Research Article
BibTex RIS Cite

Approximate solution of second-order fuzzy boundary value problem

Year 2017, Volume: 5 Issue: 3, 7 - 21, 01.07.2017

Abstract

In this paper, a new approach is proposed based on the Adomian Decomposition Method(ADM) with Green's function in order to find a solution for the second-order fuzzy boundary value problem under generalized H-differentiability. The proposed technique divides the domain and builds on Green's function before installing the modified recursive scheme. Some examples are presented to illustrate the efficiency of the proposed technique.

References

  • Akın Ö, Oruc¸ Ö. A prey-predator model with fuzzy initial values. Hacet J Math Stat 2012; 41: 387-395.
  • Allahviranloo T, Abbasbandy S, Sedaghgatfar O, Darabi P. A new method for solving fuzzy integro-differential equation under generalized differentiability. Neural Comput Appl 2012; 1: 191-196.
  • Allahviranloo T, Amirteimoori A, Khezerloo M, Khezeloo S. A new method for solving fuzzy Volterra integro-differential equations. Aust J Basic Appl Sci 2011; 5: 154-164.
  • Allahviranloo T, KhezerlooM, GhanbariM, Khezerloo S. The homotopy perturbation method for fuzzy Volterra inetgral equations. Intern J Comp Cogn 2010; 8: 31-37.
  • Babolian E, Sadeghi G. H, Abbasbandy S. Numerical solution of linear Fredholm fuzzy integral equations of the second kind by Adomian method. Appl Math Comput 2005; 161: 733-744.
  • Bede B. A note on ”Two-point boundary value problems associated with nonlinear fuzzy diffential equations”. Fuzzy Set Syst 2006; 157: 986-989.
  • Bede B, Gal S. G. Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Set Syst 2005; 151: 581-599.
  • Behzadi S. S, Allahviranloo T, Abbasbandy S. Solving fuzzy second-order nonlinear Volterra-Fredholm integro-differential equqtions by using Picard method. Neural Comput Appl 2012; 1: 337-346.
  • Can E, Bayrak M. A. A New Method For Solution Of Fuzzy Reaction Equation. MATCH-Commun Math Co 2015; 74: 649-661.
  • Chalco-Cano Y, Romacutean-Flores H. On new solutions of fuzzy differential equations. Chaos Soliton Fract 2008; 38: 112-119.
  • Chang S. S. L, Zadeh LA. On fuzzy mapping and control. IEEE T Syst Man Cyb 1972; 2: 30-34.
  • Chen M, Fu Y, Xue X, Wu C. Two-point boundary value problems of undamped uncertain dynamical systems. Fuzzy Set Syst 2008; 159: 2077-2089.
  • Chen M, Fu Y, Xue X, Wu C. On fuzzy boundary value problems. Inform Sciences 2008; 178: 1877-1892.
  • Fatullayev A. G, Koroglu C. Numerical solving a boundary value problem for fuzzy differential equations. CMES-Comput Model Eng 2012; 8: 39-52.
  • Friedman M, Ma M, Kandel A. Numerical methods for calculating the fuzzy integral. Fuzzy Set Syst 1996; 83: 57-62.
  • Gasilov N. A, Hashimoglu IF, Amrahov SE, Fatullayev AG. A new approach to non-homogeneous fuzzy initial value problem. CMES-Comp Model Eng 2012; 85: 367-378.
  • Goetschel R, Voxman W. Elementary calculus . Fuzzy Set Syst 1986; 18: 31-43.
  • Jahantigh M, Allahviranloo T, Otadi M. Numerical solution of fuzzy integral equation. Appl Math Sci 2008; 2: 33-46.
  • Kaleva O. Fuzzy Differential Equations. Fuzzy Set Syst 1987; 24: 301-317.
  • Khastan A, Ivaz K. Numerical solution of fuzzy differential equations by Nystr¨om method. Chaos Soliton Fract 2009; 41: 859-868.
  • Khastan A, Nieto J. J. A boundary value problem for second-order fuzzy differential equations. Nonlinear Anal 2010; 72: 3583-3593.
  • Khastan A, Bahrami F, Ivaz K. New results on multiple solutions for Nth-order fuzzy differential equations under generalized differentiability. Bound Value Probl 13p,ARTICLE ID 395714, 2009.
  • Khastan A, Nieto J. J, Lopes RR. Variation of constant formula for first order fuzzy differential equations. Fuzzy Set Syst 2011;177: 20-33.
  • Molabahrami A, Shidfar A, Ghyasi A. A An analytical method for solving linear Fredholm fuzzy integral equations of the second kind. Comput Math Appl 2011; 61: 2754-2761.
  • Park J. Y, Lee S. Y, Jeong J. On the existence and uniqueness of solutions of fuzzy Volterra-Fredholm integral equations. Fuzzy Set Syst 2000; 115: 425-431.
  • Puri M, Ralescu D. Differential and fuzzy functions. J Math Anal Appl 1983; 91: 552-558.
  • Puri M, Ralescu D. Fuzzy Random variables. J Math Anal Appl 1986; 114: 409-422.
  • Rach R. C. A new definition of the Adomian polynomials. Kybernetes 2008; 37: 910-955.
  • Singh R, Wazwaz A. An efficient approach for solving second-order nonlinear differential equation with Neumann boundary conditions. J Math Chem 2015; 53: 767-790.
  • Zadeh L. A. The concept of linguistic variable and its application to approximate reasoning. Inform Sciences 1975; 8: 199-249.
Year 2017, Volume: 5 Issue: 3, 7 - 21, 01.07.2017

Abstract

References

  • Akın Ö, Oruc¸ Ö. A prey-predator model with fuzzy initial values. Hacet J Math Stat 2012; 41: 387-395.
  • Allahviranloo T, Abbasbandy S, Sedaghgatfar O, Darabi P. A new method for solving fuzzy integro-differential equation under generalized differentiability. Neural Comput Appl 2012; 1: 191-196.
  • Allahviranloo T, Amirteimoori A, Khezerloo M, Khezeloo S. A new method for solving fuzzy Volterra integro-differential equations. Aust J Basic Appl Sci 2011; 5: 154-164.
  • Allahviranloo T, KhezerlooM, GhanbariM, Khezerloo S. The homotopy perturbation method for fuzzy Volterra inetgral equations. Intern J Comp Cogn 2010; 8: 31-37.
  • Babolian E, Sadeghi G. H, Abbasbandy S. Numerical solution of linear Fredholm fuzzy integral equations of the second kind by Adomian method. Appl Math Comput 2005; 161: 733-744.
  • Bede B. A note on ”Two-point boundary value problems associated with nonlinear fuzzy diffential equations”. Fuzzy Set Syst 2006; 157: 986-989.
  • Bede B, Gal S. G. Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Set Syst 2005; 151: 581-599.
  • Behzadi S. S, Allahviranloo T, Abbasbandy S. Solving fuzzy second-order nonlinear Volterra-Fredholm integro-differential equqtions by using Picard method. Neural Comput Appl 2012; 1: 337-346.
  • Can E, Bayrak M. A. A New Method For Solution Of Fuzzy Reaction Equation. MATCH-Commun Math Co 2015; 74: 649-661.
  • Chalco-Cano Y, Romacutean-Flores H. On new solutions of fuzzy differential equations. Chaos Soliton Fract 2008; 38: 112-119.
  • Chang S. S. L, Zadeh LA. On fuzzy mapping and control. IEEE T Syst Man Cyb 1972; 2: 30-34.
  • Chen M, Fu Y, Xue X, Wu C. Two-point boundary value problems of undamped uncertain dynamical systems. Fuzzy Set Syst 2008; 159: 2077-2089.
  • Chen M, Fu Y, Xue X, Wu C. On fuzzy boundary value problems. Inform Sciences 2008; 178: 1877-1892.
  • Fatullayev A. G, Koroglu C. Numerical solving a boundary value problem for fuzzy differential equations. CMES-Comput Model Eng 2012; 8: 39-52.
  • Friedman M, Ma M, Kandel A. Numerical methods for calculating the fuzzy integral. Fuzzy Set Syst 1996; 83: 57-62.
  • Gasilov N. A, Hashimoglu IF, Amrahov SE, Fatullayev AG. A new approach to non-homogeneous fuzzy initial value problem. CMES-Comp Model Eng 2012; 85: 367-378.
  • Goetschel R, Voxman W. Elementary calculus . Fuzzy Set Syst 1986; 18: 31-43.
  • Jahantigh M, Allahviranloo T, Otadi M. Numerical solution of fuzzy integral equation. Appl Math Sci 2008; 2: 33-46.
  • Kaleva O. Fuzzy Differential Equations. Fuzzy Set Syst 1987; 24: 301-317.
  • Khastan A, Ivaz K. Numerical solution of fuzzy differential equations by Nystr¨om method. Chaos Soliton Fract 2009; 41: 859-868.
  • Khastan A, Nieto J. J. A boundary value problem for second-order fuzzy differential equations. Nonlinear Anal 2010; 72: 3583-3593.
  • Khastan A, Bahrami F, Ivaz K. New results on multiple solutions for Nth-order fuzzy differential equations under generalized differentiability. Bound Value Probl 13p,ARTICLE ID 395714, 2009.
  • Khastan A, Nieto J. J, Lopes RR. Variation of constant formula for first order fuzzy differential equations. Fuzzy Set Syst 2011;177: 20-33.
  • Molabahrami A, Shidfar A, Ghyasi A. A An analytical method for solving linear Fredholm fuzzy integral equations of the second kind. Comput Math Appl 2011; 61: 2754-2761.
  • Park J. Y, Lee S. Y, Jeong J. On the existence and uniqueness of solutions of fuzzy Volterra-Fredholm integral equations. Fuzzy Set Syst 2000; 115: 425-431.
  • Puri M, Ralescu D. Differential and fuzzy functions. J Math Anal Appl 1983; 91: 552-558.
  • Puri M, Ralescu D. Fuzzy Random variables. J Math Anal Appl 1986; 114: 409-422.
  • Rach R. C. A new definition of the Adomian polynomials. Kybernetes 2008; 37: 910-955.
  • Singh R, Wazwaz A. An efficient approach for solving second-order nonlinear differential equation with Neumann boundary conditions. J Math Chem 2015; 53: 767-790.
  • Zadeh L. A. The concept of linguistic variable and its application to approximate reasoning. Inform Sciences 1975; 8: 199-249.
There are 30 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Mine Aylin Bayrak

Publication Date July 1, 2017
Published in Issue Year 2017 Volume: 5 Issue: 3

Cite

APA Bayrak, M. A. (2017). Approximate solution of second-order fuzzy boundary value problem. New Trends in Mathematical Sciences, 5(3), 7-21.
AMA Bayrak MA. Approximate solution of second-order fuzzy boundary value problem. New Trends in Mathematical Sciences. July 2017;5(3):7-21.
Chicago Bayrak, Mine Aylin. “Approximate Solution of Second-Order Fuzzy Boundary Value Problem”. New Trends in Mathematical Sciences 5, no. 3 (July 2017): 7-21.
EndNote Bayrak MA (July 1, 2017) Approximate solution of second-order fuzzy boundary value problem. New Trends in Mathematical Sciences 5 3 7–21.
IEEE M. A. Bayrak, “Approximate solution of second-order fuzzy boundary value problem”, New Trends in Mathematical Sciences, vol. 5, no. 3, pp. 7–21, 2017.
ISNAD Bayrak, Mine Aylin. “Approximate Solution of Second-Order Fuzzy Boundary Value Problem”. New Trends in Mathematical Sciences 5/3 (July 2017), 7-21.
JAMA Bayrak MA. Approximate solution of second-order fuzzy boundary value problem. New Trends in Mathematical Sciences. 2017;5:7–21.
MLA Bayrak, Mine Aylin. “Approximate Solution of Second-Order Fuzzy Boundary Value Problem”. New Trends in Mathematical Sciences, vol. 5, no. 3, 2017, pp. 7-21.
Vancouver Bayrak MA. Approximate solution of second-order fuzzy boundary value problem. New Trends in Mathematical Sciences. 2017;5(3):7-21.