Research Article
BibTex RIS Cite

Isıl işlem uygulanmış çam odun örneklerinin hızlandırılmış yaşlandırma testi sonrası renk ve pürüzlülük değerlerinin incelenmesi

Year 2022, , 165 - 171, 17.09.2022
https://doi.org/10.17568/ogmoad.1088739

Abstract

Bu çalışmada, sarıçam (Pinus sylvestris L.) odununun oksijen (açık sistem) ve vakum altında (kapalı sistem) ısıl işlemi sonrası hızlandırılmış yaşlandırma testi performansı incelenmiştir. Örnekler 75 (Radyal) × 15 (Teğet) × 150 (Lifler) mm boyutlarında çam diri odun kısmından hazırlanmıştır. Hızlandırılmış yaşlandırma testi sonrası örneklerin yüzey pürüzlülüğü ve renk ölçümü gerçekleştirilmiştir. Sonuçlara göre minimum renk değişimi 190 °C’de kapalı sistemde (VHT) gerçekleştirilen ısıl işlem sonrası elde edilmiştir. Kapalı sistemde ısıl işlem görmüş sarıçam örneklerinin yüzey pürüzlülük parametreleri ısıl işlem sıcaklığındaki artışla birlikte artmıştır. Kapalı sistemde gerçekleştirilen ısıl işlemde, açık sistemde (HT) gerçekleştirilen ısıl işleme kıyasla daha düşük pürüzlülük değerleri elde edilmiştir. Hızlandırılmış yaşlandırma süresinin artışına paralel olarak toplam renk değişimi ve pürüzlülük değerleri artış göstermiştir.

Supporting Institution

KAROK2021

Project Number

KAROK2021

Thanks

KAROK2021

References

  • Allegretti, O., Brunetti, M., Cuccui, I., Ferrari, S., Nocetti, M. and Terziev, N. 2012. Thermo-vacuum modification of spruce (Picea abies Karst.) and fir (Abies alba mill.) wood. BioResources, 7(3), 3656–3669.
  • Altgen, M., Willems, W. and Militz, H. 2016b. Wood degradation affected by process conditions during thermal modification of European beech in a high-pressure reactor system. European Journal of Wood and Wood Products, 74(5), 653–662. doi: 10.1007/s00107-016-1045-y
  • Aytin, A., Korkut, S., 2016. Effect of thermal treatment on the swelling and surface roughness of common alder and wych elm wood. Journal of Forestry Research, 27(1): 225-229. DOI: 10.1007/s11676-015-0136-7.
  • Aytin, A., Korkut, S., Çakicier, N., 2015. Effect of heat treatment with thermowood method on some surface characteristic of wild cherry wood. Journal of Selcuk-Technic, 14(2): 539-554.
  • B. Tjeerdsma, M. Boonstra, A. Pizzi, P. Tekely, H. Militz, Characterisation of thermally modified wood: molecular reasons for wood performance improvement, Holz Roh-Werkst 56 (1998) 149–153.
  • Bakar, B.F.A., Hiziroğlu, S., Tahir, P.M., 2013. Properties of some thermally modified wood species. Materials & Design, 43:348–355
  • Bhuiyan, M. T. R., Hirai, N. and Sobue, N. 2000. Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. Journal of Wood Science, 46(6), 431–436. doi: 10.1007/BF00765800
  • Boonstra, M. J. and Tjeerdsma, B. 2006. Chemical analysis of heat treated softwoods. Holz Als Roh-Und Werkstoff, 64(3), 204–211. doi: 10.1007/s00107-005-0078-4
  • Boonstra, M. J., Tjeerdsma, B. and Groeneveld, H. A. C. 1998. Thermal modification of non-durable wood species. Part 1. The Plato technology: thermal modification of wood. In The International Research Group on Wood Protection, Doc IRG/WP 98-40123, 14–19 June 1998, Maastricht, The Netherlands.
  • Dagbro, O., Torniainen, P., Karlsson, O. and Morén, T., 2010. Colour responses from wood, thermally modified in superheated steam and pressurized steam atmospheres. Wood Material Science and Engineering, 5(3–4), 211–219. doi: 10.1080/17480272.2010.520739
  • Esteves, B., Domingos, I. and Pereira, H., 2007a. Improvement of technological quality of eucalypt wood by heat treatment in air at 170–200 degrees °C. Forest Products Journal, 57(1–2), 47–52.
  • Hill, C., 2006. Wood Modification: Chemical, Thermal and Other Processes (West Sussex: John Wiley & Sons, Ltd). K. Mitsui, H. Takada, M. Sugiyama, R. Hasegawa, Changes in the properties of lightirradiated wood with heat treatment: Part 1 Effect of treatment conditions on the change in colour, Holzforschung 55 (2001) 601–605, https://doi.org/10.1515/HF.2001.098.
  • Kasemsiri, P., Hiziroğlu, S., Rimduist, S., 2012. Characterization of heat treated eastern redcedar (Juniperus virginiana L.). Journal of Materials Processing Technology, 212(6): 1324-1330.
  • Kollmann, F. and Schneider, A., 1963. Über das Sorptionsverhalten wärmebehandelter Hölzer (English: On the sorption behavior of heat treated wood). Holz als Roh- und Werkstoff, 21(3), 77–85. doi: 10.1007/BF02609705
  • Korkut, D.S., Hiziroglu, S., Aytin, A., 2013. Effect of heat treatment on surface characteristics of wild cherry wood. BioResources, 8(2): 1582-1590.
  • Kubojima, Y., Okano, T. and Ohta, M., 2000. Bending strength and toughness of heat-treated wood. Journal of Wood Science, 46(1), 8–15. doi: 10.1007/BF00779547
  • Kvietkova, M., Gaff, M., Gašparík, M., Kaplan, L., Barcík, Š., 2015. Surface quality of milled birch wood after thermal treatment at various temperatures. BioResources, 10(4): 6512-6521. DOI: 10.15376/biores.10.4.6512-6521
  • Lim, J.A., Oh, J.K., Hong, J.P. ve Lee, J.J., (2015). Investigation of color difference in acq and cbhdo treated wood during two-year outdoor exposure 1. Wood engineering. 43(2): 265-273.
  • Mayes, D., and Oksanen, O., 2002. ThermoWood handbook, Finnforest, Finland, 5-15.
  • Militz, H. and Altgen, M., 2014. Processes and properties of thermallymodified wood manufactured in Europe. In T. P. Schultz, B. Goodelland D. D. Nicholas (eds.)Deterioration and Protection of SustainableBiomaterials. American Chemical Society(Washington, DC: ACSSymposium Series 1158), pp. 269–285.
  • Nuopponen, M., Vuorinen, T., Jämsä, S. and Viitaniemi, P., 2005. Thermal modifications in softwood studied by FT-IR and UV resonance Raman spectroscopies. Journal of Wood Chemistry and Technology, 24(1), 13–26. doi: 10.1081/WCT-120035941
  • Ozgenc, O., Okan, O.T., Yildiz, U.C. ve Deniz, I., 2013. Wood surface protection against artificial weathering with vegetable seed oils. BioResources, 8(4): 6242-6262.
  • Bekhta, P. Niemz, P., 2003. Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood, Holzforschung 57, 539–546, https://doi.org/10.1515/HF.2003.080.
  • Phuong, L. X., Shida, S. and Saito, Y., 2007. Effects of heat treatment on brittleness of Styrax tonkinensis wood. Journal of Wood Science, 53(3), 181–186. doi: 10.1007/s10086-006-0841-0
  • Sivrikaya, H., Tesarova, D., Rejabkova, E., Can, A., 2019. Color change and emission of volatile organic compounds from Scots pine exposed to heat and vacuum-heat treatment. Journal of Building Engineering 26, 100918.
  • Sundqvist, B., Karlsson, O. and Westermark, U., 2006. Determination of formic-acid and acetic acid concentrations formed during hydrothermal treatment of birch wood and its relation to colour, strength and hardness. Wood Science and Technology, 40(7), 549–561. doi: 10.1007/s00226-006-0071-z
  • Sweet, M.S. and Winandy, J.E., 1999. Influence of degree of polymerization of cellulose and hemicellulose on strength loss in fire-retardant-treated southern pine. Holzforschung, 53(3), 311–317.
  • Temiz, A., Eıkenes, M., Yıldız, U.C., Evans, F.G. ve Jacobsen, B., 2003. Accelerated weathering test for he evaluation of Wood preservative efficacy. The International Research Group on Wood Preservation, 34th annual meeting, IRG/WP 03-20262, Brisbane, Australia.
  • Temiz, A., Yildiz, U.C., Aydin, I., Eikenes, M., Alfredsen, G. ve Çolakoglu, G., 2005. Surface roughness and color characteristics of wood treated with preservatives after accelerated weathering test. Applied Surface Science, 250(1): 35-42.
  • Tjeerdsma, B. F. and Militz, H., 2005. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz Als Roh-Und Werkstoff, 63(2), 102–111. doi: 10.1007/s00107-004-0532-8 Tjeerdsma, B. F., Boonstra, M., Pizzi, A., Tekely, P. and Militz, H., 1998. Characterisation of thermally modified wood: Molecular reasons for wood performance improvement. Holz als Roh- und Werkstoff, 56(3), 149–153. doi: 10.1007/s001070050287
  • Willems, W., 2014. Experiences with an industrial system for controlled thermal wood modification in pressurized unsaturated steam. In The International Research Group on Wood Protection, Doc. IRG/WP 14-40678, 11–15 May 2014, St. George, UT, USA.
  • Zhang, J., Kamdem, D.P., and Temiz, A., 2009. Weathering of Copper-amine Treated Wood. Appl. Surf. Sci., 256(3): 842-846.

Investigation of color and roughness properties of heat-treated pine wood after accelerating weathering

Year 2022, , 165 - 171, 17.09.2022
https://doi.org/10.17568/ogmoad.1088739

Abstract

In this study, the accelerated weathering test performance of Scots pine (Pinus sylvestris L.) wood was investigated by heat treatment under oxygen (open system) and vacuum (closed system). Samples were prepared from the pine sapwood part with dimensions of 75 mm × 15 mm × 150 mm (radial x tangential x longitudinal). After the accelerated weathering test, the surface roughness and color measurements of the samples were carried out. According to the results obtained, the minimum color change was obtained after heat treatment at 190 °C in a closed system (VHT). The surface roughness parameters of pine samples that were heat-treated in the closed system increased with the increase in the heat treatment temperature. In the heat treatment performed in the closed system, lower roughness values were obtained compared to the heat treatment performed in the open system (HT). In parallel with the increase in the accelerated weathering time, the total color change and roughness values increased.

Project Number

KAROK2021

References

  • Allegretti, O., Brunetti, M., Cuccui, I., Ferrari, S., Nocetti, M. and Terziev, N. 2012. Thermo-vacuum modification of spruce (Picea abies Karst.) and fir (Abies alba mill.) wood. BioResources, 7(3), 3656–3669.
  • Altgen, M., Willems, W. and Militz, H. 2016b. Wood degradation affected by process conditions during thermal modification of European beech in a high-pressure reactor system. European Journal of Wood and Wood Products, 74(5), 653–662. doi: 10.1007/s00107-016-1045-y
  • Aytin, A., Korkut, S., 2016. Effect of thermal treatment on the swelling and surface roughness of common alder and wych elm wood. Journal of Forestry Research, 27(1): 225-229. DOI: 10.1007/s11676-015-0136-7.
  • Aytin, A., Korkut, S., Çakicier, N., 2015. Effect of heat treatment with thermowood method on some surface characteristic of wild cherry wood. Journal of Selcuk-Technic, 14(2): 539-554.
  • B. Tjeerdsma, M. Boonstra, A. Pizzi, P. Tekely, H. Militz, Characterisation of thermally modified wood: molecular reasons for wood performance improvement, Holz Roh-Werkst 56 (1998) 149–153.
  • Bakar, B.F.A., Hiziroğlu, S., Tahir, P.M., 2013. Properties of some thermally modified wood species. Materials & Design, 43:348–355
  • Bhuiyan, M. T. R., Hirai, N. and Sobue, N. 2000. Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. Journal of Wood Science, 46(6), 431–436. doi: 10.1007/BF00765800
  • Boonstra, M. J. and Tjeerdsma, B. 2006. Chemical analysis of heat treated softwoods. Holz Als Roh-Und Werkstoff, 64(3), 204–211. doi: 10.1007/s00107-005-0078-4
  • Boonstra, M. J., Tjeerdsma, B. and Groeneveld, H. A. C. 1998. Thermal modification of non-durable wood species. Part 1. The Plato technology: thermal modification of wood. In The International Research Group on Wood Protection, Doc IRG/WP 98-40123, 14–19 June 1998, Maastricht, The Netherlands.
  • Dagbro, O., Torniainen, P., Karlsson, O. and Morén, T., 2010. Colour responses from wood, thermally modified in superheated steam and pressurized steam atmospheres. Wood Material Science and Engineering, 5(3–4), 211–219. doi: 10.1080/17480272.2010.520739
  • Esteves, B., Domingos, I. and Pereira, H., 2007a. Improvement of technological quality of eucalypt wood by heat treatment in air at 170–200 degrees °C. Forest Products Journal, 57(1–2), 47–52.
  • Hill, C., 2006. Wood Modification: Chemical, Thermal and Other Processes (West Sussex: John Wiley & Sons, Ltd). K. Mitsui, H. Takada, M. Sugiyama, R. Hasegawa, Changes in the properties of lightirradiated wood with heat treatment: Part 1 Effect of treatment conditions on the change in colour, Holzforschung 55 (2001) 601–605, https://doi.org/10.1515/HF.2001.098.
  • Kasemsiri, P., Hiziroğlu, S., Rimduist, S., 2012. Characterization of heat treated eastern redcedar (Juniperus virginiana L.). Journal of Materials Processing Technology, 212(6): 1324-1330.
  • Kollmann, F. and Schneider, A., 1963. Über das Sorptionsverhalten wärmebehandelter Hölzer (English: On the sorption behavior of heat treated wood). Holz als Roh- und Werkstoff, 21(3), 77–85. doi: 10.1007/BF02609705
  • Korkut, D.S., Hiziroglu, S., Aytin, A., 2013. Effect of heat treatment on surface characteristics of wild cherry wood. BioResources, 8(2): 1582-1590.
  • Kubojima, Y., Okano, T. and Ohta, M., 2000. Bending strength and toughness of heat-treated wood. Journal of Wood Science, 46(1), 8–15. doi: 10.1007/BF00779547
  • Kvietkova, M., Gaff, M., Gašparík, M., Kaplan, L., Barcík, Š., 2015. Surface quality of milled birch wood after thermal treatment at various temperatures. BioResources, 10(4): 6512-6521. DOI: 10.15376/biores.10.4.6512-6521
  • Lim, J.A., Oh, J.K., Hong, J.P. ve Lee, J.J., (2015). Investigation of color difference in acq and cbhdo treated wood during two-year outdoor exposure 1. Wood engineering. 43(2): 265-273.
  • Mayes, D., and Oksanen, O., 2002. ThermoWood handbook, Finnforest, Finland, 5-15.
  • Militz, H. and Altgen, M., 2014. Processes and properties of thermallymodified wood manufactured in Europe. In T. P. Schultz, B. Goodelland D. D. Nicholas (eds.)Deterioration and Protection of SustainableBiomaterials. American Chemical Society(Washington, DC: ACSSymposium Series 1158), pp. 269–285.
  • Nuopponen, M., Vuorinen, T., Jämsä, S. and Viitaniemi, P., 2005. Thermal modifications in softwood studied by FT-IR and UV resonance Raman spectroscopies. Journal of Wood Chemistry and Technology, 24(1), 13–26. doi: 10.1081/WCT-120035941
  • Ozgenc, O., Okan, O.T., Yildiz, U.C. ve Deniz, I., 2013. Wood surface protection against artificial weathering with vegetable seed oils. BioResources, 8(4): 6242-6262.
  • Bekhta, P. Niemz, P., 2003. Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood, Holzforschung 57, 539–546, https://doi.org/10.1515/HF.2003.080.
  • Phuong, L. X., Shida, S. and Saito, Y., 2007. Effects of heat treatment on brittleness of Styrax tonkinensis wood. Journal of Wood Science, 53(3), 181–186. doi: 10.1007/s10086-006-0841-0
  • Sivrikaya, H., Tesarova, D., Rejabkova, E., Can, A., 2019. Color change and emission of volatile organic compounds from Scots pine exposed to heat and vacuum-heat treatment. Journal of Building Engineering 26, 100918.
  • Sundqvist, B., Karlsson, O. and Westermark, U., 2006. Determination of formic-acid and acetic acid concentrations formed during hydrothermal treatment of birch wood and its relation to colour, strength and hardness. Wood Science and Technology, 40(7), 549–561. doi: 10.1007/s00226-006-0071-z
  • Sweet, M.S. and Winandy, J.E., 1999. Influence of degree of polymerization of cellulose and hemicellulose on strength loss in fire-retardant-treated southern pine. Holzforschung, 53(3), 311–317.
  • Temiz, A., Eıkenes, M., Yıldız, U.C., Evans, F.G. ve Jacobsen, B., 2003. Accelerated weathering test for he evaluation of Wood preservative efficacy. The International Research Group on Wood Preservation, 34th annual meeting, IRG/WP 03-20262, Brisbane, Australia.
  • Temiz, A., Yildiz, U.C., Aydin, I., Eikenes, M., Alfredsen, G. ve Çolakoglu, G., 2005. Surface roughness and color characteristics of wood treated with preservatives after accelerated weathering test. Applied Surface Science, 250(1): 35-42.
  • Tjeerdsma, B. F. and Militz, H., 2005. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz Als Roh-Und Werkstoff, 63(2), 102–111. doi: 10.1007/s00107-004-0532-8 Tjeerdsma, B. F., Boonstra, M., Pizzi, A., Tekely, P. and Militz, H., 1998. Characterisation of thermally modified wood: Molecular reasons for wood performance improvement. Holz als Roh- und Werkstoff, 56(3), 149–153. doi: 10.1007/s001070050287
  • Willems, W., 2014. Experiences with an industrial system for controlled thermal wood modification in pressurized unsaturated steam. In The International Research Group on Wood Protection, Doc. IRG/WP 14-40678, 11–15 May 2014, St. George, UT, USA.
  • Zhang, J., Kamdem, D.P., and Temiz, A., 2009. Weathering of Copper-amine Treated Wood. Appl. Surf. Sci., 256(3): 842-846.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Forest Industry Engineering
Journal Section Forest Products
Authors

Ahmet Can 0000-0001-5926-6039

Project Number KAROK2021
Publication Date September 17, 2022
Submission Date March 16, 2022
Published in Issue Year 2022

Cite

APA Can, A. (2022). Isıl işlem uygulanmış çam odun örneklerinin hızlandırılmış yaşlandırma testi sonrası renk ve pürüzlülük değerlerinin incelenmesi. Ormancılık Araştırma Dergisi, 9(Özel Sayı), 165-171. https://doi.org/10.17568/ogmoad.1088739