphs. MATCH Commun. Math. Comput. Chem. 2008, 60, 447–460.
- Fan, K. Maximum properties and inequalities for the eigenvalues of completely continuous operators. Proc. Nat. Acad. Sci.U.S.A. 1951, (37), 760–766.
- Fan, K., Hoffman, A. J. Some metric inequalities in the space of matrices. Proc. Amer. Math. Soc. 1955 6, 111–116.
- Gohber, I.; Krein, M. Introduction to the Theory of Linear Nonselfadjoint Operators. Amer. Math. Soc. Providence. 1969.
- Grone, R.; Merris, R. The Laplacian spectrum of a graph II. SIAM J. Discrete Math. 1994, 7, 221–229.
- Grone, R.; Merris, R.; Sunder, V.S. The Laplacian spectrum of a graph. SIAM J. Matrix Anal. Appl. 1990, 11, 218–238.
- Gutman, I. The energy of a Graph, Old and New Results. In Algebraic Combinatorics and Applications; A., Betten.; A., Kohnert.; R., Laue.; A., Wassermann.;Eds.; Springer-Verlag: Berlin, 2001; pp. 196–211.
- Gutman, I. The energy of a graph. Ber. Math.-Statist. Sekt. Forschungsz. Graz. 1978, 103, 1–22.
- Gutman, I.; Abreu, N.M.M. de; Vinagre, C.T.M.; Bonifacio, A.S.; Radenkovic, S. Relation between energy and Laplacian energy. MATCH Commun. Math. Comput. Chem. 2008, 59, 343–354.
- Gutman, I.; Polansky, O.E. Mathematical Concepts in Organic Chemistry. Springer-Verlag: Berlin, 1986; Chapter 8.
- Gutman, I.; Zare Firoozabadi, S.; de la Pena, J.A.; Rada, J. On the energy of regular graphs. MATCH Commun. Math. Comput. Chem. 2007, 57, 435–442.
- Gutman, I.; Zhou, B. Laplacian energy of a graph. Linear Algebra Appl. 2006, 414, 29–37.
- Gutman, I.; Paule, P. The variance of the vertex degrees of randomly generated graphs. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 2002, 13, 30–35.
- Horn, R.; Johnson, C. Matrix Analysis. Cambridge Univ. Press: Cambridge, 1989.
- Indulal, G.; Vijayakumar, A. A note on energy of some graphs. MATCH Commun. Math. Comput. Chem. 2008, 59, 269–274.
- Merris, R. A survey of graph Laplacians. Linear Multilinear Algebra 1995, 39, 19–31.
- Merris, R. Laplacian matrices of graphs: a survey. Linear Algebra Appl. 1994, 197–198, 143–176.
- Mohar, B., The Laplacian spectrum of graphs. In Graph Theory, Combinatorics, and Applications; Alavi, Y.; Chartrand, G.; Oellermann, O.R.; Schwenk, A.J., Eds.; Wiley: New York, 1991; pp. 871–898.
- Mohar, B., Graph Laplacians. In Topics in Algebraic Graph Theory; Brualdi, L.W.; Wilson, R.J., Eds.; Cambridge Univ. Press: Cambridge, 2004; pp. 113–136.
- Nikiforov, V. The energy of graphs and matrices. J. Math. Anal. Appl. 2007, 326, 1472–1475.
- Robbiano, M.; Jiménez, R. Applications of a theorem by Ky Fan in the theory of Laplacian energy of graphs. MATCH Commun. Math. Comput. Chem. 2009, 62, 537–552.
- So, W.; Robbiano, M.; Abreu, N.M.M. de; Gutman, I. Applications of the Ky Fan theorem in the theory of graph energy. Linear Algebra Appl. 2010, 432, 2163–2169.
- Li, X.; Shi, Y.; Gutman I. Graph Energy, Springer, New York, 2012.
- Sharafdini, R.; Panahbar, H. Vertex weighted Laplacian graph energy and other topological indices. J. Math. Nanosci. 2016, 6, 49–57.
- Sharafdini, R.; Panahbar, H. On the weighted version of Laplacian energy of graphs. manuscript.
- Thompson, R.C. Convex and concave functions of singular values of matrix sums. Pacific J. Math. 1976, 66, 285–290.
- Thompson, R.C. The case of equality in the matrix-valued triangle inequalitity. Pacific J. Math. 1979, 82, 279–280.
- Zhou, B.; Gutman, I.; Aleksic, T. A note on Laplacian energy of graphs. MATCH Commun. Math. Comput. Chem. 2008, 60, 441–446.