Review
BibTex RIS Cite

SMART MATERIALS AND THEIR ADVANCED BIOMEDICAL APPLICATIONS: HNT AND HNT-POLYMER COMPOSITES

Year 2023, , 955 - 974, 22.12.2023
https://doi.org/10.31796/ogummf.1204094

Abstract

The aluminosilicate clay minerals (Al2Si2O5(OH)4·nH2O) known to exist in nature are called halloysite nanotubes (HNTs). HNTs, which are found in layered, spherical, flat and other forms, can be obtained naturally as well as synthetically. HNTs with an outer diameter of 50 nm and a length ranging from 500 to 1000 nm have a hollow and nanotube-shaped structure. It has natural deposits in Brazil, Turkey, New Zealand, China, the United States, Korea, Japan, and France, and it is a low-cost material that can be obtained through ore purification. Thanks to their high surface area, large pore volume, rheological properties, high interactions, and high binding capacities with biopolymers, HNTs are used in a wide range of areas. For example, HNTs have become a frequently used material in environmental applications such as wastewater treatment and removal of organic contaminants and dyes. It is also used in the production of nanoelectronics and nanocomposites, catalytic studies, flame retardants in make-up materials, forensic sciences and biomedical fields. The specific properties of HNT used in the biomedical field lead to numerous applications. In this review, it is aimed to present the advantages of HNTs for use in drug delivery systems, immune therapy, anti-infection applications, cancer therapy, bioimaging, biosensing applications, tissue engineering applications, implants and hygiene-cosmetics materials.

References

  • Abdollahi Boraei, S. B., Nourmohammadi, J., Bakhshandeh, B., Dehghan, M. M., Gholami, H., Calle Hernández, D., ... & Ferrari, B. (2021). Enhanced osteogenesis of gelatin-halloysite nanocomposite scaffold mediated by loading strontium ranelate. International Journal of Polymeric Materials and Polymeric Biomaterials, 70(6), 392-402. doi:https://doi.org/10.1080/00914037.2020.1725754
  • Abhinayaa, R., Jeevitha, G., Mangalaraj, D., Ponpandian, N., & Meena, P. (2019). Toxic influence of pristine and surfactant modified halloysite nanotubes on phytopathogenic bacteria. Applied Clay Science, 174, 57-68. doi: https://doi.org/10.1016/j.clay.2019.03.022
  • Abhinayaa, R., Jeevitha, G., Mangalaraj, D., Ponpandian, N., Vidhya, K., & Angayarkanni, J. (2018). Cytotoxic consequences of Halloysite nanotube/iron oxide nanocomposite and iron oxide nanoparticles upon interaction with bacterial, non-cancerous and cancerous cells. Colloids and Surfaces B: Biointerfaces, 169, 395-403. doi: https://doi.org/10.1016/j.colsurfb.2018.05.040
  • Arshad, M. S., Qaiser, M., Mahmood, K., Shoaib, M. H., Ameer, N., Ramzan, N., ... & Abbas, G. (2022). Chitosan/halloysite nanotubes microcomposites: A double header approach for sustained release of ciprofloxacin and its hemostatic effects. International Journal of Biological Macromolecules, 212, 314-323.
  • doi: https://doi.org/10.1016/j.ijbiomac.2022.05.138
  • Azmi, S., Razak, S. I. A., Abdul Kadir, M. R., Iqbal, N., Hassan, R., Nayan, N. H. M., ... & Shaharuddin, S. (2017). Reinforcement of poly (vinyl alcohol) hydrogel with halloysite nanotubes as potential biomedical materials. Soft Materials, 15(1), 45-54. doi: https://doi.org/10.1080/1539445X.2016.1242500
  • Barman, M., Mahmood, S., Augustine, R., Hasan, A., Thomas, S., & Ghosal, K. (2020). Natural halloysite nanotubes/chitosan based bio-nanocomposite for delivering norfloxacin, an anti-microbial agent in sustained release manner. International Journal of Biological Macromolecules, 162, 1849-1861. doi: https://doi.org/10.1016/j.ijbiomac.2020.08.060
  • Barot, T., Rawtani, D., & Kulkarni, P. (2020a). Physicochemical and biological assessment of silver nanoparticles immobilized Halloysite nanotubes-based resin composite for dental applications. Heliyon, 6(3), e03601 doi: https://doi.org/10.1016/j.heliyon.2020.e03601
  • Barot, T., Rawtani, D., & Kulkarni, P. (2020b). Development of chlorhexidine loaded halloysite nanotube based experimental resin composite with enhanced physico-mechanical and biological properties for dental applications. Journal of Composites Science, 4(2), 81. doi: https://doi.org/10.3390/jcs4020081
  • Bertolino, V., Cavallaro, G., Lazzara, G., Milioto, S., & Parisi, F. (2017). Biopolymer-targeted adsorption onto halloysite nanotubes in aqueous media. Langmuir, 33(13), 3317-3323. doi: https://doi.org/10.1021/acs.langmuir.7b00600
  • Biddeci, G., Spinelli, G., Colomba, P., & Di Blasi, F. (2022). Nanomaterials: A Review about Halloysite Nanotubes, Properties, and Application in the Biological Field. International Journal of Molecular Sciences, 23(19), 11518. doi: https://doi.org/10.3390/ijms231911518
  • Bonifacio, M. A., Cometa, S., Cochis, A., Gentile, P., Ferreira, A. M., Azzimonti, B., ... & De Giglio, E. (2018). Antibacterial effectiveness meets improved mechanical properties: Manuka honey/gellan gum composite hydrogels for cartilage repair. Carbohydrate Polymers, 198, 462-472. doi: https://doi.org/10.1016/j.carbpol.2018.06.115
  • Bottino, M. C., Yassen, G. H., Platt, J. A., Labban, N., Windsor, L. J., Spolnik, K. J., & Bressiani, A. H. (2015). A novel three‐dimensional scaffold for regenerative endodontics: materials and biological characterizations. Journal of Tissue Engineering and Regenerative Medicine, 9(11), E116-E123. doi: https://doi.org/10.1002/term.1712
  • Campana, V., Milano, G. I. U. S. E. P. P. E., Pagano, E., Barba, M., Cicione, C., Salonna, G., ... & Logroscino, G. (2014). Bone substitutes in orthopaedic surgery: from basic science to clinical practice. Journal of Materials Science: Materials in Medicine, 25(10), 2445-2461. doi: https://doi.org/10.1007/s10856-014-5240-2
  • Cavallaro, G., Milioto, S., Konnova, S., Fakhrullina, G., Akhatova, F., Lazzara, G., ... & Lvov, Y. (2020). Halloysite/keratin nanocomposite for human hair photoprotection coating. ACS Applied Materials & Interfaces, 12(21), 24348-24362. doi: https://doi.org/10.1021/acsami.0c05252
  • Chen, Q., Zhao, Y., Wu, W., Xu, T., & Fong, H. (2012). Fabrication and evaluation of Bis-GMA/TEGDMA dental resins/composites containing halloysite nanotubes. Dental Materials, 28(10), 1071-1079. doi: https://doi.org/10.1016/j.dental.2007.05.002
  • Cheng, C., Gao, Y., Song, W., Zhao, Q., Zhang, H., & Zhang, H. (2020). Halloysite nanotube-based H2O2-responsive drug delivery system with a turn on effect on fluorescence for real-time monitoring. Chemical Engineering Journal, 380, 122474. doi: https://doi.org/10.1016/j.cej.2019.122474
  • Cheng, C., Song, W., Zhao, Q., & Zhang, H. (2020). Halloysite nanotubes in polymer science: Purification, characterization, modification and applications. Nanotechnology Reviews, 9(1), 323-344. doi: https://doi.org/10.1515/ntrev-2020-0024
  • Cho, K., Yasir, M., Jung, M., Willcox, M. D., Stenzel, M. H., Rajan, G., ... & Prusty, B. G. (2020). Hybrid engineered dental composites by multiscale reinforcements with chitosan-integrated halloysite nanotubes and S-glass fibers. Composites Part B: Engineering, 202, 108448. doi: https://doi.org/10.1016/j.compositesb.2020.108448
  • Chozhanathmisra, M. A. N. I. C. K. A. M., Govindaraj, D. H. A. R. M. A. N., Karthikeyan, P. A. L. A. N. I. S. A. M. Y., & Rajavel, R. A. N. G. A. P. P. A. N. (2018). Antibacterial efficacy of halloysite nanotube minerals substituted hydroxyapatite composite on titanium alloy using electrodeposition method. Asian Journal of Chemistry, 30(10), 2264-2268. doi: https://doi.org/10.14233/ajchem.2018.21423
  • Chozhanathmisra, M., Murugesan, L., Murugesan, A., Palanisamy, G., & Rajavel, R. (2022). Enhancement on physical, chemical, and biological properties of HNT-PVA-ALG-HAp biocomposite coating on implant substrate for biomedical application. Ceramics International, 48(12), 16868-16876. doi: https://doi.org/10.1016/j.ceramint.2022.02.241
  • Chozhanathmisra, M., Ramya, S., Kavitha, L., & Gopi, D. (2016). Development of zinc-halloysite nanotube/minerals substituted hydroxyapatite bilayer coatings on titanium alloy for orthopedic applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 511, 357-365. doi: https://doi.org/10.1016/j.colsurfa.2016.10.018
  • Danyliuk, N., Tomaszewska, J., & Tatarchuk, T. (2020). Halloysite nanotubes and halloysite-based composites for environmental and biomedical applications. Journal of Molecular Liquids, 309, 113077. doi: https://doi.org/10.1016/j.molliq.2020.113077
  • Das, S., & Baker, A. B. (2016). Biomaterials and nanotherapeutics for enhancing skin wound healing. Frontiers in bioengineering and biotechnology, 4, 82. doi: https://doi.org/10.3389/fbioe.2016.00082
  • De Kruif, J. K., Ledergerber, G., Garofalo, C., Fasler-Kan, E., & Kuentz, M. (2016). On prilled nanotubes-in-microgel oral systems for protein delivery. European Journal of Pharmaceutics and Biopharmaceutics, 101, 90 102. doi: https://doi.org/10.1016/j.ejpb.2016.01.014
  • De Silva, R. T., Dissanayake, R. K., Mantilaka, M. P. G., Wijesinghe, W. S. L., Kaleel, S. S., Premachandra, T. N., ... & de Silva, K. N. (2018). Drug-loaded halloysite nanotube-reinforced electrospun alginate-based nanofibrous scaffolds with sustained antimicrobial protection. ACS Applied Materials & Interfaces, 10(40), 33913-33922. doi: https://doi.org/10.1021/acsami.8b11013
  • Decarli, N. O., Zapp, E., de Souza, B. S., Santana, E. R., Winiarski, J. P., & Vieira, I. C. (2022). Biosensor based on laccase-halloysite nanotube and imidazolium zwitterionic surfactant for dopamine determination. Biochemical Engineering Journal, 186, 108565. doi: https:/doi.org/10.1016/j.bej.2022.108565
  • Degrazia, F. W., Genari, B., Leitune, V. C. B., Arthur, R. A., Luxan, S. A., Samuel, S. M. W., ... & Sauro, S. (2018). Polymerisation, antibacterial and bioactivity properties of experimental orthodontic adhesives containing triclosan-loaded halloysite nanotubes. Journal of Dentistry, 69, 77-82. doi: https://doi.org/10.1016/j.jdent.2017.11.002
  • Dramou, P., Fizir, M., Taleb, A., Itatahine, A., Dahiru, N. S., Mehdi, Y. A., ... & He, H. (2018). Folic acid-conjugated chitosan oligosaccharide-magnetic halloysite nanotubes as a delivery system for camptothecin. Carbohydrate Polymers, 197, 117-127. doi: https://doi.org/10.1016/j.carbpol.2018.05.071,
  • Fakhrullina, G., Khakimova, E., Akhatova, F., Lazzara, G., Parisi, F., & Fakhrullin, R. (2019). Selective antimicrobial effects of curcumin@ halloysite nanoformulation: a Caenorhabditis elegans study. ACS Applied Materials & Interfaces, 11(26), 23050-23064. doi: https://doi.org/10.1021/acsami.9b07499
  • Feitosa, S., Carreiro, A. F., Martins, V. M., Platt, J. A., & Duarte, S. (2021). Effect of a chlorhexidine-encapsulated nanotube modified pit-and-fissure sealant on oral biofilm. Dental Materials Journal, 40(3), 758-765. doi: https://doi.org/10.4012/dmj.2020-241
  • Fizir, M., Dramou, P., Dahiru, N. S., Ruya, W., Huang, T., & He, H. (2018). Halloysite nanotubes in analytical sciences and in drug delivery: A review. Microchimica Acta, 185(8), 1-33. doi: https://doi.org/10.1007/s00604-018-2908-1
  • Gawdzinska, K., Paszkiewicz, S., Piesowicz, E., Bryll, K., Irska, I., Lapis, A., ... & Slaczka, W. (2019). Preparation and characterization of hybrid nanocomposites for dental applications. Applied Sciences, 9(7), 1381. doi: https://doi.org/10.3390/app9071381
  • Gkouma, E., Gianni, E., Avgoustakis, K., & Papoulis, D. (2021). Applications of halloysite in tissue engineering. Applied Clay Science, 214, 106291. doi: https://doi.org/10.1016/j.clay.2021.106291
  • Glotov, A., Stavitskaya, A., Novikov, A., Semenov, A., Ivanov, E., Gushchin, P., ... & Lvov, Y. (2019). Halloysite Based Core-Shell Nanosystems: Synthesis and Application. In Nanomaterials from Clay Minerals, 203-256. doi: https://doi.org/10.1016/B978-0-12-0814533-3.00004-1.
  • Goda, E. S., Gab-Allah, M. A., Singu, B. S., & Yoon, K. R. (2019). Halloysite nanotubes based electrochemical sensors: A review. Microchemical Journal, 147, 1083-1096. doi: https://doi.org/10.1016/j.microc.2019.04.011
  • Gorbachevskii, M. V., Stavitskaya, A. V., Novikov, A. A., Fakhrullin, R. F., Rozhina, E. V., Naumenko, E. A., & Vinokurov, V. A. (2021). Fluorescent gold nanoclusters stabilized on halloysite nanotubes: In vitro study on cytotoxicity. Applied Clay Science, 207, 106106. doi: https://doi.org/10.1016/j.clay.2021.106106
  • Gu, B. K., Choi, D. J., Park, S. J., Kim, M. S., Kang, C. M., & Kim, C. H. (2016). 3-dimensional bioprinting for tissue engineering applications. Biomaterials Research, 20(1), 1-8. doi: https://doi.org/10.1186/s40824-016-0058-2
  • Guimaraes, L., Enyashin, A. N., Seifert, G., & Duarte, H. A. (2010). Structural, electronic, and mechanical properties of single-walled halloysite nanotube models. The Journal of Physical Chemistry C, 114(26), 11358-11363. doi: https://doi.org/10.1021/jp100902e
  • Guryanov, I., Naumenko, E., Akhatova, F., Lazzara, G., Cavallaro, G., Nigamatzyanova, L., & Fakhrullin, R. (2020). Selective cytotoxic activity of prodigiosin@ halloysite nanoformulation. Frontiers in Bioengineering and Biotechnology, 8, 424. doi: https://doi.org/10.3389/fbioe.2020.00424
  • Hamedi, S., & Koosha, M. (2020). Designing a pH-responsive drug delivery system for the release of black-carrot anthocyanins loaded in halloysite nanotubes for cancer treatment. Applied Clay Science, 197, 105770. doi: https://doi.org/10.1016/j.clay.2020.105770
  • Hasan, W. Y., & Ali, M. M. (2018). Evaluation of thermal conductivity and some other properties of heat cured denture soft liner reinforced by halloysite nanotubes. Biomedical and Pharmacology Journal, 11(3), 1491-1500. doi: https://dx.doi.org/10.13005/bpj/1516
  • Hemmatpour, H., Haddadi-Asl, V., Khanipour, F., Stuart, M. C., Lu, L., Pei, Y., ... & Rudolf, P. (2022). Mussel-inspired grafting pH-responsive brushes onto halloysite nanotubes for controlled release of doxorubicin. European Polymer Journal, 180, 111583. doi: https://doi.org/10.1016/j.eurpolymj.2022.111583
  • Hendessi, S., Sevinis, E. B., Unal, S., Cebeci, F. C., Menceloglu, Y. Z., & Unal, H. (2016). Antibacterial sustained-release coatings from halloysite nanotubes/waterborne polyurethanes. Progress in Organic Coatings, 101, 253-261. doi: https://doi.org/10.1016/j.porgcoat.2016.09.005
  • Huang, B., Liu, M., & Zhou, C. (2017). Cellulose–halloysite nanotube composite hydrogels for curcumin delivery. Cellulose, 24(7), 2861-2875. doi: https://doi.org/10.1007/s10570-017-1316-8
  • Humayun, A., Luo, Y., Elumalai, A., & Mills, D. K. (2022). 3D printed antimicrobial PLA constructs functionalised with zinc-coated halloysite nanotubes-Ag-chitosan oligosaccharide lactate. Materials Technology, 37(1), 28-35. doi: https://doi.org/10.1080/10667857.2020.1806188
  • Ji, L., Qiao, W., Zhang, Y., Wu, H., Miao, S., Cheng, Z., ... & Zhu, A. (2017). A gelatin composite scaffold strengthened by drug-loaded halloysite nanotubes. Materials Science and Engineering: C, 78, 362-369. doi: https://doi.org/10.1016/j.msec.2017.04.070
  • Kamal, N., Kochkodan, V., Zekri, A., & Ahzi, S. (2019). Polysulfone membranes embedded with halloysites nanotubes: Preparation and properties. Membranes, 10(1), 2.
  • doi: https://doi.org/10.3390/membranes10010002
  • Kazemi-Aghdam, F., Jahed, V., Dehghan-Niri, M., Ganji, F., & Vasheghani-Farahani, E. (2021). Injectable chitosan hydrogel embedding modified halloysite nanotubes for bone tissue engineering. Carbohydrate Polymers, 269, 118311. doi: https://doi.org/10.1016/j.carbpol.2021.118311
  • Kerman, K., Kobayashi, M., & Tamiya, E. (2003). Recent trends in electrochemical DNA biosensor technology. Measurement Science and Technology, 15(2), R1. doi: https://doi.org/10.1088/0957-0233/15/2/R01
  • Khan, S., Kumar, V., Roy, P., & Kundu, P. P. (2019). TiO 2 doped chitosan/hydroxyapatite/halloysite nanotube membranes with enhanced mechanical properties and osteoblast-like cell response for application in bone tissue engineering. RSC Advances, 9(68), 39768-39779. doi: https://doi.org/10.1039/c9ra08366a
  • Khodzhaeva, V., Makeeva, A., Ulyanova, V., Zelenikhin, P., Evtugyn, V., Hardt, M., ... & Ilinskaya, O. (2017). Binase immobilized on halloysite nanotubes exerts enhanced cytotoxicity toward human colon adenocarcinoma cells. Frontiers in Pharmacology, 8, 631. doi: https://doi.org/10.3389/fphar.2017.00
  • Kokulnathan, T., Chen, T. W., Chen, S. M., Ahmed, F., Hasan, P. M. Z., Bilgrami, A. L., & Kumar, S. (2022). A robust combination of dysprosium vanadate/halloysite nanotubes: the electrochemical system for dimetridazole detection. Materials Today Chemistry, 24, 100890. https://doi.org/10.1016/j.mtchem.2022.100890
  • Koosha, M., Raoufi, M., & Moravvej, H. (2019). One-pot reactive electrospinning of chitosan/PVA hydrogel nanofibers reinforced by halloysite nanotubes with enhanced fibroblast cell attachment for skin tissue regeneration. Colloids and Surfaces B: Biointerfaces, 179, 270-279. doi: https://doi.org/10.1016/j.colsurfb.2019.03.054
  • Kumar, A., & Han, S. S. (2021). Enhanced mechanical, biomineralization, and cellular response of nanocomposite hydrogels by bioactive glass and halloysite nanotubes for bone tissue regeneration. Materials Science and Engineering: C, 128, 112236. doi: https://doi.org/10.1016/j.msec.2021.112236
  • Kurczewska, J., Cegłowski, M., Messyasz, B., & Schroeder, G. (2018). Dendrimer-functionalized halloysite nanotubes for effective drug delivery. Applied Clay Science, 153, 134-143. doi: https://doi.org/10.1016/j.clay.2017.12.019
  • Kushwaha, S. K. S., Kushwaha, N., Pandey, P., & Fatma, B. (2021). Halloysite nanotubes for nanomedicine: Prospects, challenges and applications. BioNanoScience, 11(1), 200-208. doi: https://doi.org/10.1007/s12668-020-00801-6
  • Liu, M., Jia, Z., Jia, D., & Zhou, C. (2014). Recent advance in research on halloysite nanotubes-polymer nanocomposite. Progress in Polymer Science, 39(8), 1498-1525. doi:https://doi.org/10.1016/j.progpolymsci.2014.04.004
  • Liu, J., Zhang, Y., Zeng, Q., Zeng, H., Liu, X., Wu, P., ... & Cao, K. (2019). Delivery of RIPK4 small interfering RNA for bladder cancer therapy using natural halloysite nanotubes. Science Advances, 5(9), eaaw6499. doi: https://doi.org/10.1126%2Fsciadv.aaw6499
  • Li, H., Zhu, X., Xu, J., Peng, W., Zhong, S., & Wang, Y. (2016). The combination of adsorption by functionalized halloysite nanotubes and encapsulation by polyelectrolyte coatings for sustained drug delivery. RSC Advances, 6(59), 54463-54470. doi: https://doi.org/10.1039/C6RA09599B
  • Li, Y., Khan, M. S., Tian, L., Liu, L., Hu, L., Fan, D., ... & Wei, Q. (2017). An ultrasensitive electrochemical immunosensor for the detection of prostate-specific antigen based on conductivity nanocomposite with halloysite nanotubes. Analytical and Bioanalytical Chemistry, 409(12), 3245-3251. doi:https://doi.org/10.1007/s00216-017-0266-1
  • Li, Z., Li, B., Li, X., Lin, Z., Chen, L., Chen, H., ... & Zhang, Y. (2021). Ultrafast in-situ forming halloysite nanotube-doped chitosan/oxidized dextran hydrogels for hemostasis and wound repair. Carbohydrate Polymers, 267, 118155. doi: https://doi.org/10.1016/j.carbpol.2021.118155
  • Long, M., Zhang, Y., Huang, P., Chang, S., Hu, Y., Yang, Q., ... & Yang, H. (2018). Emerging nanoclay composite for effective hemostasis. Advanced Functional Materials, 28(10), 1704452. doi: https://doi.org/10.1002/adfm.201704452
  • Long, Z., Wu, Y. P., Gao, H. Y., Li, Y. F., He, R. R., & Liu, M. (2018). Functionalization of halloysite nanotubes via grafting of dendrimer for efficient intracellular delivery of siRNA. Bioconjugate Chemistry, 29(8), 2606-2618. doi: https://doi.org/10.1021/acs.bioconjchem.8b00321
  • Long, Z., Zhang, J., Shen, Y., Zhou, C., & Liu, M. (2017). Polyethyleneimine grafted short halloysite nanotubes for gene delivery. Materials Science and Engineering: C, 81, 224-235. doi: https://doi.org/10.1016/j.msec.2017.07.035
  • Lisuzzo, L., Cavallaro, G., Milioto, S., & Lazzara, G. (2021). Halloysite nanotubes filled with salicylic acid and sodium diclofenac: effects of vacuum pumping on loading and release properties. Journal of Nanostructure in Chemistry, 11(4), 663-673.
  • doi: https://doi.org/10.1007/s40097-021-00391-z
  • Luo, X., Zhang, J., Wu, Y. P., Yang, X., Kuang, X. P., Li, W. X., ... & Liu, M. (2020). Multifunctional [email protected] 3 O 4@[email protected] Nanoplatform for Effective Chemo-Photothermal Combination Therapy of Breast Cancer with MR Imaging. ACS Biomater. Sci. Eng, 6(6), 3361-3374. doi: https://doi.org/10.1021/acsbiomaterials.9b01709
  • Mabrouk, M., Beherei, H. H., & Das, D. B. (2020). Recent progress in the fabrication techniques of 3D scaffolds for tissue engineering. Materials Science and Engineering: C, 110, 110716. doi: https://doi.org/10.1016/j.msec.2020.110716
  • Majumder, S., Viau, C., Brar, A., Xia, J., & George, S. (2022). Silver nanoparticles grafted onto tannic acid-modified halloysite clay eliminated multidrug-resistant Salmonella Typhimurium in a Caenorhabditis elegans model of intestinal infection. Applied Clay Science, 228, 106569. doi: https://doi.org/10.1016/j.clay.2022.106569
  • Massaro, M., Buscemi, G., Arista, L., Biddeci, G., Cavallaro, G., D’Anna, F., ... & Riela, S. (2018). Multifunctional carrier based on halloysite/laponite hybrid hydrogel for kartogenin delivery. ACS Medicinal Chemistry Letters, 10(4), 419-424. doi: https://doi.org/10.1021/acsmedchemlett.8b00465
  • Massaro, M., Licandro, E., Cauteruccio, S., Lazzara, G., Liotta, L. F., Notarbartolo, M., ... & Riela, S. (2022). Nanocarrier based on halloysite and fluorescent probe for intracellular delivery of peptide nucleic acids. Journal of Colloid and Interface Science, 620, 221-233. doi: https://doi.org/10.1016/j.jcis.2022.03.151
  • Mathi, D. B., Gopi, D., & Kavitha, L. (2020, November). Halloysite nanotubes strengthened hydroxyapatite/biopolymer composite coating on titanium for implant applications. In AIP Conference Proceedings (Vol. 2270, No. 1, p. 110025). AIP Publishing LLC. doi: https://doi.org/10.1063/5.0019799
  • Mo, X., Wu, F., Yu, B., Wang, W., & Cai, X. (2020). Folate-PG modified halloysite nanotube for enhancing tumor targeting and anticancer efficacy. Applied Clay Science, 193, 105664. doi: https://doi.org/10.1016/j.clay.2020.105664
  • Molaei, A., & Yousefpour, M. (2019). Preparation of Chitosan-based nanocomposites and biomedical investigations in bone tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 68(12), 701-713. doi: https://doi.org/10.1080/00914037.2018.1493683
  • Molaei, A., Amadeh, A., Yari, M., & Afshar, M. R. (2016). Structure, apatite inducing ability, and corrosion behavior of chitosan/halloysite nanotube coatings prepared by electrophoretic deposition on titanium substrate. Materials Science and Engineering: C, 59, 740-747. doi: https://doi.org/10.1016/j.msec.2015.10.073
  • Nekounam, H., Gholizadeh, S., Allahyari, Z., Samadian, H., Nazeri, N., Shokrgozar, M. A., & Faridi-Majidi, R. (2021). Electroconductive Scaffolds for Tissue Regeneration: Current opportunities, pitfalls, and potential solutions. Materials Research Bulletin, 134, 111083. doi: https://doi.org/10.1016/j.materresbull.2020.111083
  • Ou, Q., Huang, K., Fu, C., Huang, C., Fang, Y., Gu, Z., ... & Wang, Y. (2020). Nanosilver-incorporated halloysite nanotubes/gelatin methacrylate hybrid hydrogel with osteoimmunomodulatory and antibacterial activity for bone regeneration. Chemical Engineering Journal, 382, 123019. doi: https://doi.org/10.1016/j.cej.2019.123019
  • Panchal, A., Fakhrullina, G., Fakhrullin, R., & Lvov, Y. (2018). Self-assembly of clay nanotubes on hair surface for medical and cosmetic formulations. Nanoscale, 10(38), 18205-18216. doi: https://doi.org/10.1039/C8NR05949G
  • Paul, A., Augustine, R., Hasan, A., Zahid, A. A., Thomas, S., Agatemor, C., & Ghosal, K. (2022). Halloysite nanotube and chitosan polymer composites: Physicochemical and drug delivery properties. Journal of Drug Delivery Science and Technology, 72, 103380. doi: https://doi.org/10.1016/j.jddst.2022.103380
  • Persano, F., Gigli, G., & Leporatti, S. (2021). Halloysite-Based Nanosystems for Biomedical Applications. Clays and Clay Minerals, 1-21. doi: https://doi.org/10.1007/s42860-021-00135-8
  • Prishchenko, D. A., Zenkov, E. V., Mazurenko, V. V., Fakhrullin, R. F., Lvov, Y. M., & Mazurenko, V. G. (2018). Molecular dynamics of the halloysite nanotubes. Physical Chemistry Chemical Physics, 20(8), 5841-5849. https://doi.org/10.1016/j.msec.2020.110716
  • Sa, L., Kaiwu, L., Shenggui, C., Junzhong, Y., Yongguang, J., Lin, W., & Li, R. (2019). 3D printing dental composite resins with sustaining antibacterial ability. Journal of Materials Science, 54(4), 3309-3318. doi: https://doi.org/10.1007/s10853-018-2801-7
  • Sahiner, N., & Sengel, S. B. (2017). Various amine functionalized halloysite nanotube as efficient metal free catalysts for H2 generation from sodium borohydride methanolysis. Applied Clay Science, 146, 517-525. doi:https://doi.org/10.1016/j.clay.2017.07.008
  • Saleh, M., Prajapati, N., Karan, A., Rahman, N., Stavitskaya, A., DeCoster, M., & Lvov, Y. (2021). Halloysite Nanotube Vehicles for Drug Delivery Through a Model Blood–Brain Barrier. Clays and Clay Minerals, 69(5), 603-611. doi: https://doi.org/10.1007/s42860-021-00161-6
  • Same, S., Kadkhoda, J., Navidi, G., Abedi, F., Aghazadeh, M., Milani, M., ... & Davaran, S. (2022). The fabrication of halloysite nanotube-based multicomponent hydrogel scaffolds for bone healing. Journal of Applied Biomaterials & Functional Materials, 20, 22808000221111875. doi: https://doi.org/10.1177/22808000221111875
  • Satish, S., Tharmavaram, M., & Rawtani, D. (2019). Halloysite nanotubes as a nature’s boon for biomedical applications. Nanobiomedicine, 6, 1849543519863625. doi: https://doi.org/10.1177%2F1849543519863625
  • Schmitt, H., Creton, N., Prashantha, K., Soulestin, J., Lacrampe, M. F., & Krawczak, P. (2015). Preparation and characterization of plasticized starch/halloysite porous nanocomposites possibly suitable for biomedical applications. Journal of Applied Polymer Science, 132(4), 41341. doi: https://doi.org/10.1002/app.41341
  • Sen, L., He, D., Li, S., Chen, R., Yuan, P., Li, S., ... & Gao, Z. (2022). Magnetic Halloysite Nanotube-Based SERS Biosensor Enhanced with Au@ Ag Core–Shell Nanotags for Bisphenol A Determination. Biosensors, 12(6), 387. doi: https://doi.org/10.3390/ bios12060387
  • Shi, Y. F., Tian, Z., Zhang, Y., Shen, H. B., & Jia, N. Q. (2011). Functionalized halloysite nanotube-based carrier for intracellular delivery of antisense oligonucleotides. Nanoscale Research Letters, 6(1), 1-7. doi: https://doi.org/10.1186%2F1556-276X-6-608
  • Shu, Z., Zhang, Y., Ouyang, J., & Yang, H. (2017 a). Characterization and synergetic antibacterial properties of ZnO and CeO2 supported by halloysite. Applied Surface Science, 420, 833-838. doi: https://doi.org/10.1016/j.apsusc.2017.05.219
  • Shu, Z., Zhang, Y., Yang, Q., & Yang, H. (2017 b). Halloysite nanotubes supported Ag and ZnO nanoparticles with synergistically enhanced antibacterial activity. Nanoscale Research Letters, 12(1), 1-7. doi: https://doi.org/10.1186/s11671-017-1859-5
  • Stavitskaya, A. V., Novikov, A. A., Kotelev, M. S., Kopitsyn, D. S., Rozhina, E. V., Ishmukhametov, I. R., ... & Vinokurov, V. A. (2018). Fluorescence and cytotoxicity of cadmium sulfide quantum dots stabilized on clay nanotubes. Nanomaterials, 8(6), 391. doi: https://doi.org/10.3390/nano8060391
  • Suner, S. S., Demirci, S., Yetiskin, B., Fakhrullin, R., Naumenko, E., Okay, O., ... & Sahiner, N. (2019). Cryogel composites based on hyaluronic acid and halloysite nanotubes as scaffold for tissue engineering. International journal of biological macromolecules, 130, 627-635. doi: https://doi.org/10.1016/j.ijbiomac.2019.03.025
  • Tan, C., Zheng, J., Feng, Y., & Liu, M. (2021). Cell Membrane-Coated Halloysite Nanotubes for Target-Specific Nanocarrier for Cancer Phototherapy. Molecules, 26(15), 4483. doi: https://doi.org/10.3390%2Fmolecules26154483,
  • Tappa, K. K., Jammalamadaka, U. M., & Mills, D. K. (2014, August). Design and evaluation of a nanoenhanced anti-infective calcium phosphate bone cements. In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 3921-3924). IEEE. doi: https://doi.org/10.1109/EMBC.2014.6944481
  • Torres, E., Dominguez-Candela, I., Castello-Palacios, S., Vallés-Lluch, A., & Fombuena, V. (2020). Development and characterization of polyester and acrylate-based composites with hydroxyapatite and halloysite nanotubes for medical applications. Polymers, 12(8), 1703. doi: https://doi.org/10.3390/polym12081703
  • Tully, J., Yendluri, R., & Lvov, Y. (2016). Halloysite clay nanotubes for enzyme immobilization. Biomacromolecules, 17(2), 615-621. doi: https://doi.org/10.1021/acs.biomac.5b01542
  • Venkatesh, C., Fuenmayor, E., Doran, P., Major, I., Lyons, J. G., & Devine, D. M. (2019). Additive manufacturing of PLA/HNT nanocomposites for biomedical applications. Procedia Manufacturing, 38, 17-24. doi: https://doi.org/10.1016/j.promfg.2020.01.003
  • Wei, P., Jing, W., Yuan, Z., Huang, Y., Guan, B., Zhang, W., ... & Yang, X. (2019). Vancomycin-and strontium-loaded microspheres with multifunctional activities against bacteria, in angiogenesis, and in osteogenesis for enhancing infected bone regeneration. ACS Applied Materials & Interfaces, 11(34), 30596-30609. doi: https://doi.org/10.1021/acsami.9b10219
  • Wei, W., Abdullayev, E., Hollister, A., Mills, D., & Lvov, Y. M. (2012). Clay nanotube/poly (methyl methacrylate) bone cement composites with sustained antibiotic release. Macromolecular Materials and Engineering, 297(7), 645-653. doi: https://doi.org/10.1002/mame.201100309
  • Wei, W., Minullina, R., Abdullayev, E., Fakhrullin, R., Mills, D., & Lvov, Y. (2014). Enhanced efficiency of antiseptics with sustained release from clay nanotubes. RSC Advances, 4(1), 488-494. doi: https://doi.org/10.1039/C3RA45011B.
  • Wu, Y., Yang, Y., Liu, H., Yao, X., Leng, F., Chen, Y., & Tian, W. (2017). Long-term antibacterial protected cotton fabric coating by controlled release of chlorhexidine gluconate from halloysite nanotubes. RSC Advances, 7(31), 18917-18925. doi: https://doi.org/10.1039/C7RA01464C
  • Xia, D., Jia, Z., Shen, Y., Zheng, Y., Cheng, Y., Xiong, P., ... & Zhou, Y. (2022). pH Stimuli‐Responsive, Rapidly Self‐healable Coatings Enhanced the Corrosion Resistance and Osteogenic Differentiation of Mg‐1Ca Osteoimplant. Small, 2106056. doi: https://doi.org/10.1002/smll.202106056
  • Yah, W. O., Takahara, A., & Lvov, Y. M. (2012). Selective modification of halloysite lumen with octadecylphosphonic acid: new inorganic tubular micelle. Journal of the American Chemical Society, 134(3), 1853-1859. doi:https://doi.org/10.1021/ja210258y
  • Yuan, P., Tan, D., & Annabi-Bergaya, F. (2015). Properties and applications of halloysite nanotubes: recent research advances and future prospects. Applied Clay Science, 112, 75-93. doi: https://doi.org/10.1016/j.clay.2015.05.001
  • Zhang, Y., Chen, Y., Zhang, H., Zhang, B., & Liu, J. (2013). Potent antibacterial activity of a novel silver nanoparticle-halloysite nanotube nanocomposite powder. Journal of Inorganic Biochemistry, 118, 59-64. doi: https://doi.org/10.1016/j.jinorgbio.2012.07.025

AKILLI MALZEMELER VE İLERİ BİYOMEDİKAL UYGULAMALARI: HNT VE HNT-POLİMER KOMPOZİTLERİ

Year 2023, , 955 - 974, 22.12.2023
https://doi.org/10.31796/ogummf.1204094

Abstract

Doğada var olduğu bilinen alüminosilikat kil minerallerine (Al2Si2O5(OH)4·nH2O) halloysit nanotüpler (HNT'ler) olarak adlandırılır. Katmanlı, küresel, yassı ve diğer formlarda bulunan HNT'ler sentetik olarak elde edilebildiği gibi doğal olarak da elde edilebilmektedir. Dış çapı 50 nm ve uzunluğu 500 ile 1000 nm arasında değişen HNT'ler içi boş ve nanotüp şeklinde bir yapıya sahiptir. Brezilya, Türkiye, Yeni Zelanda, Çin, Amerika Birleşik Devletleri, Kore, Japonya ve Fransa'da doğal yatakları bulunan ve cevher saflaştırma yoluyla elde edilebilen düşük maliyetli bir malzemedir. HNT'ler, yüksek yüzey alanları, büyük gözenek hacimleri, reolojik özellikleri, yüksek etkileşimleri ve biyopolimerlerle yüksek bağlanma kapasiteleri sayesinde çok çeşitli alanlarda kullanılırlar. Örneğin, HNT'ler atık su arıtımı ve organik kirleticilerin ve boyaların uzaklaştırılması gibi çevresel uygulamalarda da sıklıkla kullanılan bir malzeme haline gelmiştir. Ayrıca nanoelektronik ve nanokompozitlerin üretiminde, katalitik çalışmalarda, makyaj malzemelerinde alev geciktiricilerde, adli bilimlerde ve biyomedikal alanlarda da kullanılmaktadır. Biyomedikal alanda kullanılan HNT'nin kendine özgü özellikleri çok sayıda uygulama için alternatif bir malzemedir. Bu derlemede, HNT'lerin ilaç taşıyıcı sistemler, immün terapi, anti-enfeksiyon uygulamaları, kanser tedavisi, biyogörüntüleme, biyoalgılama uygulamaları, doku mühendisliği uygulamaları, implantlar ve hijyen-kozmetik malzemelerinde kullanım avantajlarının ortaya konulması amaçlanmaktadır.

References

  • Abdollahi Boraei, S. B., Nourmohammadi, J., Bakhshandeh, B., Dehghan, M. M., Gholami, H., Calle Hernández, D., ... & Ferrari, B. (2021). Enhanced osteogenesis of gelatin-halloysite nanocomposite scaffold mediated by loading strontium ranelate. International Journal of Polymeric Materials and Polymeric Biomaterials, 70(6), 392-402. doi:https://doi.org/10.1080/00914037.2020.1725754
  • Abhinayaa, R., Jeevitha, G., Mangalaraj, D., Ponpandian, N., & Meena, P. (2019). Toxic influence of pristine and surfactant modified halloysite nanotubes on phytopathogenic bacteria. Applied Clay Science, 174, 57-68. doi: https://doi.org/10.1016/j.clay.2019.03.022
  • Abhinayaa, R., Jeevitha, G., Mangalaraj, D., Ponpandian, N., Vidhya, K., & Angayarkanni, J. (2018). Cytotoxic consequences of Halloysite nanotube/iron oxide nanocomposite and iron oxide nanoparticles upon interaction with bacterial, non-cancerous and cancerous cells. Colloids and Surfaces B: Biointerfaces, 169, 395-403. doi: https://doi.org/10.1016/j.colsurfb.2018.05.040
  • Arshad, M. S., Qaiser, M., Mahmood, K., Shoaib, M. H., Ameer, N., Ramzan, N., ... & Abbas, G. (2022). Chitosan/halloysite nanotubes microcomposites: A double header approach for sustained release of ciprofloxacin and its hemostatic effects. International Journal of Biological Macromolecules, 212, 314-323.
  • doi: https://doi.org/10.1016/j.ijbiomac.2022.05.138
  • Azmi, S., Razak, S. I. A., Abdul Kadir, M. R., Iqbal, N., Hassan, R., Nayan, N. H. M., ... & Shaharuddin, S. (2017). Reinforcement of poly (vinyl alcohol) hydrogel with halloysite nanotubes as potential biomedical materials. Soft Materials, 15(1), 45-54. doi: https://doi.org/10.1080/1539445X.2016.1242500
  • Barman, M., Mahmood, S., Augustine, R., Hasan, A., Thomas, S., & Ghosal, K. (2020). Natural halloysite nanotubes/chitosan based bio-nanocomposite for delivering norfloxacin, an anti-microbial agent in sustained release manner. International Journal of Biological Macromolecules, 162, 1849-1861. doi: https://doi.org/10.1016/j.ijbiomac.2020.08.060
  • Barot, T., Rawtani, D., & Kulkarni, P. (2020a). Physicochemical and biological assessment of silver nanoparticles immobilized Halloysite nanotubes-based resin composite for dental applications. Heliyon, 6(3), e03601 doi: https://doi.org/10.1016/j.heliyon.2020.e03601
  • Barot, T., Rawtani, D., & Kulkarni, P. (2020b). Development of chlorhexidine loaded halloysite nanotube based experimental resin composite with enhanced physico-mechanical and biological properties for dental applications. Journal of Composites Science, 4(2), 81. doi: https://doi.org/10.3390/jcs4020081
  • Bertolino, V., Cavallaro, G., Lazzara, G., Milioto, S., & Parisi, F. (2017). Biopolymer-targeted adsorption onto halloysite nanotubes in aqueous media. Langmuir, 33(13), 3317-3323. doi: https://doi.org/10.1021/acs.langmuir.7b00600
  • Biddeci, G., Spinelli, G., Colomba, P., & Di Blasi, F. (2022). Nanomaterials: A Review about Halloysite Nanotubes, Properties, and Application in the Biological Field. International Journal of Molecular Sciences, 23(19), 11518. doi: https://doi.org/10.3390/ijms231911518
  • Bonifacio, M. A., Cometa, S., Cochis, A., Gentile, P., Ferreira, A. M., Azzimonti, B., ... & De Giglio, E. (2018). Antibacterial effectiveness meets improved mechanical properties: Manuka honey/gellan gum composite hydrogels for cartilage repair. Carbohydrate Polymers, 198, 462-472. doi: https://doi.org/10.1016/j.carbpol.2018.06.115
  • Bottino, M. C., Yassen, G. H., Platt, J. A., Labban, N., Windsor, L. J., Spolnik, K. J., & Bressiani, A. H. (2015). A novel three‐dimensional scaffold for regenerative endodontics: materials and biological characterizations. Journal of Tissue Engineering and Regenerative Medicine, 9(11), E116-E123. doi: https://doi.org/10.1002/term.1712
  • Campana, V., Milano, G. I. U. S. E. P. P. E., Pagano, E., Barba, M., Cicione, C., Salonna, G., ... & Logroscino, G. (2014). Bone substitutes in orthopaedic surgery: from basic science to clinical practice. Journal of Materials Science: Materials in Medicine, 25(10), 2445-2461. doi: https://doi.org/10.1007/s10856-014-5240-2
  • Cavallaro, G., Milioto, S., Konnova, S., Fakhrullina, G., Akhatova, F., Lazzara, G., ... & Lvov, Y. (2020). Halloysite/keratin nanocomposite for human hair photoprotection coating. ACS Applied Materials & Interfaces, 12(21), 24348-24362. doi: https://doi.org/10.1021/acsami.0c05252
  • Chen, Q., Zhao, Y., Wu, W., Xu, T., & Fong, H. (2012). Fabrication and evaluation of Bis-GMA/TEGDMA dental resins/composites containing halloysite nanotubes. Dental Materials, 28(10), 1071-1079. doi: https://doi.org/10.1016/j.dental.2007.05.002
  • Cheng, C., Gao, Y., Song, W., Zhao, Q., Zhang, H., & Zhang, H. (2020). Halloysite nanotube-based H2O2-responsive drug delivery system with a turn on effect on fluorescence for real-time monitoring. Chemical Engineering Journal, 380, 122474. doi: https://doi.org/10.1016/j.cej.2019.122474
  • Cheng, C., Song, W., Zhao, Q., & Zhang, H. (2020). Halloysite nanotubes in polymer science: Purification, characterization, modification and applications. Nanotechnology Reviews, 9(1), 323-344. doi: https://doi.org/10.1515/ntrev-2020-0024
  • Cho, K., Yasir, M., Jung, M., Willcox, M. D., Stenzel, M. H., Rajan, G., ... & Prusty, B. G. (2020). Hybrid engineered dental composites by multiscale reinforcements with chitosan-integrated halloysite nanotubes and S-glass fibers. Composites Part B: Engineering, 202, 108448. doi: https://doi.org/10.1016/j.compositesb.2020.108448
  • Chozhanathmisra, M. A. N. I. C. K. A. M., Govindaraj, D. H. A. R. M. A. N., Karthikeyan, P. A. L. A. N. I. S. A. M. Y., & Rajavel, R. A. N. G. A. P. P. A. N. (2018). Antibacterial efficacy of halloysite nanotube minerals substituted hydroxyapatite composite on titanium alloy using electrodeposition method. Asian Journal of Chemistry, 30(10), 2264-2268. doi: https://doi.org/10.14233/ajchem.2018.21423
  • Chozhanathmisra, M., Murugesan, L., Murugesan, A., Palanisamy, G., & Rajavel, R. (2022). Enhancement on physical, chemical, and biological properties of HNT-PVA-ALG-HAp biocomposite coating on implant substrate for biomedical application. Ceramics International, 48(12), 16868-16876. doi: https://doi.org/10.1016/j.ceramint.2022.02.241
  • Chozhanathmisra, M., Ramya, S., Kavitha, L., & Gopi, D. (2016). Development of zinc-halloysite nanotube/minerals substituted hydroxyapatite bilayer coatings on titanium alloy for orthopedic applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 511, 357-365. doi: https://doi.org/10.1016/j.colsurfa.2016.10.018
  • Danyliuk, N., Tomaszewska, J., & Tatarchuk, T. (2020). Halloysite nanotubes and halloysite-based composites for environmental and biomedical applications. Journal of Molecular Liquids, 309, 113077. doi: https://doi.org/10.1016/j.molliq.2020.113077
  • Das, S., & Baker, A. B. (2016). Biomaterials and nanotherapeutics for enhancing skin wound healing. Frontiers in bioengineering and biotechnology, 4, 82. doi: https://doi.org/10.3389/fbioe.2016.00082
  • De Kruif, J. K., Ledergerber, G., Garofalo, C., Fasler-Kan, E., & Kuentz, M. (2016). On prilled nanotubes-in-microgel oral systems for protein delivery. European Journal of Pharmaceutics and Biopharmaceutics, 101, 90 102. doi: https://doi.org/10.1016/j.ejpb.2016.01.014
  • De Silva, R. T., Dissanayake, R. K., Mantilaka, M. P. G., Wijesinghe, W. S. L., Kaleel, S. S., Premachandra, T. N., ... & de Silva, K. N. (2018). Drug-loaded halloysite nanotube-reinforced electrospun alginate-based nanofibrous scaffolds with sustained antimicrobial protection. ACS Applied Materials & Interfaces, 10(40), 33913-33922. doi: https://doi.org/10.1021/acsami.8b11013
  • Decarli, N. O., Zapp, E., de Souza, B. S., Santana, E. R., Winiarski, J. P., & Vieira, I. C. (2022). Biosensor based on laccase-halloysite nanotube and imidazolium zwitterionic surfactant for dopamine determination. Biochemical Engineering Journal, 186, 108565. doi: https:/doi.org/10.1016/j.bej.2022.108565
  • Degrazia, F. W., Genari, B., Leitune, V. C. B., Arthur, R. A., Luxan, S. A., Samuel, S. M. W., ... & Sauro, S. (2018). Polymerisation, antibacterial and bioactivity properties of experimental orthodontic adhesives containing triclosan-loaded halloysite nanotubes. Journal of Dentistry, 69, 77-82. doi: https://doi.org/10.1016/j.jdent.2017.11.002
  • Dramou, P., Fizir, M., Taleb, A., Itatahine, A., Dahiru, N. S., Mehdi, Y. A., ... & He, H. (2018). Folic acid-conjugated chitosan oligosaccharide-magnetic halloysite nanotubes as a delivery system for camptothecin. Carbohydrate Polymers, 197, 117-127. doi: https://doi.org/10.1016/j.carbpol.2018.05.071,
  • Fakhrullina, G., Khakimova, E., Akhatova, F., Lazzara, G., Parisi, F., & Fakhrullin, R. (2019). Selective antimicrobial effects of curcumin@ halloysite nanoformulation: a Caenorhabditis elegans study. ACS Applied Materials & Interfaces, 11(26), 23050-23064. doi: https://doi.org/10.1021/acsami.9b07499
  • Feitosa, S., Carreiro, A. F., Martins, V. M., Platt, J. A., & Duarte, S. (2021). Effect of a chlorhexidine-encapsulated nanotube modified pit-and-fissure sealant on oral biofilm. Dental Materials Journal, 40(3), 758-765. doi: https://doi.org/10.4012/dmj.2020-241
  • Fizir, M., Dramou, P., Dahiru, N. S., Ruya, W., Huang, T., & He, H. (2018). Halloysite nanotubes in analytical sciences and in drug delivery: A review. Microchimica Acta, 185(8), 1-33. doi: https://doi.org/10.1007/s00604-018-2908-1
  • Gawdzinska, K., Paszkiewicz, S., Piesowicz, E., Bryll, K., Irska, I., Lapis, A., ... & Slaczka, W. (2019). Preparation and characterization of hybrid nanocomposites for dental applications. Applied Sciences, 9(7), 1381. doi: https://doi.org/10.3390/app9071381
  • Gkouma, E., Gianni, E., Avgoustakis, K., & Papoulis, D. (2021). Applications of halloysite in tissue engineering. Applied Clay Science, 214, 106291. doi: https://doi.org/10.1016/j.clay.2021.106291
  • Glotov, A., Stavitskaya, A., Novikov, A., Semenov, A., Ivanov, E., Gushchin, P., ... & Lvov, Y. (2019). Halloysite Based Core-Shell Nanosystems: Synthesis and Application. In Nanomaterials from Clay Minerals, 203-256. doi: https://doi.org/10.1016/B978-0-12-0814533-3.00004-1.
  • Goda, E. S., Gab-Allah, M. A., Singu, B. S., & Yoon, K. R. (2019). Halloysite nanotubes based electrochemical sensors: A review. Microchemical Journal, 147, 1083-1096. doi: https://doi.org/10.1016/j.microc.2019.04.011
  • Gorbachevskii, M. V., Stavitskaya, A. V., Novikov, A. A., Fakhrullin, R. F., Rozhina, E. V., Naumenko, E. A., & Vinokurov, V. A. (2021). Fluorescent gold nanoclusters stabilized on halloysite nanotubes: In vitro study on cytotoxicity. Applied Clay Science, 207, 106106. doi: https://doi.org/10.1016/j.clay.2021.106106
  • Gu, B. K., Choi, D. J., Park, S. J., Kim, M. S., Kang, C. M., & Kim, C. H. (2016). 3-dimensional bioprinting for tissue engineering applications. Biomaterials Research, 20(1), 1-8. doi: https://doi.org/10.1186/s40824-016-0058-2
  • Guimaraes, L., Enyashin, A. N., Seifert, G., & Duarte, H. A. (2010). Structural, electronic, and mechanical properties of single-walled halloysite nanotube models. The Journal of Physical Chemistry C, 114(26), 11358-11363. doi: https://doi.org/10.1021/jp100902e
  • Guryanov, I., Naumenko, E., Akhatova, F., Lazzara, G., Cavallaro, G., Nigamatzyanova, L., & Fakhrullin, R. (2020). Selective cytotoxic activity of prodigiosin@ halloysite nanoformulation. Frontiers in Bioengineering and Biotechnology, 8, 424. doi: https://doi.org/10.3389/fbioe.2020.00424
  • Hamedi, S., & Koosha, M. (2020). Designing a pH-responsive drug delivery system for the release of black-carrot anthocyanins loaded in halloysite nanotubes for cancer treatment. Applied Clay Science, 197, 105770. doi: https://doi.org/10.1016/j.clay.2020.105770
  • Hasan, W. Y., & Ali, M. M. (2018). Evaluation of thermal conductivity and some other properties of heat cured denture soft liner reinforced by halloysite nanotubes. Biomedical and Pharmacology Journal, 11(3), 1491-1500. doi: https://dx.doi.org/10.13005/bpj/1516
  • Hemmatpour, H., Haddadi-Asl, V., Khanipour, F., Stuart, M. C., Lu, L., Pei, Y., ... & Rudolf, P. (2022). Mussel-inspired grafting pH-responsive brushes onto halloysite nanotubes for controlled release of doxorubicin. European Polymer Journal, 180, 111583. doi: https://doi.org/10.1016/j.eurpolymj.2022.111583
  • Hendessi, S., Sevinis, E. B., Unal, S., Cebeci, F. C., Menceloglu, Y. Z., & Unal, H. (2016). Antibacterial sustained-release coatings from halloysite nanotubes/waterborne polyurethanes. Progress in Organic Coatings, 101, 253-261. doi: https://doi.org/10.1016/j.porgcoat.2016.09.005
  • Huang, B., Liu, M., & Zhou, C. (2017). Cellulose–halloysite nanotube composite hydrogels for curcumin delivery. Cellulose, 24(7), 2861-2875. doi: https://doi.org/10.1007/s10570-017-1316-8
  • Humayun, A., Luo, Y., Elumalai, A., & Mills, D. K. (2022). 3D printed antimicrobial PLA constructs functionalised with zinc-coated halloysite nanotubes-Ag-chitosan oligosaccharide lactate. Materials Technology, 37(1), 28-35. doi: https://doi.org/10.1080/10667857.2020.1806188
  • Ji, L., Qiao, W., Zhang, Y., Wu, H., Miao, S., Cheng, Z., ... & Zhu, A. (2017). A gelatin composite scaffold strengthened by drug-loaded halloysite nanotubes. Materials Science and Engineering: C, 78, 362-369. doi: https://doi.org/10.1016/j.msec.2017.04.070
  • Kamal, N., Kochkodan, V., Zekri, A., & Ahzi, S. (2019). Polysulfone membranes embedded with halloysites nanotubes: Preparation and properties. Membranes, 10(1), 2.
  • doi: https://doi.org/10.3390/membranes10010002
  • Kazemi-Aghdam, F., Jahed, V., Dehghan-Niri, M., Ganji, F., & Vasheghani-Farahani, E. (2021). Injectable chitosan hydrogel embedding modified halloysite nanotubes for bone tissue engineering. Carbohydrate Polymers, 269, 118311. doi: https://doi.org/10.1016/j.carbpol.2021.118311
  • Kerman, K., Kobayashi, M., & Tamiya, E. (2003). Recent trends in electrochemical DNA biosensor technology. Measurement Science and Technology, 15(2), R1. doi: https://doi.org/10.1088/0957-0233/15/2/R01
  • Khan, S., Kumar, V., Roy, P., & Kundu, P. P. (2019). TiO 2 doped chitosan/hydroxyapatite/halloysite nanotube membranes with enhanced mechanical properties and osteoblast-like cell response for application in bone tissue engineering. RSC Advances, 9(68), 39768-39779. doi: https://doi.org/10.1039/c9ra08366a
  • Khodzhaeva, V., Makeeva, A., Ulyanova, V., Zelenikhin, P., Evtugyn, V., Hardt, M., ... & Ilinskaya, O. (2017). Binase immobilized on halloysite nanotubes exerts enhanced cytotoxicity toward human colon adenocarcinoma cells. Frontiers in Pharmacology, 8, 631. doi: https://doi.org/10.3389/fphar.2017.00
  • Kokulnathan, T., Chen, T. W., Chen, S. M., Ahmed, F., Hasan, P. M. Z., Bilgrami, A. L., & Kumar, S. (2022). A robust combination of dysprosium vanadate/halloysite nanotubes: the electrochemical system for dimetridazole detection. Materials Today Chemistry, 24, 100890. https://doi.org/10.1016/j.mtchem.2022.100890
  • Koosha, M., Raoufi, M., & Moravvej, H. (2019). One-pot reactive electrospinning of chitosan/PVA hydrogel nanofibers reinforced by halloysite nanotubes with enhanced fibroblast cell attachment for skin tissue regeneration. Colloids and Surfaces B: Biointerfaces, 179, 270-279. doi: https://doi.org/10.1016/j.colsurfb.2019.03.054
  • Kumar, A., & Han, S. S. (2021). Enhanced mechanical, biomineralization, and cellular response of nanocomposite hydrogels by bioactive glass and halloysite nanotubes for bone tissue regeneration. Materials Science and Engineering: C, 128, 112236. doi: https://doi.org/10.1016/j.msec.2021.112236
  • Kurczewska, J., Cegłowski, M., Messyasz, B., & Schroeder, G. (2018). Dendrimer-functionalized halloysite nanotubes for effective drug delivery. Applied Clay Science, 153, 134-143. doi: https://doi.org/10.1016/j.clay.2017.12.019
  • Kushwaha, S. K. S., Kushwaha, N., Pandey, P., & Fatma, B. (2021). Halloysite nanotubes for nanomedicine: Prospects, challenges and applications. BioNanoScience, 11(1), 200-208. doi: https://doi.org/10.1007/s12668-020-00801-6
  • Liu, M., Jia, Z., Jia, D., & Zhou, C. (2014). Recent advance in research on halloysite nanotubes-polymer nanocomposite. Progress in Polymer Science, 39(8), 1498-1525. doi:https://doi.org/10.1016/j.progpolymsci.2014.04.004
  • Liu, J., Zhang, Y., Zeng, Q., Zeng, H., Liu, X., Wu, P., ... & Cao, K. (2019). Delivery of RIPK4 small interfering RNA for bladder cancer therapy using natural halloysite nanotubes. Science Advances, 5(9), eaaw6499. doi: https://doi.org/10.1126%2Fsciadv.aaw6499
  • Li, H., Zhu, X., Xu, J., Peng, W., Zhong, S., & Wang, Y. (2016). The combination of adsorption by functionalized halloysite nanotubes and encapsulation by polyelectrolyte coatings for sustained drug delivery. RSC Advances, 6(59), 54463-54470. doi: https://doi.org/10.1039/C6RA09599B
  • Li, Y., Khan, M. S., Tian, L., Liu, L., Hu, L., Fan, D., ... & Wei, Q. (2017). An ultrasensitive electrochemical immunosensor for the detection of prostate-specific antigen based on conductivity nanocomposite with halloysite nanotubes. Analytical and Bioanalytical Chemistry, 409(12), 3245-3251. doi:https://doi.org/10.1007/s00216-017-0266-1
  • Li, Z., Li, B., Li, X., Lin, Z., Chen, L., Chen, H., ... & Zhang, Y. (2021). Ultrafast in-situ forming halloysite nanotube-doped chitosan/oxidized dextran hydrogels for hemostasis and wound repair. Carbohydrate Polymers, 267, 118155. doi: https://doi.org/10.1016/j.carbpol.2021.118155
  • Long, M., Zhang, Y., Huang, P., Chang, S., Hu, Y., Yang, Q., ... & Yang, H. (2018). Emerging nanoclay composite for effective hemostasis. Advanced Functional Materials, 28(10), 1704452. doi: https://doi.org/10.1002/adfm.201704452
  • Long, Z., Wu, Y. P., Gao, H. Y., Li, Y. F., He, R. R., & Liu, M. (2018). Functionalization of halloysite nanotubes via grafting of dendrimer for efficient intracellular delivery of siRNA. Bioconjugate Chemistry, 29(8), 2606-2618. doi: https://doi.org/10.1021/acs.bioconjchem.8b00321
  • Long, Z., Zhang, J., Shen, Y., Zhou, C., & Liu, M. (2017). Polyethyleneimine grafted short halloysite nanotubes for gene delivery. Materials Science and Engineering: C, 81, 224-235. doi: https://doi.org/10.1016/j.msec.2017.07.035
  • Lisuzzo, L., Cavallaro, G., Milioto, S., & Lazzara, G. (2021). Halloysite nanotubes filled with salicylic acid and sodium diclofenac: effects of vacuum pumping on loading and release properties. Journal of Nanostructure in Chemistry, 11(4), 663-673.
  • doi: https://doi.org/10.1007/s40097-021-00391-z
  • Luo, X., Zhang, J., Wu, Y. P., Yang, X., Kuang, X. P., Li, W. X., ... & Liu, M. (2020). Multifunctional [email protected] 3 O 4@[email protected] Nanoplatform for Effective Chemo-Photothermal Combination Therapy of Breast Cancer with MR Imaging. ACS Biomater. Sci. Eng, 6(6), 3361-3374. doi: https://doi.org/10.1021/acsbiomaterials.9b01709
  • Mabrouk, M., Beherei, H. H., & Das, D. B. (2020). Recent progress in the fabrication techniques of 3D scaffolds for tissue engineering. Materials Science and Engineering: C, 110, 110716. doi: https://doi.org/10.1016/j.msec.2020.110716
  • Majumder, S., Viau, C., Brar, A., Xia, J., & George, S. (2022). Silver nanoparticles grafted onto tannic acid-modified halloysite clay eliminated multidrug-resistant Salmonella Typhimurium in a Caenorhabditis elegans model of intestinal infection. Applied Clay Science, 228, 106569. doi: https://doi.org/10.1016/j.clay.2022.106569
  • Massaro, M., Buscemi, G., Arista, L., Biddeci, G., Cavallaro, G., D’Anna, F., ... & Riela, S. (2018). Multifunctional carrier based on halloysite/laponite hybrid hydrogel for kartogenin delivery. ACS Medicinal Chemistry Letters, 10(4), 419-424. doi: https://doi.org/10.1021/acsmedchemlett.8b00465
  • Massaro, M., Licandro, E., Cauteruccio, S., Lazzara, G., Liotta, L. F., Notarbartolo, M., ... & Riela, S. (2022). Nanocarrier based on halloysite and fluorescent probe for intracellular delivery of peptide nucleic acids. Journal of Colloid and Interface Science, 620, 221-233. doi: https://doi.org/10.1016/j.jcis.2022.03.151
  • Mathi, D. B., Gopi, D., & Kavitha, L. (2020, November). Halloysite nanotubes strengthened hydroxyapatite/biopolymer composite coating on titanium for implant applications. In AIP Conference Proceedings (Vol. 2270, No. 1, p. 110025). AIP Publishing LLC. doi: https://doi.org/10.1063/5.0019799
  • Mo, X., Wu, F., Yu, B., Wang, W., & Cai, X. (2020). Folate-PG modified halloysite nanotube for enhancing tumor targeting and anticancer efficacy. Applied Clay Science, 193, 105664. doi: https://doi.org/10.1016/j.clay.2020.105664
  • Molaei, A., & Yousefpour, M. (2019). Preparation of Chitosan-based nanocomposites and biomedical investigations in bone tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 68(12), 701-713. doi: https://doi.org/10.1080/00914037.2018.1493683
  • Molaei, A., Amadeh, A., Yari, M., & Afshar, M. R. (2016). Structure, apatite inducing ability, and corrosion behavior of chitosan/halloysite nanotube coatings prepared by electrophoretic deposition on titanium substrate. Materials Science and Engineering: C, 59, 740-747. doi: https://doi.org/10.1016/j.msec.2015.10.073
  • Nekounam, H., Gholizadeh, S., Allahyari, Z., Samadian, H., Nazeri, N., Shokrgozar, M. A., & Faridi-Majidi, R. (2021). Electroconductive Scaffolds for Tissue Regeneration: Current opportunities, pitfalls, and potential solutions. Materials Research Bulletin, 134, 111083. doi: https://doi.org/10.1016/j.materresbull.2020.111083
  • Ou, Q., Huang, K., Fu, C., Huang, C., Fang, Y., Gu, Z., ... & Wang, Y. (2020). Nanosilver-incorporated halloysite nanotubes/gelatin methacrylate hybrid hydrogel with osteoimmunomodulatory and antibacterial activity for bone regeneration. Chemical Engineering Journal, 382, 123019. doi: https://doi.org/10.1016/j.cej.2019.123019
  • Panchal, A., Fakhrullina, G., Fakhrullin, R., & Lvov, Y. (2018). Self-assembly of clay nanotubes on hair surface for medical and cosmetic formulations. Nanoscale, 10(38), 18205-18216. doi: https://doi.org/10.1039/C8NR05949G
  • Paul, A., Augustine, R., Hasan, A., Zahid, A. A., Thomas, S., Agatemor, C., & Ghosal, K. (2022). Halloysite nanotube and chitosan polymer composites: Physicochemical and drug delivery properties. Journal of Drug Delivery Science and Technology, 72, 103380. doi: https://doi.org/10.1016/j.jddst.2022.103380
  • Persano, F., Gigli, G., & Leporatti, S. (2021). Halloysite-Based Nanosystems for Biomedical Applications. Clays and Clay Minerals, 1-21. doi: https://doi.org/10.1007/s42860-021-00135-8
  • Prishchenko, D. A., Zenkov, E. V., Mazurenko, V. V., Fakhrullin, R. F., Lvov, Y. M., & Mazurenko, V. G. (2018). Molecular dynamics of the halloysite nanotubes. Physical Chemistry Chemical Physics, 20(8), 5841-5849. https://doi.org/10.1016/j.msec.2020.110716
  • Sa, L., Kaiwu, L., Shenggui, C., Junzhong, Y., Yongguang, J., Lin, W., & Li, R. (2019). 3D printing dental composite resins with sustaining antibacterial ability. Journal of Materials Science, 54(4), 3309-3318. doi: https://doi.org/10.1007/s10853-018-2801-7
  • Sahiner, N., & Sengel, S. B. (2017). Various amine functionalized halloysite nanotube as efficient metal free catalysts for H2 generation from sodium borohydride methanolysis. Applied Clay Science, 146, 517-525. doi:https://doi.org/10.1016/j.clay.2017.07.008
  • Saleh, M., Prajapati, N., Karan, A., Rahman, N., Stavitskaya, A., DeCoster, M., & Lvov, Y. (2021). Halloysite Nanotube Vehicles for Drug Delivery Through a Model Blood–Brain Barrier. Clays and Clay Minerals, 69(5), 603-611. doi: https://doi.org/10.1007/s42860-021-00161-6
  • Same, S., Kadkhoda, J., Navidi, G., Abedi, F., Aghazadeh, M., Milani, M., ... & Davaran, S. (2022). The fabrication of halloysite nanotube-based multicomponent hydrogel scaffolds for bone healing. Journal of Applied Biomaterials & Functional Materials, 20, 22808000221111875. doi: https://doi.org/10.1177/22808000221111875
  • Satish, S., Tharmavaram, M., & Rawtani, D. (2019). Halloysite nanotubes as a nature’s boon for biomedical applications. Nanobiomedicine, 6, 1849543519863625. doi: https://doi.org/10.1177%2F1849543519863625
  • Schmitt, H., Creton, N., Prashantha, K., Soulestin, J., Lacrampe, M. F., & Krawczak, P. (2015). Preparation and characterization of plasticized starch/halloysite porous nanocomposites possibly suitable for biomedical applications. Journal of Applied Polymer Science, 132(4), 41341. doi: https://doi.org/10.1002/app.41341
  • Sen, L., He, D., Li, S., Chen, R., Yuan, P., Li, S., ... & Gao, Z. (2022). Magnetic Halloysite Nanotube-Based SERS Biosensor Enhanced with Au@ Ag Core–Shell Nanotags for Bisphenol A Determination. Biosensors, 12(6), 387. doi: https://doi.org/10.3390/ bios12060387
  • Shi, Y. F., Tian, Z., Zhang, Y., Shen, H. B., & Jia, N. Q. (2011). Functionalized halloysite nanotube-based carrier for intracellular delivery of antisense oligonucleotides. Nanoscale Research Letters, 6(1), 1-7. doi: https://doi.org/10.1186%2F1556-276X-6-608
  • Shu, Z., Zhang, Y., Ouyang, J., & Yang, H. (2017 a). Characterization and synergetic antibacterial properties of ZnO and CeO2 supported by halloysite. Applied Surface Science, 420, 833-838. doi: https://doi.org/10.1016/j.apsusc.2017.05.219
  • Shu, Z., Zhang, Y., Yang, Q., & Yang, H. (2017 b). Halloysite nanotubes supported Ag and ZnO nanoparticles with synergistically enhanced antibacterial activity. Nanoscale Research Letters, 12(1), 1-7. doi: https://doi.org/10.1186/s11671-017-1859-5
  • Stavitskaya, A. V., Novikov, A. A., Kotelev, M. S., Kopitsyn, D. S., Rozhina, E. V., Ishmukhametov, I. R., ... & Vinokurov, V. A. (2018). Fluorescence and cytotoxicity of cadmium sulfide quantum dots stabilized on clay nanotubes. Nanomaterials, 8(6), 391. doi: https://doi.org/10.3390/nano8060391
  • Suner, S. S., Demirci, S., Yetiskin, B., Fakhrullin, R., Naumenko, E., Okay, O., ... & Sahiner, N. (2019). Cryogel composites based on hyaluronic acid and halloysite nanotubes as scaffold for tissue engineering. International journal of biological macromolecules, 130, 627-635. doi: https://doi.org/10.1016/j.ijbiomac.2019.03.025
  • Tan, C., Zheng, J., Feng, Y., & Liu, M. (2021). Cell Membrane-Coated Halloysite Nanotubes for Target-Specific Nanocarrier for Cancer Phototherapy. Molecules, 26(15), 4483. doi: https://doi.org/10.3390%2Fmolecules26154483,
  • Tappa, K. K., Jammalamadaka, U. M., & Mills, D. K. (2014, August). Design and evaluation of a nanoenhanced anti-infective calcium phosphate bone cements. In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 3921-3924). IEEE. doi: https://doi.org/10.1109/EMBC.2014.6944481
  • Torres, E., Dominguez-Candela, I., Castello-Palacios, S., Vallés-Lluch, A., & Fombuena, V. (2020). Development and characterization of polyester and acrylate-based composites with hydroxyapatite and halloysite nanotubes for medical applications. Polymers, 12(8), 1703. doi: https://doi.org/10.3390/polym12081703
  • Tully, J., Yendluri, R., & Lvov, Y. (2016). Halloysite clay nanotubes for enzyme immobilization. Biomacromolecules, 17(2), 615-621. doi: https://doi.org/10.1021/acs.biomac.5b01542
  • Venkatesh, C., Fuenmayor, E., Doran, P., Major, I., Lyons, J. G., & Devine, D. M. (2019). Additive manufacturing of PLA/HNT nanocomposites for biomedical applications. Procedia Manufacturing, 38, 17-24. doi: https://doi.org/10.1016/j.promfg.2020.01.003
  • Wei, P., Jing, W., Yuan, Z., Huang, Y., Guan, B., Zhang, W., ... & Yang, X. (2019). Vancomycin-and strontium-loaded microspheres with multifunctional activities against bacteria, in angiogenesis, and in osteogenesis for enhancing infected bone regeneration. ACS Applied Materials & Interfaces, 11(34), 30596-30609. doi: https://doi.org/10.1021/acsami.9b10219
  • Wei, W., Abdullayev, E., Hollister, A., Mills, D., & Lvov, Y. M. (2012). Clay nanotube/poly (methyl methacrylate) bone cement composites with sustained antibiotic release. Macromolecular Materials and Engineering, 297(7), 645-653. doi: https://doi.org/10.1002/mame.201100309
  • Wei, W., Minullina, R., Abdullayev, E., Fakhrullin, R., Mills, D., & Lvov, Y. (2014). Enhanced efficiency of antiseptics with sustained release from clay nanotubes. RSC Advances, 4(1), 488-494. doi: https://doi.org/10.1039/C3RA45011B.
  • Wu, Y., Yang, Y., Liu, H., Yao, X., Leng, F., Chen, Y., & Tian, W. (2017). Long-term antibacterial protected cotton fabric coating by controlled release of chlorhexidine gluconate from halloysite nanotubes. RSC Advances, 7(31), 18917-18925. doi: https://doi.org/10.1039/C7RA01464C
  • Xia, D., Jia, Z., Shen, Y., Zheng, Y., Cheng, Y., Xiong, P., ... & Zhou, Y. (2022). pH Stimuli‐Responsive, Rapidly Self‐healable Coatings Enhanced the Corrosion Resistance and Osteogenic Differentiation of Mg‐1Ca Osteoimplant. Small, 2106056. doi: https://doi.org/10.1002/smll.202106056
  • Yah, W. O., Takahara, A., & Lvov, Y. M. (2012). Selective modification of halloysite lumen with octadecylphosphonic acid: new inorganic tubular micelle. Journal of the American Chemical Society, 134(3), 1853-1859. doi:https://doi.org/10.1021/ja210258y
  • Yuan, P., Tan, D., & Annabi-Bergaya, F. (2015). Properties and applications of halloysite nanotubes: recent research advances and future prospects. Applied Clay Science, 112, 75-93. doi: https://doi.org/10.1016/j.clay.2015.05.001
  • Zhang, Y., Chen, Y., Zhang, H., Zhang, B., & Liu, J. (2013). Potent antibacterial activity of a novel silver nanoparticle-halloysite nanotube nanocomposite powder. Journal of Inorganic Biochemistry, 118, 59-64. doi: https://doi.org/10.1016/j.jinorgbio.2012.07.025
There are 108 citations in total.

Details

Primary Language English
Subjects Biomaterials in Biomedical Engineering
Journal Section Review Articles
Authors

Sultan Bütün Şengel 0000-0001-7036-2224

Nilay Tunca 0000-0003-4314-6096

Hatice Deveci 0000-0002-7386-2213

Harun Baş 0000-0001-6783-4964

Vural Bütün 0000-0003-4542-5080

Early Pub Date December 22, 2023
Publication Date December 22, 2023
Acceptance Date August 22, 2023
Published in Issue Year 2023

Cite

APA Bütün Şengel, S., Tunca, N., Deveci, H., Baş, H., et al. (2023). SMART MATERIALS AND THEIR ADVANCED BIOMEDICAL APPLICATIONS: HNT AND HNT-POLYMER COMPOSITES. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 31(4), 955-974. https://doi.org/10.31796/ogummf.1204094
AMA Bütün Şengel S, Tunca N, Deveci H, Baş H, Bütün V. SMART MATERIALS AND THEIR ADVANCED BIOMEDICAL APPLICATIONS: HNT AND HNT-POLYMER COMPOSITES. ESOGÜ Müh Mim Fak Derg. December 2023;31(4):955-974. doi:10.31796/ogummf.1204094
Chicago Bütün Şengel, Sultan, Nilay Tunca, Hatice Deveci, Harun Baş, and Vural Bütün. “SMART MATERIALS AND THEIR ADVANCED BIOMEDICAL APPLICATIONS: HNT AND HNT-POLYMER COMPOSITES”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 31, no. 4 (December 2023): 955-74. https://doi.org/10.31796/ogummf.1204094.
EndNote Bütün Şengel S, Tunca N, Deveci H, Baş H, Bütün V (December 1, 2023) SMART MATERIALS AND THEIR ADVANCED BIOMEDICAL APPLICATIONS: HNT AND HNT-POLYMER COMPOSITES. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 31 4 955–974.
IEEE S. Bütün Şengel, N. Tunca, H. Deveci, H. Baş, and V. Bütün, “SMART MATERIALS AND THEIR ADVANCED BIOMEDICAL APPLICATIONS: HNT AND HNT-POLYMER COMPOSITES”, ESOGÜ Müh Mim Fak Derg, vol. 31, no. 4, pp. 955–974, 2023, doi: 10.31796/ogummf.1204094.
ISNAD Bütün Şengel, Sultan et al. “SMART MATERIALS AND THEIR ADVANCED BIOMEDICAL APPLICATIONS: HNT AND HNT-POLYMER COMPOSITES”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 31/4 (December 2023), 955-974. https://doi.org/10.31796/ogummf.1204094.
JAMA Bütün Şengel S, Tunca N, Deveci H, Baş H, Bütün V. SMART MATERIALS AND THEIR ADVANCED BIOMEDICAL APPLICATIONS: HNT AND HNT-POLYMER COMPOSITES. ESOGÜ Müh Mim Fak Derg. 2023;31:955–974.
MLA Bütün Şengel, Sultan et al. “SMART MATERIALS AND THEIR ADVANCED BIOMEDICAL APPLICATIONS: HNT AND HNT-POLYMER COMPOSITES”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, vol. 31, no. 4, 2023, pp. 955-74, doi:10.31796/ogummf.1204094.
Vancouver Bütün Şengel S, Tunca N, Deveci H, Baş H, Bütün V. SMART MATERIALS AND THEIR ADVANCED BIOMEDICAL APPLICATIONS: HNT AND HNT-POLYMER COMPOSITES. ESOGÜ Müh Mim Fak Derg. 2023;31(4):955-74.

20873 13565 13566 15461 13568  14913