Research Article
BibTex RIS Cite

Bioactive and radioactive properties of some edible wild Lactarius mushrooms

Year 2022, , 254 - 263, 17.09.2022
https://doi.org/10.17568/ogmoad.1111983

Abstract

Bioactive and radioactive properties of Lactarius delicious, Lactarius insulsus, Lactarius vellereus mushrooms were investigated and for this purpose, protein and total phenolic substance amounts, antioxidant and antimicrobial properties of mushrooms collected from Kastamonu province were determined. In addition, the amounts of some trace elements (Mg, Al, Ca, Mn, Fe, Co, Ni, Cu, Zn, Se, As, Cr, Cd) in mushrooms, three isotopes of lead (206Pb, 207Pb and 208Pb), natural (238U, 232Th) 40K) and artificial radionuclide (137Cs) levels were also calculated. Among the fungi; L. delicious attracted attention with its higher protein content and accumulation of Mg, Ca, Mn, Fe, Co, Ni, Zn, Pb-206, Pb-208, Cr. The highest total phenolic content and antioxidant activity were found in L. vellereus. Additionally; the highest 232Th and 40K radionuclide content was also determined in L. vellereus. Artificial radionuclide (137Cs) was observed only in L. insulsus fungus. As a result, it was concluded that different mushroom species have different bioactive and radioactive properties, although they are of the same genus and collected from the same region.

References

  • Ak, E. E., Tüzel, Y., Eren, E., Atilla, F. 2016. Türkiye'nin mantar ihracatının değerlendirilmesi. Türk Tarım-Gıda Bilim ve Teknoloji Dergisi 4(3): 239-243.
  • Alshahri, F. 2019. Natural and anthropogenic radionuclides in urban soil around non-nuclear industries (Northern Al Jubail), Saudi Arabia: assessment of health risk. Environmental Science Pollution Research 26 (36): 36226-36235.
  • Arafa, W. 2004. Specific activity and hazards of granite samples collected from the Eastern Desert of Egypt. Journal of Environmental Radioactivity 75 (3): 315-327.
  • Baeza, A., Guillén, J. 2006. Influence of the soil bioavailability of radionuclides on the transfer of uranium and thorium to mushrooms. Applied Radiation Isotopes in Environmental Health studies 64 (9): 1020-1026.
  • Barros, L., Baptista, P., Estevinho, L. M., Ferreira, I. C. 2007. Effect of fruiting body maturity stage on chemical composition and antimicrobial activity of Lactarius sp. mushrooms. Journal of Agricultural Food Chemistry 55 (21): 8766-8771.
  • Benzie, I. F., Strain, J. J. 1996. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry 239 (1): 70-76.
  • Beretka, J., Matthew, P. 1985. Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Physics 48 (1): 87-95.
  • Changizi, V., Angaji, M., Zare, M. R., Abbasnejad, K. 2012. Evaluation of 226Ra, 232Th, 137Cs and 40K Agaricus bisporus activity in cultivated edible mushroom formed in Tehran Province-Iran. Iranian Journal of Medical Physics 9 (4): 239-244.
  • Chen, S., Zhu, Y., Hu, Q. 2005. Soil to plant transfer of 238U, 226Ra and 232Th on a uranium mining-impacted soil from southeastern China. Journal of Environmental Radioactivity 82 (2): 223-236.
  • Crisan, E., Sands, A. 1978. The Biology and Cultivation of Edible Mushrooms. Nutritional value. Academic Press, New York.
  • Dulger, B., Yilmaz, F., Gucin, F. 2002. Antimicrobial activity of some Lactarius species. Pharmaceutical Biology 40 (4): 304-306.
  • Falandysz, J., Borovička, J. 2013. Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks. Applied Microbiology Biotechnology 97 (2): 477-501.
  • Faweya, E., Ayeni, M., Kayode, J. 2015. Accumulation of natural radionuclides by some edible wild mushrooms in Ekiti State, Southwestern, Nigeria. World Journal of Nuclear Science Technology 5 (02): 107.
  • Gadow, A., Joubert, E., Hansmann, C. 1997. Comparison of the antioxidant activity of aspalathin with that of other plant phenols of rooibos tea (Aspalathus linearis), α-tocopherol, BHT, and BHA. Journal of Agricultural Food Chemistry 45 (3): 632-638.
  • Gast, C., Jansen, E., Bierling, J., Haanstra, L. 1988. Heavy metals in mushrooms and their relationship with soil characteristics. Chemosphere 17 (4): 789-799.
  • He, Z. L., Yang, X. E., Stoffella, P. J. 2005. Trace elements in agroecosystems and impacts on the environment. Journal of Trace elements in Medicine Biology 19 (2-3): 125-140.
  • Henry, F., Amara, R., Courcot, L., Lacouture, D., Bertho, M.-L. 2004. Heavy metals in four fish species from the French coast of the Eastern English Channel and Southern Bight of the North Sea. Environment International 30 (5): 675-683.
  • Jackson, P. 1996. Age-dependent doses to members of the public from intake of radionuclides: part 5 compilation of ingestion and inhalation dose coefficients (ICRP Publication 72). IOP Publishing.
  • Kalogeropoulos, N., Yanni, A. E., Koutrotsios, G., Aloupi, M. 2013. Bioactive microconstituents and antioxidant properties of wild edible mushrooms from the island of Lesvos, Greece. Food Chemical Toxicology 55: 378-385.
  • Karahan, G., Bayulken, A. 2000. Assessment of gamma dose rates around Istanbul (Turkey). Journal of Environmental Radioactivity 47 (2): 213-221.
  • Kosanić, M., Ranković, B., Rančić, A., Stanojković, T. 2016. Evaluation of metal concentration and antioxidant, antimicrobial, and anticancer potentials of two edible mushrooms Lactarius deliciosus and Macrolepiota procera. Journal of Food Drug Analysis 24 (3): 477-484.
  • Krieger, R. 1981. Radioactivity of construction materials. Betonwerk Fertigteil Techn 47 (8): 468-473.
  • Kurnaz, A., Küçükömeroğlu, B., Keser, R., Okumuşoğlu, N., Korkmaz, F., Karahan, G., Çevik, U. 2007. Determination of radioactivity levels and hazards of soil and sediment samples in Fırtına Valley (Rize, Turkey). Applied Radiation Isotopes in Environmental Health studies 65 (11): 1281-1289.
  • Maity, G. N., Maity, P., Khatua, S., Acharya, K., Dalai, S., Mondal, S. 2021. Structural features and antioxidant activity of a new galactoglucan from edible mushroom Pleurotus djamor. International Journal of Biological Macromolecules 168: 743-749.
  • Mamont-Ciesla, K., Gwiazdowski, B., Biernacka, M., Zak, A. 1982. Radioactivity of Building Materials in Poland. Natural Radiation Environment. Halsted Press, New York
  • Manzi, P., Marconi, S., Aguzzi, A., Pizzoferrato, L. 2004. Commercial mushrooms: nutritional quality and effect of cooking. Food Chemistry 84 (2): 201-206.
  • Martins, A., Baptista, P., Sousa, M., Meireles, T., Pais, M. 2002. Edible mycorrhizal fungi associated with Castanea sativa Mill trees in the Northeast of Portugal. The proceedings of the second international workshop on edible mycorrhizal fungi. ISBN 0-478-10828-X.
  • Mountford, P., Temperton, D. 1992. Recommendations of the international commission on radiological protection (ICRP) 1990. European Journal of Nuclear Medicine 19, 77–79
  • Murcia, M. A., Martinez-Tome, M., Jiménez, A. M., Vera, A. M., Honrubia, M., Parras, P. 2002. Antioxidant activity of edible fungi (truffles and mushrooms): losses during industrial processing. Journal of Food Protection 65 (10): 1614-1622.
  • Rakić, M., Karaman, M., Forkapić, S., Hansman, J., Kebert, M., Bikit, K., Mrdja, D. 2014. Radionuclides in some edible and medicinal macrofungal species from Tara Mountain, Serbia. Environmental Science Pollution Research 21 (19): 11283-11292.
  • Santoyo, S., Ramírez‐Anguiano, A. C., Reglero, G., Soler‐Rivas, C. 2009. Improvement of the antimicrobial activity of edible mushroom extracts by inhibition of oxidative enzymes. International Journal of Food Science Technology 44 (5): 1057-1064.
  • Sevindik, M., Akgul, H., Selamoglu, Z., Braidy, N. 2020. Antioxidant and antigenotoxic potential of Infundibulicybe geotropa mushroom collected from Northwestern Turkey. Oxidative Medicine and Cellular Longevity 2020: 1-8
  • Slinkard, K., Singleton, V. L. 1977. Total phenol analysis: automation and comparison with manual methods. American Journal of Enology Viticulture 28 (1): 49-55.
  • Smolskaitė, L., Venskutonis, P. R., Talou, T. 2015. Comprehensive evaluation of antioxidant and antimicrobial properties of different mushroom species. LWT-Food Science and Technology 60(1): 462-471.
  • Taskin, H., Karavus, M., Ay, P., Topuzoglu, A., Hidiroglu, S., Karahan, G. 2009. Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. Journal of Environmental Radioactivity 100 (1): 49-53.
  • UNSCEAR. 2000. United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and effects of ionizing radiation. United Nations Publications.
  • Vetter, J. 1994. Data on arsenic and cadmium contents of some common mushrooms. Toxicon 32 (1): 11-15.
  • Vieira, V., Barros, L., Martins, A., Ferreira, I. C. 2014. Expanding current knowledge on the chemical composition and antioxidant activity of the genus Lactarius. Molecules 19 (12): 20650-20663.
  • Wayne, P. 2012. Performance standards for antimicrobial disk susceptibility tests; approved standard. Approved Standard—Eleventh Edition. CLSI document M02-A11.
  • WHO. 1999. Joint FAO/WHO Expert Committee on Food Additives, Summary and conclusions, 53rd Meeting, Rome.
  • Xu, X., Liu, A., Hu, S., Ares, I., Martínez-Larrañaga, M.-R., Wang, X., Martínez, M., Anadón, A., Martínez, M.-A. 2021. Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action. Food Chemistry 353: 129488.
  • Yılmaz, A. 2015. Bazı doğa ve kültür mantarı türlerinin biyoaktif özelliklerinin ve radyoaktif element miktarlarının belirlenmesi. Yüksek Lisans Tezi, aradeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Orman Endüstri Mühendisliği Ana Bilim Dalı.
  • Yılmaz, F., Işıloğlu, M., Merdivan, M. 2002. Heavy metal levels in some macrofungi. Turkish Journal of Botany 27 (1): 45-56.

Bazı yenilebilir yabani Lactarius mantarlarının biyoaktif ve radyoaktif özellikleri

Year 2022, , 254 - 263, 17.09.2022
https://doi.org/10.17568/ogmoad.1111983

Abstract

Lactarius delicious, Lactarius insulsus, Lactarius vellereus mantarlarının biyoaktif ve radyoaktif özellikleri araştırılmıştır ve bu amaçla Kastamonu ilinden toplanan mantarların protein ve toplam fenolik madde miktarları, antioksidan ve antimikrobiyal özellikleri belirlenmiştir. Ayrıca mantarlardaki bazı eser element (Mg, Al, Ca, Mn, Fe, Co, Ni, Cu, Zn, Se, As, Cr, Cd) miktarları, kurşunun üç izotopu (206Pb, 207Pb and 208Pb), doğal (238U, 232Th 40K) ve yapay radyonüklit (137Cs) seviyeleri de hesaplanmıştır. Mantarlar arasında; L. delicious, daha yüksek protein içeriği ve Mg, Ca, Mn, Fe, Co, Ni, Zn, Pb-206, Pb-208, Cr birikimleriyle dikkat çekmiştir. En yüksek toplam fenolik içerik ve antioksidan aktivite L. vellereus’da bulunmuştur. Bunlara ek olarak; en yüksek 232Th ve 40K radyonüklid içeriği de L. vellereus’ta belirlenmiştir. Yapay radyonüklid (137Cs) sadece L. insulsus mantarında gözlenmiştir. Sonuç olarak, aynı cinsten olmalarına ve aynı bölgeden toplanmalarına rağmen farklı mantar türlerinin farklı biyoaktif ve radyoaktif özelliklere sahip olduğu görülmüştür.

References

  • Ak, E. E., Tüzel, Y., Eren, E., Atilla, F. 2016. Türkiye'nin mantar ihracatının değerlendirilmesi. Türk Tarım-Gıda Bilim ve Teknoloji Dergisi 4(3): 239-243.
  • Alshahri, F. 2019. Natural and anthropogenic radionuclides in urban soil around non-nuclear industries (Northern Al Jubail), Saudi Arabia: assessment of health risk. Environmental Science Pollution Research 26 (36): 36226-36235.
  • Arafa, W. 2004. Specific activity and hazards of granite samples collected from the Eastern Desert of Egypt. Journal of Environmental Radioactivity 75 (3): 315-327.
  • Baeza, A., Guillén, J. 2006. Influence of the soil bioavailability of radionuclides on the transfer of uranium and thorium to mushrooms. Applied Radiation Isotopes in Environmental Health studies 64 (9): 1020-1026.
  • Barros, L., Baptista, P., Estevinho, L. M., Ferreira, I. C. 2007. Effect of fruiting body maturity stage on chemical composition and antimicrobial activity of Lactarius sp. mushrooms. Journal of Agricultural Food Chemistry 55 (21): 8766-8771.
  • Benzie, I. F., Strain, J. J. 1996. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry 239 (1): 70-76.
  • Beretka, J., Matthew, P. 1985. Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Physics 48 (1): 87-95.
  • Changizi, V., Angaji, M., Zare, M. R., Abbasnejad, K. 2012. Evaluation of 226Ra, 232Th, 137Cs and 40K Agaricus bisporus activity in cultivated edible mushroom formed in Tehran Province-Iran. Iranian Journal of Medical Physics 9 (4): 239-244.
  • Chen, S., Zhu, Y., Hu, Q. 2005. Soil to plant transfer of 238U, 226Ra and 232Th on a uranium mining-impacted soil from southeastern China. Journal of Environmental Radioactivity 82 (2): 223-236.
  • Crisan, E., Sands, A. 1978. The Biology and Cultivation of Edible Mushrooms. Nutritional value. Academic Press, New York.
  • Dulger, B., Yilmaz, F., Gucin, F. 2002. Antimicrobial activity of some Lactarius species. Pharmaceutical Biology 40 (4): 304-306.
  • Falandysz, J., Borovička, J. 2013. Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks. Applied Microbiology Biotechnology 97 (2): 477-501.
  • Faweya, E., Ayeni, M., Kayode, J. 2015. Accumulation of natural radionuclides by some edible wild mushrooms in Ekiti State, Southwestern, Nigeria. World Journal of Nuclear Science Technology 5 (02): 107.
  • Gadow, A., Joubert, E., Hansmann, C. 1997. Comparison of the antioxidant activity of aspalathin with that of other plant phenols of rooibos tea (Aspalathus linearis), α-tocopherol, BHT, and BHA. Journal of Agricultural Food Chemistry 45 (3): 632-638.
  • Gast, C., Jansen, E., Bierling, J., Haanstra, L. 1988. Heavy metals in mushrooms and their relationship with soil characteristics. Chemosphere 17 (4): 789-799.
  • He, Z. L., Yang, X. E., Stoffella, P. J. 2005. Trace elements in agroecosystems and impacts on the environment. Journal of Trace elements in Medicine Biology 19 (2-3): 125-140.
  • Henry, F., Amara, R., Courcot, L., Lacouture, D., Bertho, M.-L. 2004. Heavy metals in four fish species from the French coast of the Eastern English Channel and Southern Bight of the North Sea. Environment International 30 (5): 675-683.
  • Jackson, P. 1996. Age-dependent doses to members of the public from intake of radionuclides: part 5 compilation of ingestion and inhalation dose coefficients (ICRP Publication 72). IOP Publishing.
  • Kalogeropoulos, N., Yanni, A. E., Koutrotsios, G., Aloupi, M. 2013. Bioactive microconstituents and antioxidant properties of wild edible mushrooms from the island of Lesvos, Greece. Food Chemical Toxicology 55: 378-385.
  • Karahan, G., Bayulken, A. 2000. Assessment of gamma dose rates around Istanbul (Turkey). Journal of Environmental Radioactivity 47 (2): 213-221.
  • Kosanić, M., Ranković, B., Rančić, A., Stanojković, T. 2016. Evaluation of metal concentration and antioxidant, antimicrobial, and anticancer potentials of two edible mushrooms Lactarius deliciosus and Macrolepiota procera. Journal of Food Drug Analysis 24 (3): 477-484.
  • Krieger, R. 1981. Radioactivity of construction materials. Betonwerk Fertigteil Techn 47 (8): 468-473.
  • Kurnaz, A., Küçükömeroğlu, B., Keser, R., Okumuşoğlu, N., Korkmaz, F., Karahan, G., Çevik, U. 2007. Determination of radioactivity levels and hazards of soil and sediment samples in Fırtına Valley (Rize, Turkey). Applied Radiation Isotopes in Environmental Health studies 65 (11): 1281-1289.
  • Maity, G. N., Maity, P., Khatua, S., Acharya, K., Dalai, S., Mondal, S. 2021. Structural features and antioxidant activity of a new galactoglucan from edible mushroom Pleurotus djamor. International Journal of Biological Macromolecules 168: 743-749.
  • Mamont-Ciesla, K., Gwiazdowski, B., Biernacka, M., Zak, A. 1982. Radioactivity of Building Materials in Poland. Natural Radiation Environment. Halsted Press, New York
  • Manzi, P., Marconi, S., Aguzzi, A., Pizzoferrato, L. 2004. Commercial mushrooms: nutritional quality and effect of cooking. Food Chemistry 84 (2): 201-206.
  • Martins, A., Baptista, P., Sousa, M., Meireles, T., Pais, M. 2002. Edible mycorrhizal fungi associated with Castanea sativa Mill trees in the Northeast of Portugal. The proceedings of the second international workshop on edible mycorrhizal fungi. ISBN 0-478-10828-X.
  • Mountford, P., Temperton, D. 1992. Recommendations of the international commission on radiological protection (ICRP) 1990. European Journal of Nuclear Medicine 19, 77–79
  • Murcia, M. A., Martinez-Tome, M., Jiménez, A. M., Vera, A. M., Honrubia, M., Parras, P. 2002. Antioxidant activity of edible fungi (truffles and mushrooms): losses during industrial processing. Journal of Food Protection 65 (10): 1614-1622.
  • Rakić, M., Karaman, M., Forkapić, S., Hansman, J., Kebert, M., Bikit, K., Mrdja, D. 2014. Radionuclides in some edible and medicinal macrofungal species from Tara Mountain, Serbia. Environmental Science Pollution Research 21 (19): 11283-11292.
  • Santoyo, S., Ramírez‐Anguiano, A. C., Reglero, G., Soler‐Rivas, C. 2009. Improvement of the antimicrobial activity of edible mushroom extracts by inhibition of oxidative enzymes. International Journal of Food Science Technology 44 (5): 1057-1064.
  • Sevindik, M., Akgul, H., Selamoglu, Z., Braidy, N. 2020. Antioxidant and antigenotoxic potential of Infundibulicybe geotropa mushroom collected from Northwestern Turkey. Oxidative Medicine and Cellular Longevity 2020: 1-8
  • Slinkard, K., Singleton, V. L. 1977. Total phenol analysis: automation and comparison with manual methods. American Journal of Enology Viticulture 28 (1): 49-55.
  • Smolskaitė, L., Venskutonis, P. R., Talou, T. 2015. Comprehensive evaluation of antioxidant and antimicrobial properties of different mushroom species. LWT-Food Science and Technology 60(1): 462-471.
  • Taskin, H., Karavus, M., Ay, P., Topuzoglu, A., Hidiroglu, S., Karahan, G. 2009. Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. Journal of Environmental Radioactivity 100 (1): 49-53.
  • UNSCEAR. 2000. United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and effects of ionizing radiation. United Nations Publications.
  • Vetter, J. 1994. Data on arsenic and cadmium contents of some common mushrooms. Toxicon 32 (1): 11-15.
  • Vieira, V., Barros, L., Martins, A., Ferreira, I. C. 2014. Expanding current knowledge on the chemical composition and antioxidant activity of the genus Lactarius. Molecules 19 (12): 20650-20663.
  • Wayne, P. 2012. Performance standards for antimicrobial disk susceptibility tests; approved standard. Approved Standard—Eleventh Edition. CLSI document M02-A11.
  • WHO. 1999. Joint FAO/WHO Expert Committee on Food Additives, Summary and conclusions, 53rd Meeting, Rome.
  • Xu, X., Liu, A., Hu, S., Ares, I., Martínez-Larrañaga, M.-R., Wang, X., Martínez, M., Anadón, A., Martínez, M.-A. 2021. Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action. Food Chemistry 353: 129488.
  • Yılmaz, A. 2015. Bazı doğa ve kültür mantarı türlerinin biyoaktif özelliklerinin ve radyoaktif element miktarlarının belirlenmesi. Yüksek Lisans Tezi, aradeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Orman Endüstri Mühendisliği Ana Bilim Dalı.
  • Yılmaz, F., Işıloğlu, M., Merdivan, M. 2002. Heavy metal levels in some macrofungi. Turkish Journal of Botany 27 (1): 45-56.
There are 43 citations in total.

Details

Primary Language Turkish
Subjects Forest Industry Engineering
Journal Section Forest Products
Authors

Sibel Yıldız 0000-0001-8448-4628

Ayşenur Gürgen 0000-0002-2263-7323

Publication Date September 17, 2022
Submission Date May 1, 2022
Published in Issue Year 2022

Cite

APA Yıldız, S., & Gürgen, A. (2022). Bazı yenilebilir yabani Lactarius mantarlarının biyoaktif ve radyoaktif özellikleri. Ormancılık Araştırma Dergisi, 9(Özel Sayı), 254-263. https://doi.org/10.17568/ogmoad.1111983