This study aims to; (i) demonstrate how to use handheld laser scanning (LiDAR) technology in forest inventories, and (ii) compare stand parameters calculated with LiDAR and traditional measurements. To this end, sample plots were scanned by a LiDAR device in Şavşat, NE Turkey. Then, the sensitivity of LiDAR data was examined by comparing it with ground truth. No significant difference was found between tree DBHs measured by LiDAR and caliper (p>0.05). Taking ground measurements as reference; DBH, the number of trees, stand top height, and stand volume parameters were captured by LiDAR with mean errors of 0.68 cm (2.2%), 14 trees/ha (2.0%), 0.8 m (3.4%), and 155.7 m3/ha (24.6%), respectively. Since the mean error was high for stand volume, six standing trees were scanned by LiDAR, and then, they were felled and volumized using the section method. Ground measurements showed that LiDAR calculated stem volumes with a mean error of 0.061 m3 (5.1%). Thus, the high error rate in stand volumes was attributed to the reference data derived by existing volume tables. On the other hand, tree species and stand types could not be identified with LiDAR. It was concluded that mobile LiDAR technology could calculate many stand parameters with acceptable accuracy levels efficiently.
Light detection and ranging (LiDAR) point cloud GeoSLAM ZEB-HORIZON forest inventory forest management planning
Bu çalışmanın amacı; (i) orman envanterlerinde mobil lazer tarama (LiDAR) teknolojisinden yararlanma olanaklarını araştırmak ve (ii) meşcere parametrelerine ilişkin LiDAR verilerini, uygulamada tespit edilen değerlerle karşılaştırmaktır. Bu doğrultuda, Şavşat’ta arazi ölçümleri gerçekleştirilen örnek alanlar el tipi LiDAR cihazı ile taranmıştır. Daha sonra örnek alanlardan elde edilen veri setleri birbiriyle karşılaştırılarak LiDAR’ın hassasiyeti sınanmıştır. Yapılan istatistik testler sonucunda, LiDAR ve çapölçer ile ölçülen ağaçların çapları arasında anlamlı bir fark bulunmamıştır (p>0,05). Yersel ölçümler referans kabul edilirse; göğüs çapı, ağaç sayısı, meşcere üst boyu ve meşcere hacmi parametreleri LiDAR cihazıyla sırasıyla; ort. 0,68 cm (%2,2), 14 ad/ha (%2,0), 0,8 m (%3,4) ve 155,7 m3/ha (%24,6) hata ile tahmin edilebilmiştir. Hacimde gözlenen yüksek hata üzerine, arazideki altı adet ağaç önce LiDAR ile dikili halde taranmış ve sonra kesilerek, bölümleme yöntemiyle hacimlendirilmiştir. Yerde ölçülen gövde hacimlerinin LiDAR ile ort. 0,061 m3 (%5,1) hata ile tespit edilebildiği görülmüştür. Dolayısıyla, meşcere hacimlerindeki yüksek hata oranlarının LiDAR yönteminden değil, envanterde kullanılan tek girişli hacim tablolarından kaynaklandığı anlaşılmıştır. Buna karşılık, LiDAR nokta bulutları üzerinden ağaç türü ve meşcere tipleri belirlenememiştir. Çalışmanın sonunda, amenajman planlarındaki birçok meşcere parametresine ait değerlerin mobil LiDAR teknolojisiyle arazide daha az vakit harcanarak kabul edilebilir doğruluk düzeylerinde hesaplanabildiği sonucuna ulaşılmıştır.
Mobil lazer tarama (LiDAR) nokta bulutu GeoSLAM ZEB-HORIZON orman envanteri orman amenajmanı
Primary Language | Turkish |
---|---|
Subjects | Forest Industry Engineering |
Journal Section | Forest Management |
Authors | |
Publication Date | June 15, 2022 |
Submission Date | November 1, 2021 |
Published in Issue | Year 2022 |