Research Article
BibTex RIS Cite

Complete lift of a tensor field of type (1,2) to semi-cotangent bundle

Year 2017, Volume: 5 Issue: 4, 261 - 270, 01.10.2017

Abstract

The main purpose of this paper is to define the complete lift of a projectable tensor field of type (1,2) to semi-cotangent bundle t*M. Using projectable geometric objects on M, we examine lifting problem of projectable tensor field of type (1,2) to the semi-cotangent bundle. We also present the good square in the semi-cotangent bundle t*M.

References

  • K. Yano and S. Ishihara, Tangent and Cotangent Bundles. Marcel Dekker, Inc., New York, 1973.
  • D. Husemoller, Fibre Bundles. Springer, New York, 1994.
  • H. B. Lawson and M.L. Michelsohn, Spin Geometry. Princeton University Press., Princeton, 1989.
  • N. Steenrod, The Topology of Fibre Bundles. Princeton University Press., Princeton, 1951.
  • F. Yıldırım, On a special class of semi-cotangent bundle, Proceedings of the Institute of Mathematics and Mechanics, (ANAS) 41 (2015), no. 1, 25-38.
  • F. Yıldırım and A. Salimov, Semi-cotangent bundle and problems of lifts, Turk J. Math, (2014), 38, 325-339.
  • L. S. Pontryagin, Characteristic cycles on differentiable manifolds. Rec. Math. (Mat. Sbornik) N.S., 21 (63):2, (1947), 233-284.
  • W. A. Poor, Differential Geometric Structures, New York, McGraw-Hill (1981).
  • N. M. Ostianu, Step-fibred spaces, Tr. Geom. Sem. 5, Moscow. (VINITI), 259-309 (1974).
  • V. V. Vishnevskii, Integrable affinor structures and their plural interpretations. Geometry, 7.J. Math. Sci. (New York) 108 (2002), no. 2, 151-187.
  • F. Etayo, The geometry of good squares of vector bundles, Riv. Mat. Univ. Parma 17 (1991) 131-147.
Year 2017, Volume: 5 Issue: 4, 261 - 270, 01.10.2017

Abstract

References

  • K. Yano and S. Ishihara, Tangent and Cotangent Bundles. Marcel Dekker, Inc., New York, 1973.
  • D. Husemoller, Fibre Bundles. Springer, New York, 1994.
  • H. B. Lawson and M.L. Michelsohn, Spin Geometry. Princeton University Press., Princeton, 1989.
  • N. Steenrod, The Topology of Fibre Bundles. Princeton University Press., Princeton, 1951.
  • F. Yıldırım, On a special class of semi-cotangent bundle, Proceedings of the Institute of Mathematics and Mechanics, (ANAS) 41 (2015), no. 1, 25-38.
  • F. Yıldırım and A. Salimov, Semi-cotangent bundle and problems of lifts, Turk J. Math, (2014), 38, 325-339.
  • L. S. Pontryagin, Characteristic cycles on differentiable manifolds. Rec. Math. (Mat. Sbornik) N.S., 21 (63):2, (1947), 233-284.
  • W. A. Poor, Differential Geometric Structures, New York, McGraw-Hill (1981).
  • N. M. Ostianu, Step-fibred spaces, Tr. Geom. Sem. 5, Moscow. (VINITI), 259-309 (1974).
  • V. V. Vishnevskii, Integrable affinor structures and their plural interpretations. Geometry, 7.J. Math. Sci. (New York) 108 (2002), no. 2, 151-187.
  • F. Etayo, The geometry of good squares of vector bundles, Riv. Mat. Univ. Parma 17 (1991) 131-147.
There are 11 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Furkan Yildirim

Publication Date October 1, 2017
Published in Issue Year 2017 Volume: 5 Issue: 4

Cite

APA Yildirim, F. (2017). Complete lift of a tensor field of type (1,2) to semi-cotangent bundle. New Trends in Mathematical Sciences, 5(4), 261-270.
AMA Yildirim F. Complete lift of a tensor field of type (1,2) to semi-cotangent bundle. New Trends in Mathematical Sciences. October 2017;5(4):261-270.
Chicago Yildirim, Furkan. “Complete Lift of a Tensor Field of Type (1,2) to Semi-Cotangent Bundle”. New Trends in Mathematical Sciences 5, no. 4 (October 2017): 261-70.
EndNote Yildirim F (October 1, 2017) Complete lift of a tensor field of type (1,2) to semi-cotangent bundle. New Trends in Mathematical Sciences 5 4 261–270.
IEEE F. Yildirim, “Complete lift of a tensor field of type (1,2) to semi-cotangent bundle”, New Trends in Mathematical Sciences, vol. 5, no. 4, pp. 261–270, 2017.
ISNAD Yildirim, Furkan. “Complete Lift of a Tensor Field of Type (1,2) to Semi-Cotangent Bundle”. New Trends in Mathematical Sciences 5/4 (October 2017), 261-270.
JAMA Yildirim F. Complete lift of a tensor field of type (1,2) to semi-cotangent bundle. New Trends in Mathematical Sciences. 2017;5:261–270.
MLA Yildirim, Furkan. “Complete Lift of a Tensor Field of Type (1,2) to Semi-Cotangent Bundle”. New Trends in Mathematical Sciences, vol. 5, no. 4, 2017, pp. 261-70.
Vancouver Yildirim F. Complete lift of a tensor field of type (1,2) to semi-cotangent bundle. New Trends in Mathematical Sciences. 2017;5(4):261-70.