Research Article
BibTex RIS Cite

Kök Yüzdürme Yöntemi ile yüzeysel su kalitesinin iyileştirilmesinde Japon şemsiyesi ve Vetiverin fitoremediasyon kapasitesi

Year 2023, Volume: 10 Issue: 2, 168 - 181, 14.12.2023
https://doi.org/10.17568/ogmoad.1288019

Abstract

Yüzeysel su kaynakları atık su deşarjları, tarımsal drenaj suları başta olmak üzere birçok faktörden dolayı kirlenmekte ve potansiyel kullanım amaçları için değerini kaybetmektedir. Bu çalışmada İzmir Kuş Cennetinin (İKC) tatlı su ihtiyacını karşılayan ancak ekosistem açısından kaliteli bir su kaynağı olarak nitelendirilmeyen Gediz Nehri’nin bir kolundan sağlanan yüzey suyunun iyileştirilmesi amacıyla fitoremediasyon çalışması uygulanmıştır. Bu amaçla kök yüzdürme yöntemi (FTW) ile kurulan tanklarda Cyperus alternifolius L. (Japon şemsiyesi) ve Vetiveria zizanioides (L.) Nash (vetiver) türlerinin sudaki toplam fosfor (TP) toplam azot (TN) ve toplam organik karbon (TOK) giderim kapasiteleri kontrol grubu ile test edilmiştir. 1. 3., 7. ve 14. günlerde suda TP, TN ve TOK değerleri ile, çalışmanın başında ve sonunda bitkilerde makro ve mikro besin elementleri ölçülmüştür. Japon şemsiyesi, vetiver ve kontrol tanklarında sırasıyla TP giderimi %92, %82 ve %45, TN giderimi %62, %52 ve %24 ve TOK giderimi %79, %66 ve %13 olarak gerçekleşmiştir. Kirleticiler için >1 olması istenen translokasyon faktörleri (TF) vetiverde Cd (1,55), Pb (1,27), Bor (1,19) ve Cr (1,11); Japon şemsiyesinde ise Bor (1,33) ve Pb (1,14) olarak tespit edilmiştir. Biyokütlesindeki artış dikkate alındığında Japon şemsiyesinin daha yüksek miktarda metal aldığı söylenebilir. Genel olarak, bu çalışma FTW yönteminin, Japon şemsiyesi ve vetiverin yüzey suyu kalitesini iyileştirmede yeşil bir arıtma yöntemi olarak kullanılma potansiyeline sahip olduğunu ortaya koymuştur.

Supporting Institution

Orman Genel Müdürlüğü

Project Number

15.6310/2015-2017-2018

References

  • Ali, S., Abbas, Z., Rizwan, M., Zaheer, I.E., Yavaş, İ., Ünay, A., Abdel-Daim, M.M., Bin-Jumah, M., Hasanuzzaman, M., Kalderis, D., 2020. Application of floating aquatic plants in phytoremediation of heavy metals polluted water: a review. Sustainability 12(5): 1927.
  • Almaamary E.,A.,S., Abdullah S.,R.,S., Hasan H., Rahim R..A..A., Idris M., 2017. Treatment of methylene blue in wastewater using Scirpus grossus. Malaysian Journal of Analytical Sciences 21(1): 182-187.
  • ASTM D8083-16 (2016). ASTM International. Standard Test Method for Total Nitrogen, and Total Kjeldahl Nitrogen (TKN) by Calculation, in Water by High-Temperature Catalytic Combustion and Chemiluminescence Detection.
  • Bansal, O.P., 2020. Health Risks of Potentially Toxic Metals Contaminated Water. In: Heavy Metal Toxicity in Public Health.Doi: 10.5772/intechopen.92141
  • Borne, K.E., 2014. Floating treatment wetland influences on the fate and removal performance of phosphorus in stormwater retention ponds. Ecol. Eng. 69: 76–82.
  • Brisson, J., Chazarenc, F. (2009). Maximizing pollutant removal in constructed wetlands: should we pay more attention to macrophyte species selection? Science of the Total Environment 407(13): 3923-3930.
  • Brix,H., 1997. Do Macrophytes Play a Role in Constructed Treatment Wetlands?, Water Science & Technology 35(5):11-17.
  • Bryson, C.T., Carter, R., 2008. The significance of Cyperaceae as weeds. In: Sedges: Uses, diversity, and systematics of the Cyperaceae, Monographs in Systematic, Botany from the Missouri Botanical Garden Press, St Louis, MO, pp.15-101.
  • Chandanshive, V., Kadam, S., Rane, N., Jeon, B.-H., Jadhav, J., Govindwar, S., 2020. In situ textile wastewater treatment in high rate transpiration system furrows planted with aquatic macrophytes and floating phytobeds. Chemosphere 252, 126513. Doi: 10.1016/j.chemosphere.2020.126513
  • Chandra, R., Dubey, N.K., Kumar, V., 2017. Hyperaccumulator versus Nonhyperaccumulator Plant for Environmental Waste Management. In Phytoremediation of Environmental Pollutants. pp.1-38. CRC Press, Boca Raton.
  • Chandler, R.L., O’Shaughnessy, J., Blanc, F.C., 1976. Pollution monitoring with total organic carbon analysis. Journal (Water Pollution Control Federation) 48(12): 2791-2803.
  • Chanu, L.B., Gupta, A. 2016. Phytoremediation of lead using Ipomoea aquatica Forsk. in hydroponic solution. Chemosphere 156, 407-411.
  • Correl, D.L., 1999. Phosphorus: A Rate Limiting Nutrient in Surface Waters. Poultry Science 78(5): 674–682.
  • ÇSB, 2014. Çevre ve Şehircilik Bakanlığı, ÇED İzin ve Denetim Genel Müdürlüğü. Gediz Havzası Su Kalitesi İzleme Raporu İlkbahar Dönemi, Evsel ve Endüstriyel Kirlilik İzleme Programı. https://webdosya.csb.gov.tr/db/ced/editordosya/2014%20Final%20Rapor2.pdf (Accessed on: 10.05.2023).
  • Danh, L.T., Truong,P., Mammucari, R.,Tran,T., Foster, N., 2009. Vetiver Grass, Vetıverıa Ziızanioides: A choice plant for phytoremediation of heavy metals and organic wastes. International Journal of Phytoremediation, 11(8): 664–691.
  • Darajeh, N., Idris A., Truong P., Abdulaziz, H., Abubakar, R., Che Man, H., 2014. Phytoremediation potential of vetiver system technology for improving the quality of palm oil mill effluent Advances in Materials Science and Engineering 2014(4):1-10.
  • Davamani, V., Parameshwari, C.I., Arulmani, S., John, J.E., Poornima, R., 2021. Hydroponic phytoremediation of paperboard mill wastewater by using vetiver (Chrysopogon zizanioides). J. Environ. Chem. Eng. 9(4): 105528. Doi: 10.1016/j.jece.2021.105528
  • Dubber, D., Gray, N.F., 2010. Replacement of chemical oxygen demand (COD) with total organic carbon (TOC) for monitoring wastewater treatment performance to minimize disposal of toxic analytical waste. Journal of Env. Sci Health Part A 45(12): 1595-600.
  • Gören, A.Y., Yücel, A., Sofuoğlu, S.C., Sofuoğlu, A., 2021. Phytoremediation of olive mill wastewater with Vetiveria zizanioides (L.) Nash and Cyperus alternifolius L.. Environmental Technology & Innovation 24: 102071. Doi: 10.1016/ j.eti.2021.102071
  • Headley, T,R., Tanner C.C., 2012. Constructed wetlands with floating emergent macrophytes: an innovative stormwater treatment technology, Environmental Science and Technology, 42(21): 2261-2310.
  • Hooda, V. (2007). Phytoremediation of toxic metals from soil and waste water. Journal of Environmental Biology, 28(2), 367.
  • Hoagland, D.R., Arnon, D.I., 1950. The Water Culture Method for Growing Plants Without Soil. Circular & California Agricultural Experiment Station, 347.
  • Hubbard, R.G., Gascho, G., Newton, G., 2004. Use of floating vegetation to remove nutrients from swine lagoon wastewater, Transactions of the ASAE. 47(6): 1963-1972. Doi: 10.13031/2013.17809
  • ISO 11465 (1993). International Organization for Standardization. https://www.iso.org/standard/20886.html (Accessed on: 10.05.2023).
  • ISO 8245 (2021). International Organization for Standardization. Water Quality - Guidelines for the Determination of Total Organic Carbon (TOC) and Dissolved Organic Carbon (DOC). https://www.iso.org/standard/29920.html (Accessed on: 10.05.2023).
  • Kadlec, R.H., Wallace, S.D., 2008. Treatment Wetlands, CRC Press, Boca Raton, FL. eBook ISBN: 9780429137952
  • Kah, A., Norhashimah, M., Jie,Q., 2016. Phytoremediation of methylene blue and methyl orange using Eichhornia crassipes. Int. J. Environmental Science and Development 7(10): 724-728.
  • Kale, R.A., Lokhande, V.H., Ade, A.B., 2015. Investigation of chromium phytoremediation and tolerance capacity of a weed, Portulaca oleracea L. in a hydroponic system. Water and Environment Journal. 29: 236–242.
  • Keizer-Vlek, H.E., Verdonschot, P.F.M., Verdonschot, R.C.M., Dekkers, T.B.M., 2014. The contribution of plant uptake to nutrient removal by floating treatment wetlands. Ecological Engineering 73:684-690.
  • Kerr-Upal, M., Seasons, M., Mulamoottil, G., 2000. Retrofitting a stormwater management facility with a wetland component. Journal of Environmental Science and Health A 35 (8): 1289-1307.
  • Kyambadde, J., Kansiime, F., Gumaelius, L., Dalhammar, G., 2004. A comparative study of Cyperus papyrus and Miscanthidium violaceum-based constructed wetlands for wastewater treatment in a tropical climate. Water Res. 38(2): 475-485. Doi:10.1016/j.watres.2003.10.008
  • Lakshmi, K.S., Sailaja, V.H., Reddy, M.A. (2017). Phytoremediation-a promising technique in waste water treatment. International Journal of Scientific Research and Management 5(06): 5480-5489.
  • Lee, J., Lee, S., Yu,S., Rhew, D., 2016. Relationships between water quality parameters in rivers and lakes: BOD5, COD, NBOPs, and TOC. Environmental Monitoring and Assessment. 188(4). Doi:10.1007/s10661-016-5251-1
  • Li, M., Wu, J., Yu, Z.L., Sheng, G.P., Yu, H.Q., 2007. Nitrogen removal from eutrophic water by floating-bed-grown water spinach (Ipomoea aquatica Forsk.) with ion implantation. Water Research 41(14): 3152-3158.
  • Liao, X., Luo, S., Wu, Y., Wang, Z., 2005. Comparison of nutrient removal ability between Cyprus alternifolius and Vetiveria zizanioides in constructed wetlands. (Chinese) Journal of Applied Ecology, 16(1): 156–160.
  • Meetiyagoda, T.A.O.K., Bandara, N.J.G.J., Jinadasa, K.B.S.N., Kalpage, C.S., Pathirana, C.D.K., 2017. Performance of tropical vertical subsurface flow constructed wetlands for leachate treatment at different hydraulic loading rates, Journal of Tropical Forestry and Environment 7(02): 49-61.
  • Moortel, V., A.M.K., Meers, E., Pauw, N., Tack, F.M.G., 2010. Effects of vegetation, season and temperature on the removal of pollutants in experimental floating treatment wetlands. Water Air and Soil Pollution 212(1): 281-297.
  • Mujeriego, R., Asano, T. (1999). The role of advanced treatment in wastewater reclamation and reuse. Water Science and Technology 40(4-5): 1-9.
  • Parnian, A., Furze, J.N., 2021. Vertical phytoremediation of wastewater using Vetiveria zizanioides L.. Environmental Science and Pollution Research, 28(45): 64150-64155.
  • Panja, S., Sarkar, D., Datta, R., 2020. Removal of antibiotics and nutrients by Vetiver grass (Chrysopogon zizanioides) from secondary wastewater effluent. Int. J. Phytoremediation 22(7): 764–773.
  • Prasse, C., Stalter, D., Schulte-Oehlmann, U., Oehlmann, J., Ternes, T.A. (2015). Spoilt for choice: A critical review on the chemical and biological assessment of current wastewater treatment technologies. Water Research 87: 237-270.
  • Ramos-Arcos, S.A., González-Mondragón, E.G., López-Hernández, E.S., Rodríguez-Luna, A.R., Morales-Bautista, C. M., Lagunas-Rivera, S., López-Martínez, S. 2021. Phytoremediation Potential of Chrysopogon zizanioides for Toxic Elements in Contaminated Matrices. In: Biodegradation. Doi: 10.5772/intechopen.98235
  • Revitt, D.M., Shutes, R.B.E., Lewellyn, N.R., Worrall, P.,1997. Experimental reedbed systems for the treatment of airport runoff. Water Science and Technology, 36 (8-9): 385-390.
  • Richa, A., Touil, S., Fizir, M., Martinez, V., 2020. Recent advances and perspectives in the treatment of hydroponic wastewater: a review. Reviews in Environmental Science and Bio/Technology, 19: 945–966. Doi:10.1007/s11157-020-09555-9
  • Roongtanakiat, N., P. Chairoj. 2001. Vetiver grass for the remediation of soil contaminated with heavy metals. Kasetsart J. (Nat. Sci.) 35: 433-440.
  • RG, 2012. Surface Water Quality Regulation (SWOR). The Official Gazette No: 28483 (30 Kasım 2012). Ministry of Forestry and Water Management, Ankara, Türkiye https://www.mevzuat.gov.tr/File/GeneratePdf?mevzuatNo=16806&mevzuatTur=KurumVeKurulusYonetmeligi&mevzuatTertip=5 (Accessed on: 10.05.2023)
  • Sa’at, S.K, Zama, N.Q., Yusoff, S.M, Ismail, H.A., 2017. Investigation of the Potential of Cyperus alternifolius in the Phytoremediation of Palm Oil Mill Effluent. Proceedings of The International Conference of Global Network for Innovative Technology and AWAM International Conference in Civil Engineering, 8–9 August 2017, Penang, Malaysia, 040009-1/7.
  • Schwab, A.,P., Banks, M.,K., 1994. Biologically Mediated Dissipation of Polyaromatic Hydrocarbons in The Root Zone. In: Bioremediation through Rhizosphere Technology (eds. T. Anderson, J. Coates). American Chemical Society Symposium Series 563: 132-141. ISBN-10: ‎ 0841229422
  • SM 4500-P (2017). American Public Health Association. Standard Methods for the Examination of Water and Wastewater (23rd ed.). Method 4500-P: Total Phosphorus.
  • Shalabi, L.F., Gazer, M.H., 2015. The taxonomıc significance of zchene micro- and macromorphology in Cyperus L. (Cyperaceae), Pakistan Journal of Botany 47(6): 2339-2346.
  • Török, A., Buta, E., Indolean, C., Tonk, S., Silaghi-Dumitrescu. L., Majdik, C., 2015 Biological removal of triphenylmethane dyes from aqueous solution by Lemna minor. Acta Chim Slov 62(2): 452-461. Doi: 10.17344/acsi.2014.1109
  • TS 9748 EN 27888 (1996). Turkish Standards Institution (tse.org.tr/en). Water Quality-Determination of Electrical Conductivity.
  • TS EN ISO 10523 (2012). Turkish Standards Institution (tse.org.tr/en). Water quality - Determination of pH.
  • TS ISO 10694 (1995). Turkish Standards Institution (tse.org.tr/en). Soil Quality-Determination of Organic and Total Carbon After Dry Combustion: Elementary Analysis.
  • TS ISO 13878 (2001). Soil quality- Determination of Total Nitrogen Content by Dry Combustion (Elemental Analysis)
  • Truong, P.N.V. 2000. The Global Impact of Vetiver Grass Technology on The Environment. In: Proceedings of 2nd international Vetiver Conference, Thailand. 46-57.
  • UN-2021. United Nations. Progress on Ambient Water Quality, 2021 Reports. Global Indicator 6.3.2 Updates and Acceleration Needs 2021 (Executive Summary), unwater.org/sites/default/files/app/uploads/2021/09/SDG6_Indicator_Report_632_Progress-on-Ambient-Water-Quality_2021_Executive-Summary_EN.pdf (Accessed on 10.05.2023)
  • URL-1: United Nations, Department of Economic and Social Affairs/ Sustainable Development. https://www.undp.org/sustainable-development-goals
  • URL-2: T.C. İzmir Kuş Cennetini Koruma Ve Geliştirme Birliği. https://izmirkuscenneti.gov.tr (Accessed on: 10.05.2023)
  • Von Liebig, J. F. (1855). Die grundsätze der agricultur-chemie mit rücksicht auf die in england angestellten untersuchungen.
  • Vymazal, J., 2017. The use of constructed wetlands for nitrogen removal from agricultural drainage: A Review, Scientia Agriculturae Bohemica, 48(2): 82–91.
  • Wang, Y.W., 2000. The Root Extension Rate of Vetiver Under Different Temperature Treatments. Proc. Second Int. Vetiver Conferance (ICV-2). January 18–22, Phetchaburi, Thailand.
  • White, S.A., Cousins, M.M., 2013. Floating treatment wetland aided remediation of nitrogen and phosphorus from simulated stormwater runoff. Ecological Engineering 61 A(12): 207–215.
  • Xia, H.P., Ao, H.X., Lui, S.Z., He, D.Q., 1999. Application of the Vetiver Eco-Engineering for the Prevention of Highway Slippage in South China. Proceedings of the 1st Asia-Pacific Conference on Ground and Water Bioengineering for Erosion Control and Slope Stabilization, Manila, 19-21 April 1999, pp. 522-527.
  • Xu, B., Wang, X., Liu, J., Wu, J., Zhaou, Y., Cao, W., 2017. Improving urban stormwater runoff quality by nutrient removal through floating treatment wetlands and vegetation harvest. Scientific Reports 7(1), Doi: 10.1038/s41598-017-07439-7

Phytoremediation capacity of Umbrella palm and Vetiver in improving surface water quality by Floating Treatment Wetland

Year 2023, Volume: 10 Issue: 2, 168 - 181, 14.12.2023
https://doi.org/10.17568/ogmoad.1288019

Abstract

Surface water is polluted due to many reasons, mainly wastewater and irrigation discharges, and loses its value for potential uses. In this study, phytoremediation was applied to improve the surface water provided from a branch of the Gediz River, which meets the freshwater needs of Izmir Bird Paradise but is not qualified as a quality water source in terms of ecosystem. For this purpose, the removal efficiencies of Cyperus alternifolius L. (umbrella palm) and Vetiveria zizanioides (L.) Nash (vetiver) for total phosphorus (TP), total nitrogen (TN), and total organic carbon (TOC) were tested in the tanks, which were set with the floating treatment wetland (FTW) with a control group. TP, TN and TOC were measured in water on the 1st, 3rd, 7th and 14th days, while macro and micronutrients were measured in the plants at the beginning and end of the study. TP removal was 92%, 82%, and 45%; TN removal was 62%, 52%, and 24%; and TOC removal was 79%, 66%, and 13% in umbrella palm, vetiver and control tanks, respectively. The translocation factors (TF) that were expected to be >1 in plants were determined as Cd (1.55), Pb (1.27), B (1.19), and Cr (1.11) in vetiver, and B (1.33) and Pb (1.14) in umbrella palm. Considering the increase in biomass, it can be said that the umbrella palm accumulates metal at a higher rate. This study demonstrates that with the usage of umbrella palm and vetiver, FTW has the potential to be used as a green treatment method.

Project Number

15.6310/2015-2017-2018

References

  • Ali, S., Abbas, Z., Rizwan, M., Zaheer, I.E., Yavaş, İ., Ünay, A., Abdel-Daim, M.M., Bin-Jumah, M., Hasanuzzaman, M., Kalderis, D., 2020. Application of floating aquatic plants in phytoremediation of heavy metals polluted water: a review. Sustainability 12(5): 1927.
  • Almaamary E.,A.,S., Abdullah S.,R.,S., Hasan H., Rahim R..A..A., Idris M., 2017. Treatment of methylene blue in wastewater using Scirpus grossus. Malaysian Journal of Analytical Sciences 21(1): 182-187.
  • ASTM D8083-16 (2016). ASTM International. Standard Test Method for Total Nitrogen, and Total Kjeldahl Nitrogen (TKN) by Calculation, in Water by High-Temperature Catalytic Combustion and Chemiluminescence Detection.
  • Bansal, O.P., 2020. Health Risks of Potentially Toxic Metals Contaminated Water. In: Heavy Metal Toxicity in Public Health.Doi: 10.5772/intechopen.92141
  • Borne, K.E., 2014. Floating treatment wetland influences on the fate and removal performance of phosphorus in stormwater retention ponds. Ecol. Eng. 69: 76–82.
  • Brisson, J., Chazarenc, F. (2009). Maximizing pollutant removal in constructed wetlands: should we pay more attention to macrophyte species selection? Science of the Total Environment 407(13): 3923-3930.
  • Brix,H., 1997. Do Macrophytes Play a Role in Constructed Treatment Wetlands?, Water Science & Technology 35(5):11-17.
  • Bryson, C.T., Carter, R., 2008. The significance of Cyperaceae as weeds. In: Sedges: Uses, diversity, and systematics of the Cyperaceae, Monographs in Systematic, Botany from the Missouri Botanical Garden Press, St Louis, MO, pp.15-101.
  • Chandanshive, V., Kadam, S., Rane, N., Jeon, B.-H., Jadhav, J., Govindwar, S., 2020. In situ textile wastewater treatment in high rate transpiration system furrows planted with aquatic macrophytes and floating phytobeds. Chemosphere 252, 126513. Doi: 10.1016/j.chemosphere.2020.126513
  • Chandra, R., Dubey, N.K., Kumar, V., 2017. Hyperaccumulator versus Nonhyperaccumulator Plant for Environmental Waste Management. In Phytoremediation of Environmental Pollutants. pp.1-38. CRC Press, Boca Raton.
  • Chandler, R.L., O’Shaughnessy, J., Blanc, F.C., 1976. Pollution monitoring with total organic carbon analysis. Journal (Water Pollution Control Federation) 48(12): 2791-2803.
  • Chanu, L.B., Gupta, A. 2016. Phytoremediation of lead using Ipomoea aquatica Forsk. in hydroponic solution. Chemosphere 156, 407-411.
  • Correl, D.L., 1999. Phosphorus: A Rate Limiting Nutrient in Surface Waters. Poultry Science 78(5): 674–682.
  • ÇSB, 2014. Çevre ve Şehircilik Bakanlığı, ÇED İzin ve Denetim Genel Müdürlüğü. Gediz Havzası Su Kalitesi İzleme Raporu İlkbahar Dönemi, Evsel ve Endüstriyel Kirlilik İzleme Programı. https://webdosya.csb.gov.tr/db/ced/editordosya/2014%20Final%20Rapor2.pdf (Accessed on: 10.05.2023).
  • Danh, L.T., Truong,P., Mammucari, R.,Tran,T., Foster, N., 2009. Vetiver Grass, Vetıverıa Ziızanioides: A choice plant for phytoremediation of heavy metals and organic wastes. International Journal of Phytoremediation, 11(8): 664–691.
  • Darajeh, N., Idris A., Truong P., Abdulaziz, H., Abubakar, R., Che Man, H., 2014. Phytoremediation potential of vetiver system technology for improving the quality of palm oil mill effluent Advances in Materials Science and Engineering 2014(4):1-10.
  • Davamani, V., Parameshwari, C.I., Arulmani, S., John, J.E., Poornima, R., 2021. Hydroponic phytoremediation of paperboard mill wastewater by using vetiver (Chrysopogon zizanioides). J. Environ. Chem. Eng. 9(4): 105528. Doi: 10.1016/j.jece.2021.105528
  • Dubber, D., Gray, N.F., 2010. Replacement of chemical oxygen demand (COD) with total organic carbon (TOC) for monitoring wastewater treatment performance to minimize disposal of toxic analytical waste. Journal of Env. Sci Health Part A 45(12): 1595-600.
  • Gören, A.Y., Yücel, A., Sofuoğlu, S.C., Sofuoğlu, A., 2021. Phytoremediation of olive mill wastewater with Vetiveria zizanioides (L.) Nash and Cyperus alternifolius L.. Environmental Technology & Innovation 24: 102071. Doi: 10.1016/ j.eti.2021.102071
  • Headley, T,R., Tanner C.C., 2012. Constructed wetlands with floating emergent macrophytes: an innovative stormwater treatment technology, Environmental Science and Technology, 42(21): 2261-2310.
  • Hooda, V. (2007). Phytoremediation of toxic metals from soil and waste water. Journal of Environmental Biology, 28(2), 367.
  • Hoagland, D.R., Arnon, D.I., 1950. The Water Culture Method for Growing Plants Without Soil. Circular & California Agricultural Experiment Station, 347.
  • Hubbard, R.G., Gascho, G., Newton, G., 2004. Use of floating vegetation to remove nutrients from swine lagoon wastewater, Transactions of the ASAE. 47(6): 1963-1972. Doi: 10.13031/2013.17809
  • ISO 11465 (1993). International Organization for Standardization. https://www.iso.org/standard/20886.html (Accessed on: 10.05.2023).
  • ISO 8245 (2021). International Organization for Standardization. Water Quality - Guidelines for the Determination of Total Organic Carbon (TOC) and Dissolved Organic Carbon (DOC). https://www.iso.org/standard/29920.html (Accessed on: 10.05.2023).
  • Kadlec, R.H., Wallace, S.D., 2008. Treatment Wetlands, CRC Press, Boca Raton, FL. eBook ISBN: 9780429137952
  • Kah, A., Norhashimah, M., Jie,Q., 2016. Phytoremediation of methylene blue and methyl orange using Eichhornia crassipes. Int. J. Environmental Science and Development 7(10): 724-728.
  • Kale, R.A., Lokhande, V.H., Ade, A.B., 2015. Investigation of chromium phytoremediation and tolerance capacity of a weed, Portulaca oleracea L. in a hydroponic system. Water and Environment Journal. 29: 236–242.
  • Keizer-Vlek, H.E., Verdonschot, P.F.M., Verdonschot, R.C.M., Dekkers, T.B.M., 2014. The contribution of plant uptake to nutrient removal by floating treatment wetlands. Ecological Engineering 73:684-690.
  • Kerr-Upal, M., Seasons, M., Mulamoottil, G., 2000. Retrofitting a stormwater management facility with a wetland component. Journal of Environmental Science and Health A 35 (8): 1289-1307.
  • Kyambadde, J., Kansiime, F., Gumaelius, L., Dalhammar, G., 2004. A comparative study of Cyperus papyrus and Miscanthidium violaceum-based constructed wetlands for wastewater treatment in a tropical climate. Water Res. 38(2): 475-485. Doi:10.1016/j.watres.2003.10.008
  • Lakshmi, K.S., Sailaja, V.H., Reddy, M.A. (2017). Phytoremediation-a promising technique in waste water treatment. International Journal of Scientific Research and Management 5(06): 5480-5489.
  • Lee, J., Lee, S., Yu,S., Rhew, D., 2016. Relationships between water quality parameters in rivers and lakes: BOD5, COD, NBOPs, and TOC. Environmental Monitoring and Assessment. 188(4). Doi:10.1007/s10661-016-5251-1
  • Li, M., Wu, J., Yu, Z.L., Sheng, G.P., Yu, H.Q., 2007. Nitrogen removal from eutrophic water by floating-bed-grown water spinach (Ipomoea aquatica Forsk.) with ion implantation. Water Research 41(14): 3152-3158.
  • Liao, X., Luo, S., Wu, Y., Wang, Z., 2005. Comparison of nutrient removal ability between Cyprus alternifolius and Vetiveria zizanioides in constructed wetlands. (Chinese) Journal of Applied Ecology, 16(1): 156–160.
  • Meetiyagoda, T.A.O.K., Bandara, N.J.G.J., Jinadasa, K.B.S.N., Kalpage, C.S., Pathirana, C.D.K., 2017. Performance of tropical vertical subsurface flow constructed wetlands for leachate treatment at different hydraulic loading rates, Journal of Tropical Forestry and Environment 7(02): 49-61.
  • Moortel, V., A.M.K., Meers, E., Pauw, N., Tack, F.M.G., 2010. Effects of vegetation, season and temperature on the removal of pollutants in experimental floating treatment wetlands. Water Air and Soil Pollution 212(1): 281-297.
  • Mujeriego, R., Asano, T. (1999). The role of advanced treatment in wastewater reclamation and reuse. Water Science and Technology 40(4-5): 1-9.
  • Parnian, A., Furze, J.N., 2021. Vertical phytoremediation of wastewater using Vetiveria zizanioides L.. Environmental Science and Pollution Research, 28(45): 64150-64155.
  • Panja, S., Sarkar, D., Datta, R., 2020. Removal of antibiotics and nutrients by Vetiver grass (Chrysopogon zizanioides) from secondary wastewater effluent. Int. J. Phytoremediation 22(7): 764–773.
  • Prasse, C., Stalter, D., Schulte-Oehlmann, U., Oehlmann, J., Ternes, T.A. (2015). Spoilt for choice: A critical review on the chemical and biological assessment of current wastewater treatment technologies. Water Research 87: 237-270.
  • Ramos-Arcos, S.A., González-Mondragón, E.G., López-Hernández, E.S., Rodríguez-Luna, A.R., Morales-Bautista, C. M., Lagunas-Rivera, S., López-Martínez, S. 2021. Phytoremediation Potential of Chrysopogon zizanioides for Toxic Elements in Contaminated Matrices. In: Biodegradation. Doi: 10.5772/intechopen.98235
  • Revitt, D.M., Shutes, R.B.E., Lewellyn, N.R., Worrall, P.,1997. Experimental reedbed systems for the treatment of airport runoff. Water Science and Technology, 36 (8-9): 385-390.
  • Richa, A., Touil, S., Fizir, M., Martinez, V., 2020. Recent advances and perspectives in the treatment of hydroponic wastewater: a review. Reviews in Environmental Science and Bio/Technology, 19: 945–966. Doi:10.1007/s11157-020-09555-9
  • Roongtanakiat, N., P. Chairoj. 2001. Vetiver grass for the remediation of soil contaminated with heavy metals. Kasetsart J. (Nat. Sci.) 35: 433-440.
  • RG, 2012. Surface Water Quality Regulation (SWOR). The Official Gazette No: 28483 (30 Kasım 2012). Ministry of Forestry and Water Management, Ankara, Türkiye https://www.mevzuat.gov.tr/File/GeneratePdf?mevzuatNo=16806&mevzuatTur=KurumVeKurulusYonetmeligi&mevzuatTertip=5 (Accessed on: 10.05.2023)
  • Sa’at, S.K, Zama, N.Q., Yusoff, S.M, Ismail, H.A., 2017. Investigation of the Potential of Cyperus alternifolius in the Phytoremediation of Palm Oil Mill Effluent. Proceedings of The International Conference of Global Network for Innovative Technology and AWAM International Conference in Civil Engineering, 8–9 August 2017, Penang, Malaysia, 040009-1/7.
  • Schwab, A.,P., Banks, M.,K., 1994. Biologically Mediated Dissipation of Polyaromatic Hydrocarbons in The Root Zone. In: Bioremediation through Rhizosphere Technology (eds. T. Anderson, J. Coates). American Chemical Society Symposium Series 563: 132-141. ISBN-10: ‎ 0841229422
  • SM 4500-P (2017). American Public Health Association. Standard Methods for the Examination of Water and Wastewater (23rd ed.). Method 4500-P: Total Phosphorus.
  • Shalabi, L.F., Gazer, M.H., 2015. The taxonomıc significance of zchene micro- and macromorphology in Cyperus L. (Cyperaceae), Pakistan Journal of Botany 47(6): 2339-2346.
  • Török, A., Buta, E., Indolean, C., Tonk, S., Silaghi-Dumitrescu. L., Majdik, C., 2015 Biological removal of triphenylmethane dyes from aqueous solution by Lemna minor. Acta Chim Slov 62(2): 452-461. Doi: 10.17344/acsi.2014.1109
  • TS 9748 EN 27888 (1996). Turkish Standards Institution (tse.org.tr/en). Water Quality-Determination of Electrical Conductivity.
  • TS EN ISO 10523 (2012). Turkish Standards Institution (tse.org.tr/en). Water quality - Determination of pH.
  • TS ISO 10694 (1995). Turkish Standards Institution (tse.org.tr/en). Soil Quality-Determination of Organic and Total Carbon After Dry Combustion: Elementary Analysis.
  • TS ISO 13878 (2001). Soil quality- Determination of Total Nitrogen Content by Dry Combustion (Elemental Analysis)
  • Truong, P.N.V. 2000. The Global Impact of Vetiver Grass Technology on The Environment. In: Proceedings of 2nd international Vetiver Conference, Thailand. 46-57.
  • UN-2021. United Nations. Progress on Ambient Water Quality, 2021 Reports. Global Indicator 6.3.2 Updates and Acceleration Needs 2021 (Executive Summary), unwater.org/sites/default/files/app/uploads/2021/09/SDG6_Indicator_Report_632_Progress-on-Ambient-Water-Quality_2021_Executive-Summary_EN.pdf (Accessed on 10.05.2023)
  • URL-1: United Nations, Department of Economic and Social Affairs/ Sustainable Development. https://www.undp.org/sustainable-development-goals
  • URL-2: T.C. İzmir Kuş Cennetini Koruma Ve Geliştirme Birliği. https://izmirkuscenneti.gov.tr (Accessed on: 10.05.2023)
  • Von Liebig, J. F. (1855). Die grundsätze der agricultur-chemie mit rücksicht auf die in england angestellten untersuchungen.
  • Vymazal, J., 2017. The use of constructed wetlands for nitrogen removal from agricultural drainage: A Review, Scientia Agriculturae Bohemica, 48(2): 82–91.
  • Wang, Y.W., 2000. The Root Extension Rate of Vetiver Under Different Temperature Treatments. Proc. Second Int. Vetiver Conferance (ICV-2). January 18–22, Phetchaburi, Thailand.
  • White, S.A., Cousins, M.M., 2013. Floating treatment wetland aided remediation of nitrogen and phosphorus from simulated stormwater runoff. Ecological Engineering 61 A(12): 207–215.
  • Xia, H.P., Ao, H.X., Lui, S.Z., He, D.Q., 1999. Application of the Vetiver Eco-Engineering for the Prevention of Highway Slippage in South China. Proceedings of the 1st Asia-Pacific Conference on Ground and Water Bioengineering for Erosion Control and Slope Stabilization, Manila, 19-21 April 1999, pp. 522-527.
  • Xu, B., Wang, X., Liu, J., Wu, J., Zhaou, Y., Cao, W., 2017. Improving urban stormwater runoff quality by nutrient removal through floating treatment wetlands and vegetation harvest. Scientific Reports 7(1), Doi: 10.1038/s41598-017-07439-7
There are 65 citations in total.

Details

Primary Language English
Subjects Forest Ecosystems, Forestry Management and Environment
Journal Section Ecology
Authors

Arzu Yucel 0000-0002-6982-947X

Erdal Örtel 0000-0002-0580-7423

Project Number 15.6310/2015-2017-2018
Early Pub Date September 18, 2023
Publication Date December 14, 2023
Submission Date April 26, 2023
Published in Issue Year 2023 Volume: 10 Issue: 2

Cite

APA Yucel, A., & Örtel, E. (2023). Phytoremediation capacity of Umbrella palm and Vetiver in improving surface water quality by Floating Treatment Wetland. Ormancılık Araştırma Dergisi, 10(2), 168-181. https://doi.org/10.17568/ogmoad.1288019
Creative Commons License
Turkish Journal of Forestry Research is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.