Abraham, W. R., Hoffmann, H. M., Kieslich, K., Reng, G., & Stumpf, B. (1985). Microbial transformations of some monoterpenoids and sesquiterpenoids. Ciba Found Symp, 111, 146-160.
Adams, R. P. (1995). Identification of Essential Oil Components by Gas Chromatography/mass Spectrometry. Carol Stream: Allured Publishing Corporation.
Andersen, F. A., Bergfeld, W. F., Belsito, D. V., Hill, R. A., Klaassen, C. D., Liebler, D. C., . . . Snyder, P. W. (2010). Final report of the cosmetic ingredient review expert panel amended safety assessment of Calendula officinalis-derived cosmetic ingredients. Int. J. Toxicol., 29(Suppl. 4), 221S-243S. doi:10.1177/1091581810384883
Asakawa, Y., Ishida, T., Toyota, M., & Takemoto, T. (1986). Terpenoid biotransformation in mammals. IV Biotransformation of (+)-longifolene, (-)-caryophyllene, (-)-caryophyllene oxide, (-)-cyclocolorenone, (+)-nootkatone, (-)-elemol, (-)-abietic acid and (+)-dehydroabietic acid in rabbits. Xenobiotica, 16(8), 753-767. doi:10.3109/00498258609043566
Berger, R. G., & Editor. (2007). Flavours and Fragrances: Chemistry, Bioprocessing and Sustainability: Springer GmbH.
Bhattacharyya, P. K., Prema, B. R., Dhavalikar, R. S., & Ramchandran, B. V. (1963). Microbiological transformations of terpenes. IV. Structure of an anhydride obtained after fermentation of some terpenoid hydrocarbons by Aspergillus niger. Indian J. Chem., 1, 171-176.
Cao, Y., Zhang, R., Liu, W., Zhao, G., Niu, W., Guo, J., . . . Liu, H. (2019). Manipulation of the precursor supply for high-level production of longifolene by metabolically engineered Escherichia coli. Sci. Rep., 9(1), 1-10. doi:10.1038/s41598-018-36495-w
Choudhary, M. I., Siddiqui, Z. A., Nawaz, S. A., & Atta ur, R. (2006). Microbial Transformation and Butyrylcholinesterase Inhibitory Activity of (-)-Caryophyllene Oxide and Its Derivatives. J. Nat. Prod., 69(10), 1429-1434. doi:10.1021/np0680174
Dev, S. (1981). Aspects of longifolene chemistry. An example of another facet of natural products chemistry. Acc. Chem. Res., 14(3), 82-88. doi:10.1021/ar00063a004
Devi, J. R. (1979). Microbiological transformations of terpenes. Part XXVI. Microbiological transformation of caryophyllene. Indian J. Biochem. Biophys., 16(2), 76-79.
Fitjer, L., Malich, A., Paschke, C., Kluge, S., Gerke, R., Rissom, B., . . . Noltemeyer, M. (1995). Rearrangement of (-)-β-Caryophyllene. A Product Analysis and Force Field Study. J. Am. Chem. Soc., 117(36), 9180-9189. doi:10.1021/ja00141a009
Ford, R. A., Api, A. M., & Letizia, C. S. (1992). Longifolene. Food Chem. Toxicol., 30(Suppl.), 67S-68S. doi:10.1016/0278-6915(92)90241-C
Heinlein, A., & Buettner, A. (2012). Monitoring of biotransformation of hop aroma compounds in an in vitro digestion model. Food Funct., 3(10), 1059-1067. doi:10.1039/c2fo30061c
Ishida, T. (2005). Biotransformation of terpenoids by mammals, microorganisms, and plant-cultured cells. Chem. Biodiversity, 2(5), 569-590. doi:10.1002/cbdv.200590038
Jennings, W., & Shibamoto, T. (1980). Qualitative Analysis of Flavor and Fragrance Volatiles by Glass Capillary Gas Chromatography: Academic Press.
Joglekar, S. S., Vora, M. A., Dhere, S. G., & Dhavilkar, R. S. (1968). Microbial transformations of terpenoids: citronellal, citral, eugenol, Δ3-carene, α-pinene, and longifolene. Indian Oil Soap J., 34(4), 85-88.
Johnston, C. (1989). The Wiley / NBS Registry of Mass Spectral Data, Volumes 1-7 (McLafferty, Fred W.; Stauffer, Douglas B.). Journal of Chemical Education, 66(10), A256. doi:10.1021/ed066pA256.3
Joulain, D., & Konig, W. (1998). The Atlas of Spectral Data of Sesquiterpene Hydrocarbons: E.B.-Verlag.
Khan, N. T., Atif, M., & Al-Aboudi, A. (2014). Microbial transformation of (-)-alloisolongifolene. Orient. J. Chem., 30(3), 941-945. doi:10.13005/ojc/300304
King, A. J., & Dickinson, J. R. (2003). Biotransformation of hop aroma terpenoids by ale and lager yeasts. FEMS Yeast Res., 3(1), 53-62. doi:10.1111/j.1567-1364.2003.tb00138.x
Koenig, W. A., & D. Hochmuth, J. D. H. (2004). Terpenoids and Related Constituents of Essential Oils. MassFinder 3, Hamburg, Germany.
Kondjoyan, N., & Berdagué, J.-L. (1996). A compilation of relative retention indices for the analysis of aromatic compounds. INRA de Theix, France: Laboratoire Flaveur.
Noma, Y., Hashimoto, T., Uehara, S., & Asakawa, Y. (2010). Microbial transformation of isopinocampheol and caryophyllene oxide. Flavour Fragrance J., 25(3), 161-170. doi:10.1002/ffj.1988
Oda, S., Fujinuma, K., Inoue, A., & Ohashi, S. (2011). Synthesis of (-)-β-caryophyllene oxide via regio- and stereoselective endocyclic epoxidation of β-caryophyllene with Nemania aenea SF 10099-1 in a liquid-liquid interface bioreactor (L-L IBR). J. Biosci. Bioeng., 112(6), 561-565. doi:10.1016/j.jbiosc.2011.07.024
Rychlik, M., Schieberle, P., Grosch, W., Deutsche Forschungsanstalt für, L., Universität, M., & Institut für Lebensmittelchemie der, T. (1998). Compilation of odor thresholds, odor qualities and retention indices of key food odorants. Garching: Deutsche Forschungsanstat für Lebensmittelchemie and Instit für Lebensmittelchemie der Technischen Universität München.
Schmitt, D., Levy, R., & Carroll, B. (2016). Toxicological evaluation of β-caryophyllene oil: subchronic toxicity in rats. Int. J. Toxicol., 35(5), 558-567. doi:10.1177/1091581816655303
Sharma, C., Al Kaabi, J. M., Nurulain, S. M., Goyal, S. N., Kamal, M. A., & Ojha, S. (2016). Polypharmacological Properties and Therapeutic Potential of β-Caryophyllene: A Dietary Phytocannabinoid of Pharmaceutical Promise. Curr. Pharm. Des., 22(21), 3237-3264. doi:10.2174/1381612822666160311115226
Wright, J. (2010). Creating and formulating flavours. In: Food Flavour Technology, Second Edition, Taylor A.J. and Linforth R.S.T., 1-23. doi:10.1002/9781444317770.ch1
Younis, N. S., & Mohamed, M. E. (2019). β-caryophyllene as a potential protective agent against myocardial injury: the role of toll-like receptors. Molecules, 24(10), 1929. doi:10.3390/molecules24101929
Microbial transformation of β-Caryophyllene and Longifolene by Wolfiporia extensa
β-Caryophyllene and longifolene are
sesquiterpenes with characteristic aroma properties, which are primary
constituents of essential oils and important ingredients commonly used in food,
perfumery, cosmetics, detergents and pharmaceuticals, which create a worldwide
market. β-Caryophyllene and longifolene were converted through microbial
biotransformation by using Wolfiporia extensa
to a mixture of products over seven days at 25 oC to be evaluated as potential aroma and
antimicrobial agents. The characterization
of transformation products was carried out by comparison of their GC-MS spectra
and retention indices with that of published data (Wiley, NIST and ADAMS
databases). As a result, microbial transformation reactions produced various volatile compounds mainly consisting of
ketones, aldehydes and alcohol-bearing derivatives of β-caryophyllene
and longifolene.
Abraham, W. R., Hoffmann, H. M., Kieslich, K., Reng, G., & Stumpf, B. (1985). Microbial transformations of some monoterpenoids and sesquiterpenoids. Ciba Found Symp, 111, 146-160.
Adams, R. P. (1995). Identification of Essential Oil Components by Gas Chromatography/mass Spectrometry. Carol Stream: Allured Publishing Corporation.
Andersen, F. A., Bergfeld, W. F., Belsito, D. V., Hill, R. A., Klaassen, C. D., Liebler, D. C., . . . Snyder, P. W. (2010). Final report of the cosmetic ingredient review expert panel amended safety assessment of Calendula officinalis-derived cosmetic ingredients. Int. J. Toxicol., 29(Suppl. 4), 221S-243S. doi:10.1177/1091581810384883
Asakawa, Y., Ishida, T., Toyota, M., & Takemoto, T. (1986). Terpenoid biotransformation in mammals. IV Biotransformation of (+)-longifolene, (-)-caryophyllene, (-)-caryophyllene oxide, (-)-cyclocolorenone, (+)-nootkatone, (-)-elemol, (-)-abietic acid and (+)-dehydroabietic acid in rabbits. Xenobiotica, 16(8), 753-767. doi:10.3109/00498258609043566
Berger, R. G., & Editor. (2007). Flavours and Fragrances: Chemistry, Bioprocessing and Sustainability: Springer GmbH.
Bhattacharyya, P. K., Prema, B. R., Dhavalikar, R. S., & Ramchandran, B. V. (1963). Microbiological transformations of terpenes. IV. Structure of an anhydride obtained after fermentation of some terpenoid hydrocarbons by Aspergillus niger. Indian J. Chem., 1, 171-176.
Cao, Y., Zhang, R., Liu, W., Zhao, G., Niu, W., Guo, J., . . . Liu, H. (2019). Manipulation of the precursor supply for high-level production of longifolene by metabolically engineered Escherichia coli. Sci. Rep., 9(1), 1-10. doi:10.1038/s41598-018-36495-w
Choudhary, M. I., Siddiqui, Z. A., Nawaz, S. A., & Atta ur, R. (2006). Microbial Transformation and Butyrylcholinesterase Inhibitory Activity of (-)-Caryophyllene Oxide and Its Derivatives. J. Nat. Prod., 69(10), 1429-1434. doi:10.1021/np0680174
Dev, S. (1981). Aspects of longifolene chemistry. An example of another facet of natural products chemistry. Acc. Chem. Res., 14(3), 82-88. doi:10.1021/ar00063a004
Devi, J. R. (1979). Microbiological transformations of terpenes. Part XXVI. Microbiological transformation of caryophyllene. Indian J. Biochem. Biophys., 16(2), 76-79.
Fitjer, L., Malich, A., Paschke, C., Kluge, S., Gerke, R., Rissom, B., . . . Noltemeyer, M. (1995). Rearrangement of (-)-β-Caryophyllene. A Product Analysis and Force Field Study. J. Am. Chem. Soc., 117(36), 9180-9189. doi:10.1021/ja00141a009
Ford, R. A., Api, A. M., & Letizia, C. S. (1992). Longifolene. Food Chem. Toxicol., 30(Suppl.), 67S-68S. doi:10.1016/0278-6915(92)90241-C
Heinlein, A., & Buettner, A. (2012). Monitoring of biotransformation of hop aroma compounds in an in vitro digestion model. Food Funct., 3(10), 1059-1067. doi:10.1039/c2fo30061c
Ishida, T. (2005). Biotransformation of terpenoids by mammals, microorganisms, and plant-cultured cells. Chem. Biodiversity, 2(5), 569-590. doi:10.1002/cbdv.200590038
Jennings, W., & Shibamoto, T. (1980). Qualitative Analysis of Flavor and Fragrance Volatiles by Glass Capillary Gas Chromatography: Academic Press.
Joglekar, S. S., Vora, M. A., Dhere, S. G., & Dhavilkar, R. S. (1968). Microbial transformations of terpenoids: citronellal, citral, eugenol, Δ3-carene, α-pinene, and longifolene. Indian Oil Soap J., 34(4), 85-88.
Johnston, C. (1989). The Wiley / NBS Registry of Mass Spectral Data, Volumes 1-7 (McLafferty, Fred W.; Stauffer, Douglas B.). Journal of Chemical Education, 66(10), A256. doi:10.1021/ed066pA256.3
Joulain, D., & Konig, W. (1998). The Atlas of Spectral Data of Sesquiterpene Hydrocarbons: E.B.-Verlag.
Khan, N. T., Atif, M., & Al-Aboudi, A. (2014). Microbial transformation of (-)-alloisolongifolene. Orient. J. Chem., 30(3), 941-945. doi:10.13005/ojc/300304
King, A. J., & Dickinson, J. R. (2003). Biotransformation of hop aroma terpenoids by ale and lager yeasts. FEMS Yeast Res., 3(1), 53-62. doi:10.1111/j.1567-1364.2003.tb00138.x
Koenig, W. A., & D. Hochmuth, J. D. H. (2004). Terpenoids and Related Constituents of Essential Oils. MassFinder 3, Hamburg, Germany.
Kondjoyan, N., & Berdagué, J.-L. (1996). A compilation of relative retention indices for the analysis of aromatic compounds. INRA de Theix, France: Laboratoire Flaveur.
Noma, Y., Hashimoto, T., Uehara, S., & Asakawa, Y. (2010). Microbial transformation of isopinocampheol and caryophyllene oxide. Flavour Fragrance J., 25(3), 161-170. doi:10.1002/ffj.1988
Oda, S., Fujinuma, K., Inoue, A., & Ohashi, S. (2011). Synthesis of (-)-β-caryophyllene oxide via regio- and stereoselective endocyclic epoxidation of β-caryophyllene with Nemania aenea SF 10099-1 in a liquid-liquid interface bioreactor (L-L IBR). J. Biosci. Bioeng., 112(6), 561-565. doi:10.1016/j.jbiosc.2011.07.024
Rychlik, M., Schieberle, P., Grosch, W., Deutsche Forschungsanstalt für, L., Universität, M., & Institut für Lebensmittelchemie der, T. (1998). Compilation of odor thresholds, odor qualities and retention indices of key food odorants. Garching: Deutsche Forschungsanstat für Lebensmittelchemie and Instit für Lebensmittelchemie der Technischen Universität München.
Schmitt, D., Levy, R., & Carroll, B. (2016). Toxicological evaluation of β-caryophyllene oil: subchronic toxicity in rats. Int. J. Toxicol., 35(5), 558-567. doi:10.1177/1091581816655303
Sharma, C., Al Kaabi, J. M., Nurulain, S. M., Goyal, S. N., Kamal, M. A., & Ojha, S. (2016). Polypharmacological Properties and Therapeutic Potential of β-Caryophyllene: A Dietary Phytocannabinoid of Pharmaceutical Promise. Curr. Pharm. Des., 22(21), 3237-3264. doi:10.2174/1381612822666160311115226
Wright, J. (2010). Creating and formulating flavours. In: Food Flavour Technology, Second Edition, Taylor A.J. and Linforth R.S.T., 1-23. doi:10.1002/9781444317770.ch1
Younis, N. S., & Mohamed, M. E. (2019). β-caryophyllene as a potential protective agent against myocardial injury: the role of toll-like receptors. Molecules, 24(10), 1929. doi:10.3390/molecules24101929
Özşen Batur, Ö., Kıran, İ., Berger, R. G., Demirci, B. (2019). Microbial transformation of β-Caryophyllene and Longifolene by Wolfiporia extensa. Natural Volatiles and Essential Oils, 6(3), 8-15.