Research Article
BibTex RIS Cite

Farklı vaks türlerinin lif levhaların bazı fiziksel ve yüzey özellikleri üzerindeki etkinliğinin değerlendirilmesi

Year 2022, , 148 - 154, 17.09.2022
https://doi.org/10.17568/ogmoad.1090060

Abstract

Bilindiği üzere odun esaslı levha ürünlerinin özellikle kullanım yerlerinde suya ve rutubete maruz kaldıklarında dayanımlarının az olması bu ürünlerin dezavantajlı olarak kabul edilen ve iyileştirilmesi gereken özelliklerinden biridir. Bu nedenle odun esaslı levhaların suya, rutubete karşı dayanımlarını artırabilmek adına üretimleri esnasında su itici maddeler kullanılmaktadır. Bu çalışmada, levha üretiminde yaygın olarak kullanılan su itici maddelerden biri olan parafine alternatif olarak iki farklı vaks-mum türü seçilmiş ve etkinlikleri değerlendirilmiştir. Levha örneklerinin 2-24 saat süre için kalınlığına şişme (KŞ) ve su alma (SA) değerleri, yüzey pürüzlülük parametreleri ile yüzey sertlik değerleri belirlenmiştir. Ölçümler sonucunda, kontrol grubuna kıyasla diğer grupların KŞ ve SA oranlarında belirgin derecede iyileşme olduğu belirlenmiştir. Özellikle sadece parafin, parafin-balmumu ve parafin-soya vaksı karışımlarının tutkala ilave edildiği grupların oldukça düşük SA ve KŞ değerleri verdiği görülmüştür. Yüzey pürüzlülük parametreleri ise vaks türüne, uygulama yöntemine bağlı olarak değişim göstermiştir. En yüksek yüzey sertlik değeri balmumu ve parafinin karışım halinde yüzeye uygulandığı grupta elde edilmiştir. Buna göre, kullanılan bitkisel ve hayvansal vaks türlerinin de su itici etki gösterebilecekleri, özellikle uygun yöntem ve farklı kombinasyonlarla uygulanmaları durumunda etkinliklerinin artırılabileceği düşünülmektedir.

Supporting Institution

KAROK2021

References

  • Adgaba, N. (2007). Physical and chemical properties of Ethiopian beeswax and detection of adulteration. Ethiopian journal of Animal production, 39.
  • Akcay, C. (2020). Determination of decay, larvae resistance, water uptake, color, and hardness properties of wood impregnated with honeybee vax. BioResources, 15(4), 8339.
  • Amin, M., Putra, N., Kosasih, E. A., Prawiro, E., Luanto, R. A., & Mahlia, T. M. I. (2017). Thermal properties of beeswax/graphene phase change material as energy storage for building applications. Applied Thermal Engineering, 112,273-280. DOI:10.1016/j.applthermaleng.2016.10.085
  • Chen, J., Wang, Y., Cao, J., & Wang, W. (2020). Improved water repellency and dimensional stability of wood via impregnation with an epoxidized linseed oil and carnauba vaks complex emulsion. Forests, 11(3), 271.
  • DIN 4768 (1990) Determination of values of surface roughness parameters Ra, Rz, Rmax using electrical contact (stylus) instruments, concepts and measuring conditions. Deutsches Institut für Norming, Berlin, Germany.
  • EN 317 (1993). Particleboards and Fiberboards, Determination of Swelling in Thickness After Immersion, European Committee for Standardization, Brussels, Belgium.
  • Eroğlu H. ve Usta M. (2000), Lif levha üretim teknolojisi, KTÜ. Orman Fakültesi Yayın, 200-30, Trabzon.
  • Grigsby, W., & Thumm, A. (2012). The interactions between wax and UF resin in medium density fibreboard. European Journal of Wood and Wood Products, 70(4), 507-517.
  • Ibrahim, A. I. (2020). Production of Water Repellent Coating Using Beeswax and Soy Wax. In 7th International Conference on islamic education 2020 (ICIEd 2020) (p. 661).
  • Khan, K. A., Ali, M. H., Obaydullah, A. K. M., & Wadud, M. A. (2019). Production of candle using solar thermal technology. Microsystem Technologies, 25(12),4505-4515. DOI:10.1007/s00542-019-04390-7
  • Kryński, K., & Kowaluk, G. (2021). Application of beeswax as a hydrophobic agent in MDF technology. Annals of Warsaw University of Life Sciences-SGGW. Forestry and Wood Technology.
  • Lesar B, and Humar M. (2011), Use of wax emulsions for improvement of wood durability and sorption properties. European Journal of Wood and Wood Products, 69(2), 231-238. DOI:10.1007/s00107-010-0425-y
  • Li, Y., Qian, J., Wang, Z., Qu, L., Gao, J., Yi, S., & He, Z. (2020). Effect of beeswax impregnation on the dimensional stability, surface properties, and thermal characteristics of wood. BioResources, 15(2), 2181-2194.
  • Lötter B.T ve Evans P. D. (2019) Sprayable hot melt waxes as water repellents for oriented strand board, International Wood Products Journal, 10:3, 102-110, DOI: 10.1080/20426445.2019.1637609 Németh, R., Tsalagkas, D., & Bak, M. (2015). Effect of soil contact on the modulus of elasticity of beeswax-impregnated wood. BioResources, 10(1), 1574-1586. Ren, L., Cai, Y., Ren, L., & Yang, H. (2016). Preparation of Modified Beeswax and Its Influence on the Surface Properties of Compressed Poplar Wood. Materials, 9(4), 230.
  • Scholz, G., Militz, H., Gascón-Garrido, P., Ibiza-Palacios, M. S., Oliver-Villanueva, J. V., Peters, B. C., & Fitzgerald, C. J. (2010). Improved termite resistance of wood by wax impregnation. International Biodeterioration & Biodegradation, 64(8), 688–693. DOI:10.1016/j.ibiod.2010.05.012
  • Shen, T., Fan, S., Li, Y., Xu, G., & Fan, W. (2020). Preparation of edible non-wettable coating with soybean wax for repelling liquid foods with little residue. Materials, 13(15), 3308.
  • Tinto, W. F., Elufioye, T. O., and Roach, J. (2017). Waxes. Pharmacognosy, 443–455. DOI:10.1016/b978-0-12-802104-0.00022-6
  • Youngquist, J. A. (1999). Wood-based composites and panel products. Wood handbook: wood as an engineering material. Madison, WI: USDA Forest Service, Forest Products Laboratory, 1999. General technical report FPL; GTR-113: Pages 10.1-10.31, 113.
  • URL-1:https://pediaa.com/what-is-the-difference-between-beeswax-and-soy-wax/

The evaluation of the efficiency of different waxes on some physical and surface properties of fiberboard

Year 2022, , 148 - 154, 17.09.2022
https://doi.org/10.17568/ogmoad.1090060

Abstract

As known, the low resistance of wood-based panel products, especially when exposed to water and moisture in places of use, is one of the disadvantageous properties of these products that need to be improved. For this reason, various water repellents are used during the production of panels in order to increase their resistance to water and moisture. In this study, two different types of wax were selected as alternatives to paraffin, which is one of the water repellents commonly used in fiberboard production, and their effectiveness was evaluated. Thickness swelling (TS), water absorption (WA) values for 2 and 24 hours, surface roughness parameters and surface hardness values of the fiberboard samples were determined. As a result of the measurements, it was determined that there was a significant improvement in the TS and WA values of other groups compared to the control group. In particular, it was observed that the groups in which only paraffin, mixtures of paraffin-beeswax and paraffin-soy wax were added to resin gave the lowest WA and TS values. The surface roughness parameters of the samples were changed depending on the wax type and application method. The highest surface hardness value was obtained from the group where a mixture of beeswax and paraffin was applied to the surface. According to these results, it is thought that these waxes of plant and animal origin can also provide water repellent properties, and their effectiveness can be increased, especially in applications of suitable methods and different combinations.

References

  • Adgaba, N. (2007). Physical and chemical properties of Ethiopian beeswax and detection of adulteration. Ethiopian journal of Animal production, 39.
  • Akcay, C. (2020). Determination of decay, larvae resistance, water uptake, color, and hardness properties of wood impregnated with honeybee vax. BioResources, 15(4), 8339.
  • Amin, M., Putra, N., Kosasih, E. A., Prawiro, E., Luanto, R. A., & Mahlia, T. M. I. (2017). Thermal properties of beeswax/graphene phase change material as energy storage for building applications. Applied Thermal Engineering, 112,273-280. DOI:10.1016/j.applthermaleng.2016.10.085
  • Chen, J., Wang, Y., Cao, J., & Wang, W. (2020). Improved water repellency and dimensional stability of wood via impregnation with an epoxidized linseed oil and carnauba vaks complex emulsion. Forests, 11(3), 271.
  • DIN 4768 (1990) Determination of values of surface roughness parameters Ra, Rz, Rmax using electrical contact (stylus) instruments, concepts and measuring conditions. Deutsches Institut für Norming, Berlin, Germany.
  • EN 317 (1993). Particleboards and Fiberboards, Determination of Swelling in Thickness After Immersion, European Committee for Standardization, Brussels, Belgium.
  • Eroğlu H. ve Usta M. (2000), Lif levha üretim teknolojisi, KTÜ. Orman Fakültesi Yayın, 200-30, Trabzon.
  • Grigsby, W., & Thumm, A. (2012). The interactions between wax and UF resin in medium density fibreboard. European Journal of Wood and Wood Products, 70(4), 507-517.
  • Ibrahim, A. I. (2020). Production of Water Repellent Coating Using Beeswax and Soy Wax. In 7th International Conference on islamic education 2020 (ICIEd 2020) (p. 661).
  • Khan, K. A., Ali, M. H., Obaydullah, A. K. M., & Wadud, M. A. (2019). Production of candle using solar thermal technology. Microsystem Technologies, 25(12),4505-4515. DOI:10.1007/s00542-019-04390-7
  • Kryński, K., & Kowaluk, G. (2021). Application of beeswax as a hydrophobic agent in MDF technology. Annals of Warsaw University of Life Sciences-SGGW. Forestry and Wood Technology.
  • Lesar B, and Humar M. (2011), Use of wax emulsions for improvement of wood durability and sorption properties. European Journal of Wood and Wood Products, 69(2), 231-238. DOI:10.1007/s00107-010-0425-y
  • Li, Y., Qian, J., Wang, Z., Qu, L., Gao, J., Yi, S., & He, Z. (2020). Effect of beeswax impregnation on the dimensional stability, surface properties, and thermal characteristics of wood. BioResources, 15(2), 2181-2194.
  • Lötter B.T ve Evans P. D. (2019) Sprayable hot melt waxes as water repellents for oriented strand board, International Wood Products Journal, 10:3, 102-110, DOI: 10.1080/20426445.2019.1637609 Németh, R., Tsalagkas, D., & Bak, M. (2015). Effect of soil contact on the modulus of elasticity of beeswax-impregnated wood. BioResources, 10(1), 1574-1586. Ren, L., Cai, Y., Ren, L., & Yang, H. (2016). Preparation of Modified Beeswax and Its Influence on the Surface Properties of Compressed Poplar Wood. Materials, 9(4), 230.
  • Scholz, G., Militz, H., Gascón-Garrido, P., Ibiza-Palacios, M. S., Oliver-Villanueva, J. V., Peters, B. C., & Fitzgerald, C. J. (2010). Improved termite resistance of wood by wax impregnation. International Biodeterioration & Biodegradation, 64(8), 688–693. DOI:10.1016/j.ibiod.2010.05.012
  • Shen, T., Fan, S., Li, Y., Xu, G., & Fan, W. (2020). Preparation of edible non-wettable coating with soybean wax for repelling liquid foods with little residue. Materials, 13(15), 3308.
  • Tinto, W. F., Elufioye, T. O., and Roach, J. (2017). Waxes. Pharmacognosy, 443–455. DOI:10.1016/b978-0-12-802104-0.00022-6
  • Youngquist, J. A. (1999). Wood-based composites and panel products. Wood handbook: wood as an engineering material. Madison, WI: USDA Forest Service, Forest Products Laboratory, 1999. General technical report FPL; GTR-113: Pages 10.1-10.31, 113.
  • URL-1:https://pediaa.com/what-is-the-difference-between-beeswax-and-soy-wax/
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Forest Industry Engineering
Journal Section Forest Products
Authors

Derya Ustaömer 0000-0003-0102-818X

Elif Topaloğlu 0000-0003-4736-8702

Evren Ersoy Kalyoncu 0000-0002-4538-7187

Publication Date September 17, 2022
Submission Date March 28, 2022
Published in Issue Year 2022

Cite

APA Ustaömer, D., Topaloğlu, E., & Ersoy Kalyoncu, E. (2022). Farklı vaks türlerinin lif levhaların bazı fiziksel ve yüzey özellikleri üzerindeki etkinliğinin değerlendirilmesi. Ormancılık Araştırma Dergisi, 9(Özel Sayı), 148-154. https://doi.org/10.17568/ogmoad.1090060