Research Article
BibTex RIS Cite

ALTIN CEVHERİ FLOTASYONUNDA BİR PİRİT BASTIRICI OLARAK SODYUM DİTİYONİT

Year 2024, , 1152 - 1158, 22.04.2024
https://doi.org/10.31796/ogummf.1345792

Abstract

Sodyum ditiyonit (Na2S2O4) sülfürlü cevherlerin flotasyonunda pülp potansiyelini (Eh) düşürmek ve pirit bastırmak için yaygın olarak kullanılan bir indirgeyicidir. Bu çalışmada sodium ditiyonitin altın cevheri flotasyonunda pirit bastırıcı etkisi pH 8 ve 10,5’ta altın, kalkopirit ve pirit verim ve tenörleri açısından karşılaştırılmalı olarak incelenmiştir. Sodyum ditiyonitin varlığı, etkisi incelenen pH değerlerinden bağımsız olarak Eh değerlerinde, 50-70 mV bir düşüşe neden olmuştur. Bu da sodyum ditionitin indirgeyici etkisine işaret etmektedir. Sodyum ditiyonitin altın ve kalkopiritin verim ve tenörleri üzerindeki etkisi özellikle pH 10,5’ta oldukça sınırlıdır. Buna karşın, sodyum ditiyonit pH 8’de altın ve kalkopirit verim ve tenörlerini az miktarda düşürürken, pirit verim ve tenörü üzerinde dikkat çekiçi bir düşüş sağlamıştır. Sodyum ditiyonitin pH 8’deki kullanımı sonucunda pirit verimi %79,5’ten %54,7’ye düşerken, pirit tenörü %15,3’ten %10,7’ye gerilemiştir. Sonuç olarak, sodyum ditiyonit kullanımı ile altın ve kalkopiritin, pirit seçimli olarak yüzdürülmesinin daha düşük pH değerinde, Eh değerinin bir miktar azaltılarak elde edilebileceği düşünülmektedir.

References

  • Agorhom, E. A., Skinner, W., & Zanin, M. (2014). Diethylenetriamine depression of Cu-activated pyrite hydrophobised by xanthate. Minerals Engineering, 57, 36-42. https://doi.org/10.1016/j.mineng.2013.12.010
  • Agorhom, E. A., Skinner, W., & Zanin, M. (2015). Post-regrind selective depression of pyrite in pyritic copper-gold flotation using aeration and diethylenetriamine. Minerals Engineering, 72, 36-46. https://doi.org/10.1016/j.mineng.2014.11.019
  • Aksoy, B., & Yarar, B. (1989). Natural hydrophobicity of native gold flakes and their flotation under different conditions. Paper presented at the Proceedings of the International Symposium on Processing of Complex Ores, Halifax.
  • Allan, G. C., & Woodcock, J. T. (2001). A review of the flotation of native gold and electrum. Minerals Engineering, 14(9), 931-962. https://doi.org/10.1016/S0892-6875(01)00103-0
  • Bruckard, W. J., Kyriakidis, I., & Woodcock, J. T. (2007). The flotation of metallic arsenic as a function of pH and pulp potential — A single mineral study. International Journal of Mineral Processing, 84(1), 25-32. https://doi.org/10.1016/j.minpro.2007.05.001
  • Bulatovic, S. M. (1997). Flotation behaviour of gold during processing of porphyry copper-gold ores and refractory gold-bearing sulphides. Minerals Engineering, 10(9), 895-908. https://doi.org/10.1016/S0892-6875(97)00072-1
  • Bulatovic, S. M. (2010). Handbook of Flotation Reagents: Chemistry, Theory and Practice: Volume 2: Flotation of Gold, PGM and Oxide Minerals (Vol. 2): Elsevier.
  • Chander, S., & Khan, A. (2000). Effect of sulfur dioxide on flotation of chalcopyrite. International Journal of Mineral Processing, 58(1-4), 45-55. https://doi.org/10.1016/S0301-7516(99)00038-1
  • Chandra, A. P., & Gerson, A. R. (2009). A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite. Adv Colloid Interface Sci, 145(1-2), 97-110. https://doi.org/10.1016/j.cis.2008.09.001
  • Chemilewski, T., Birlingmair, D. H., & Pollard, J. L. (1991). The Influence Of Sodium Dithionite On Flotation Of Pyrite And Coal With Diesel Fuel. Fizykochemiczne Problemy Mineralurgii, 24, 115-125.
  • Cytec Industries, I. (2010). Mining Chemicals Handbook. West Patterson, N.J.: Cytec Industries Inc.
  • Dunne, R. (2016). Flotation of gold and gold-bearing ores. In M. D. Adams (Ed.), Gold Ore Processing (Second Edition) (pp. 315-338): Elsevier.
  • Forrest, K., Yan, D., & Dunne, R. (2001). Optimisation of gold recovery by selective gold flotation for copper-gold-pyrite ores. Minerals Engineering, 14(2), 227-241. https://doi.org/1016/S0892-6875(00)00178-3
  • Fuerstenau, M. C., Jameson, G. J., & Yoon, R. H. (2007). Froth Flotation: A Century of Innovation: Society for Mining Metallurgy and Exploration.
  • Grano, S. R., Johnson, N. W., & Ralston, J. (1997). Control of the solution interaction of metabisulphite and ethyl xanthate in the flotation of the Hilton ore of Mount Isa Mines Limited, Australia. Minerals Engineering, 10(1), 17-39. https://doi.org/10.1016/S0892-6875(96)00129-X
  • Hayes, R. A., Price, D. M., Ralston, J., & Smith, R. W. (1987). Collectorless Flotation of Sulphide Minerals. Mineral Processing and Extractive Metallurgy Review, 2(3), 203-234. 10.1080/08827508708952606
  • Hintikka, V. V., & Leppinen, J. O. (1995). Potential control in the flotation of sulphide minerals and precious metals. Minerals Engineering, 8(10), 1151-1158. https://doi.org/10.1016/0892-6875(95)00080-A
  • Klimpel, R. R. (1997). An Approach to the Flotation of Complex Gold Ores Containing Some Free Gold and/or Some Gold Associated with Easily Floatable Sulphide Minerals. Paper presented at the World Gold.
  • Klimpel, R. R. (1999). Industrial experiences in the evaluation of various flotation reagent schemes for the recovery of gold. Minerals & metallurgical processing, 16(1), 1-11. https://doi.org/10.1007/BF03402850
  • Kydros, K. A., Angelidis, T. N., & Matis, K. A. (1993). Selective Flotation of an Auriferous Bulk Pyrite - Arsenopyrite Concentrate in Presence of Sodium Sulphoxy Salts. Minerals Engineering, 6(12), 1257-1264. https://doi.org/10.1016/0892-6875(93)90103-T
  • Liu, G. Y., Zhong, H., & Dai, T. G. (2006). The separation of Cu/Fe sulfide minerals at slightly alkaline conditions by using ethoxycarbonyl thionocarbamates as collectors: Theory and practice. Minerals Engineering, 19(13), 1380-1384. https://doi.org/10.1016/j.mineng.2005.12.007
  • Mhonde, N., Johansson, L.-S., Corin, K., & Schreithofer, N. (2021). The effect of sodium isobutyl xanthate on galena and chalcopyrite flotation in the presence of dithionite ions. Minerals Engineering, 169, 106985. https://doi.org/10.1016/j.mineng.2021.106985
  • Monte, M. B. M., Lins, F. F., & Oliveira, J. F. (1997). Selective flotation of gold from pyrite under oxidizing conditions. International Journal of Mineral Processing, 51(1-4), 255-267. https://doi.org/10.1016/S0301-7516(97)00018-5
  • Mu, Y. F., Peng, Y. J., & Lauten, R. A. (2016). The depression of pyrite in selective flotation by different reagent systems - A Literature review. Minerals Engineering, 96-97, 143-156. https://doi.org/10.1016/j.mineng.2016.06.018
  • Nagaraj, D. R., & Brinen, J. S. (2001). SIMS study of adsorption of collectors on pyrite. International Journal of Mineral Processing, 63(1), 45-57. https://doi.org/10.1016/S0301-7516(01)00043-6
  • O'Connor, C. T., & Dunne, R. C. (1994). The flotation of gold bearing ores — A review. Minerals Engineering, 7(7), 839-849. https://doi.org/10.1016/0892-6875(94)90128-7
  • Oluklulu, S. (2020). İşlem Parametrelerinin Altın Flotasyonu Üzerine Etkilerinin Incelenmesi. (PhD Dissertation), Graduate School of Natural and Applied Sciences, Eskisehir Osmangazi Universitesi, Eskisehir.
  • Oluklulu, S., Gökçen, H., Bozkurt, V., & Ucbaş, Y. (2019). Collectorless Flotation Approach to a Low Grade Gold Ore. Antalya, Turkey: TMMOB Maden Mühendisleri Odası.
  • Prestidge, C. A., Ralston, J., & Smart, R. S. C. (1993). The role of cyanide in the interaction of ethyl xanthate with galena. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 81, 103-119. https://doi.org/10.1016/0927-7757(93)80238-A
  • Qiao, J., Ye, G., & Zuo, Q. (2021). A DFT-based method to determine the hydrophobicity change mechanism on sphalerite and pyrite surfaces caused by sodium dithionite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 628, 127339. https://doi.org/10.1016/j.colsurfa.2021.127339
  • Selwyn, L., & Tse, S. (2014). The chemistry of sodium dithionite and its use in conservation. Studies in Conservation, 53(sup2), 61-73. https://doi.org/10.1179/sic.2008.53.Supplement-2.61
  • Shen, W. Z., Fornasiero, D., & Ralston, J. (2001). Flotation of sphalerite and pyrite in the presence of sodium sulfite. International Journal of Mineral Processing, 63(1), 17-28. https://doi.org/10.1016/S0301-7516(00)00067-3
  • Small, G., Michelmore, A., & Grano, S. (2003). Size dependent gold deportment in the products of copper flotation and methods to increase gold recovery. Journal of the South African Institute of Mining and Metallurgy, 103(9), 573-579.
  • Smith, L. K., Senior, G. D., Bruckard, W. J., & Davey, K. J. (2011). The flotation of millerite — A single mineral study. International Journal of Mineral Processing, 99(1), 27-31. https://doi.org/10.1016/j.minpro.2011.02.004
  • Sui, C., Finch, J. A., Nesset, J. E., Kim, J., & Lajoie, S. (2000). Characterisation of the surfaces of galena and sphalerite in the presence of dithionite. In P. Massacci (Ed.), Developments in Mineral Processing (Vol. 13, pp. C8b-15-C18b-22): Elsevier.
  • Teague, A. J., Van Deventer, J. S. J., & Swaminathan, C. (1999). A conceptual model for gold flotation. Minerals Engineering, 12(9), 1001-1019. https://doi.org/10.1016/S0892-6875(99)00087-4

SODIUM DITHIONITE AS A PYRITE DEPRESSANT IN GOLD ORE FLOTATION

Year 2024, , 1152 - 1158, 22.04.2024
https://doi.org/10.31796/ogummf.1345792

Abstract

Sodium dithionite (Na2S2O4) is a widely used reducing agent to control pulp potential (Eh) and pyrite depressant in sulfide ore flotation. In this study, the pyrite depressant effect of sodium dithionite on gold ore flotation was investigated at pH 8 and pH 10.5 comparatively in terms of gold, chalcopyrite, and pyrite recoveries and grades. The presence of sodium dithionite resulted in a drop of approximately 50–70 mV in the Eh values, regardless of the studied pH values, confirming the reducing effect of sodium dithionite. The effects of sodium dithionite on gold and chalcopyrite grades and recoveries were quite limited, especially at pH 10.5. At pH 8, the utilization of sodium dithionite slightly decreased gold and chalcopyrite recovery and grades, while the decrease in pyrite recovery and grades was remarkable. Both pyrite recovery and grade were reduced from 79.5% to 54.7% and 15.3% to 10.7% by the utilization of sodium dithionite at pH 8. In conclusion, it is considered that the selective flotation of gold and chalcopyrite from pyrite can be achieved at a lower pH accompanied by a slightly reduced Eh by the utilization of sodium dithionite.

References

  • Agorhom, E. A., Skinner, W., & Zanin, M. (2014). Diethylenetriamine depression of Cu-activated pyrite hydrophobised by xanthate. Minerals Engineering, 57, 36-42. https://doi.org/10.1016/j.mineng.2013.12.010
  • Agorhom, E. A., Skinner, W., & Zanin, M. (2015). Post-regrind selective depression of pyrite in pyritic copper-gold flotation using aeration and diethylenetriamine. Minerals Engineering, 72, 36-46. https://doi.org/10.1016/j.mineng.2014.11.019
  • Aksoy, B., & Yarar, B. (1989). Natural hydrophobicity of native gold flakes and their flotation under different conditions. Paper presented at the Proceedings of the International Symposium on Processing of Complex Ores, Halifax.
  • Allan, G. C., & Woodcock, J. T. (2001). A review of the flotation of native gold and electrum. Minerals Engineering, 14(9), 931-962. https://doi.org/10.1016/S0892-6875(01)00103-0
  • Bruckard, W. J., Kyriakidis, I., & Woodcock, J. T. (2007). The flotation of metallic arsenic as a function of pH and pulp potential — A single mineral study. International Journal of Mineral Processing, 84(1), 25-32. https://doi.org/10.1016/j.minpro.2007.05.001
  • Bulatovic, S. M. (1997). Flotation behaviour of gold during processing of porphyry copper-gold ores and refractory gold-bearing sulphides. Minerals Engineering, 10(9), 895-908. https://doi.org/10.1016/S0892-6875(97)00072-1
  • Bulatovic, S. M. (2010). Handbook of Flotation Reagents: Chemistry, Theory and Practice: Volume 2: Flotation of Gold, PGM and Oxide Minerals (Vol. 2): Elsevier.
  • Chander, S., & Khan, A. (2000). Effect of sulfur dioxide on flotation of chalcopyrite. International Journal of Mineral Processing, 58(1-4), 45-55. https://doi.org/10.1016/S0301-7516(99)00038-1
  • Chandra, A. P., & Gerson, A. R. (2009). A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite. Adv Colloid Interface Sci, 145(1-2), 97-110. https://doi.org/10.1016/j.cis.2008.09.001
  • Chemilewski, T., Birlingmair, D. H., & Pollard, J. L. (1991). The Influence Of Sodium Dithionite On Flotation Of Pyrite And Coal With Diesel Fuel. Fizykochemiczne Problemy Mineralurgii, 24, 115-125.
  • Cytec Industries, I. (2010). Mining Chemicals Handbook. West Patterson, N.J.: Cytec Industries Inc.
  • Dunne, R. (2016). Flotation of gold and gold-bearing ores. In M. D. Adams (Ed.), Gold Ore Processing (Second Edition) (pp. 315-338): Elsevier.
  • Forrest, K., Yan, D., & Dunne, R. (2001). Optimisation of gold recovery by selective gold flotation for copper-gold-pyrite ores. Minerals Engineering, 14(2), 227-241. https://doi.org/1016/S0892-6875(00)00178-3
  • Fuerstenau, M. C., Jameson, G. J., & Yoon, R. H. (2007). Froth Flotation: A Century of Innovation: Society for Mining Metallurgy and Exploration.
  • Grano, S. R., Johnson, N. W., & Ralston, J. (1997). Control of the solution interaction of metabisulphite and ethyl xanthate in the flotation of the Hilton ore of Mount Isa Mines Limited, Australia. Minerals Engineering, 10(1), 17-39. https://doi.org/10.1016/S0892-6875(96)00129-X
  • Hayes, R. A., Price, D. M., Ralston, J., & Smith, R. W. (1987). Collectorless Flotation of Sulphide Minerals. Mineral Processing and Extractive Metallurgy Review, 2(3), 203-234. 10.1080/08827508708952606
  • Hintikka, V. V., & Leppinen, J. O. (1995). Potential control in the flotation of sulphide minerals and precious metals. Minerals Engineering, 8(10), 1151-1158. https://doi.org/10.1016/0892-6875(95)00080-A
  • Klimpel, R. R. (1997). An Approach to the Flotation of Complex Gold Ores Containing Some Free Gold and/or Some Gold Associated with Easily Floatable Sulphide Minerals. Paper presented at the World Gold.
  • Klimpel, R. R. (1999). Industrial experiences in the evaluation of various flotation reagent schemes for the recovery of gold. Minerals & metallurgical processing, 16(1), 1-11. https://doi.org/10.1007/BF03402850
  • Kydros, K. A., Angelidis, T. N., & Matis, K. A. (1993). Selective Flotation of an Auriferous Bulk Pyrite - Arsenopyrite Concentrate in Presence of Sodium Sulphoxy Salts. Minerals Engineering, 6(12), 1257-1264. https://doi.org/10.1016/0892-6875(93)90103-T
  • Liu, G. Y., Zhong, H., & Dai, T. G. (2006). The separation of Cu/Fe sulfide minerals at slightly alkaline conditions by using ethoxycarbonyl thionocarbamates as collectors: Theory and practice. Minerals Engineering, 19(13), 1380-1384. https://doi.org/10.1016/j.mineng.2005.12.007
  • Mhonde, N., Johansson, L.-S., Corin, K., & Schreithofer, N. (2021). The effect of sodium isobutyl xanthate on galena and chalcopyrite flotation in the presence of dithionite ions. Minerals Engineering, 169, 106985. https://doi.org/10.1016/j.mineng.2021.106985
  • Monte, M. B. M., Lins, F. F., & Oliveira, J. F. (1997). Selective flotation of gold from pyrite under oxidizing conditions. International Journal of Mineral Processing, 51(1-4), 255-267. https://doi.org/10.1016/S0301-7516(97)00018-5
  • Mu, Y. F., Peng, Y. J., & Lauten, R. A. (2016). The depression of pyrite in selective flotation by different reagent systems - A Literature review. Minerals Engineering, 96-97, 143-156. https://doi.org/10.1016/j.mineng.2016.06.018
  • Nagaraj, D. R., & Brinen, J. S. (2001). SIMS study of adsorption of collectors on pyrite. International Journal of Mineral Processing, 63(1), 45-57. https://doi.org/10.1016/S0301-7516(01)00043-6
  • O'Connor, C. T., & Dunne, R. C. (1994). The flotation of gold bearing ores — A review. Minerals Engineering, 7(7), 839-849. https://doi.org/10.1016/0892-6875(94)90128-7
  • Oluklulu, S. (2020). İşlem Parametrelerinin Altın Flotasyonu Üzerine Etkilerinin Incelenmesi. (PhD Dissertation), Graduate School of Natural and Applied Sciences, Eskisehir Osmangazi Universitesi, Eskisehir.
  • Oluklulu, S., Gökçen, H., Bozkurt, V., & Ucbaş, Y. (2019). Collectorless Flotation Approach to a Low Grade Gold Ore. Antalya, Turkey: TMMOB Maden Mühendisleri Odası.
  • Prestidge, C. A., Ralston, J., & Smart, R. S. C. (1993). The role of cyanide in the interaction of ethyl xanthate with galena. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 81, 103-119. https://doi.org/10.1016/0927-7757(93)80238-A
  • Qiao, J., Ye, G., & Zuo, Q. (2021). A DFT-based method to determine the hydrophobicity change mechanism on sphalerite and pyrite surfaces caused by sodium dithionite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 628, 127339. https://doi.org/10.1016/j.colsurfa.2021.127339
  • Selwyn, L., & Tse, S. (2014). The chemistry of sodium dithionite and its use in conservation. Studies in Conservation, 53(sup2), 61-73. https://doi.org/10.1179/sic.2008.53.Supplement-2.61
  • Shen, W. Z., Fornasiero, D., & Ralston, J. (2001). Flotation of sphalerite and pyrite in the presence of sodium sulfite. International Journal of Mineral Processing, 63(1), 17-28. https://doi.org/10.1016/S0301-7516(00)00067-3
  • Small, G., Michelmore, A., & Grano, S. (2003). Size dependent gold deportment in the products of copper flotation and methods to increase gold recovery. Journal of the South African Institute of Mining and Metallurgy, 103(9), 573-579.
  • Smith, L. K., Senior, G. D., Bruckard, W. J., & Davey, K. J. (2011). The flotation of millerite — A single mineral study. International Journal of Mineral Processing, 99(1), 27-31. https://doi.org/10.1016/j.minpro.2011.02.004
  • Sui, C., Finch, J. A., Nesset, J. E., Kim, J., & Lajoie, S. (2000). Characterisation of the surfaces of galena and sphalerite in the presence of dithionite. In P. Massacci (Ed.), Developments in Mineral Processing (Vol. 13, pp. C8b-15-C18b-22): Elsevier.
  • Teague, A. J., Van Deventer, J. S. J., & Swaminathan, C. (1999). A conceptual model for gold flotation. Minerals Engineering, 12(9), 1001-1019. https://doi.org/10.1016/S0892-6875(99)00087-4
There are 36 citations in total.

Details

Primary Language English
Subjects Chemical-Biological Recovery Techniques and Ore Dressing
Journal Section Research Articles
Authors

Semih Oluklulu 0000-0002-5338-8251

Volkan Bozkurt 0000-0002-8617-5631

Yaşar Uçbaş 0000-0001-5757-875X

Early Pub Date April 22, 2024
Publication Date April 22, 2024
Acceptance Date February 8, 2024
Published in Issue Year 2024

Cite

APA Oluklulu, S., Bozkurt, V., & Uçbaş, Y. (2024). SODIUM DITHIONITE AS A PYRITE DEPRESSANT IN GOLD ORE FLOTATION. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 32(1), 1152-1158. https://doi.org/10.31796/ogummf.1345792
AMA Oluklulu S, Bozkurt V, Uçbaş Y. SODIUM DITHIONITE AS A PYRITE DEPRESSANT IN GOLD ORE FLOTATION. ESOGÜ Müh Mim Fak Derg. April 2024;32(1):1152-1158. doi:10.31796/ogummf.1345792
Chicago Oluklulu, Semih, Volkan Bozkurt, and Yaşar Uçbaş. “SODIUM DITHIONITE AS A PYRITE DEPRESSANT IN GOLD ORE FLOTATION”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 32, no. 1 (April 2024): 1152-58. https://doi.org/10.31796/ogummf.1345792.
EndNote Oluklulu S, Bozkurt V, Uçbaş Y (April 1, 2024) SODIUM DITHIONITE AS A PYRITE DEPRESSANT IN GOLD ORE FLOTATION. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 32 1 1152–1158.
IEEE S. Oluklulu, V. Bozkurt, and Y. Uçbaş, “SODIUM DITHIONITE AS A PYRITE DEPRESSANT IN GOLD ORE FLOTATION”, ESOGÜ Müh Mim Fak Derg, vol. 32, no. 1, pp. 1152–1158, 2024, doi: 10.31796/ogummf.1345792.
ISNAD Oluklulu, Semih et al. “SODIUM DITHIONITE AS A PYRITE DEPRESSANT IN GOLD ORE FLOTATION”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 32/1 (April 2024), 1152-1158. https://doi.org/10.31796/ogummf.1345792.
JAMA Oluklulu S, Bozkurt V, Uçbaş Y. SODIUM DITHIONITE AS A PYRITE DEPRESSANT IN GOLD ORE FLOTATION. ESOGÜ Müh Mim Fak Derg. 2024;32:1152–1158.
MLA Oluklulu, Semih et al. “SODIUM DITHIONITE AS A PYRITE DEPRESSANT IN GOLD ORE FLOTATION”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, vol. 32, no. 1, 2024, pp. 1152-8, doi:10.31796/ogummf.1345792.
Vancouver Oluklulu S, Bozkurt V, Uçbaş Y. SODIUM DITHIONITE AS A PYRITE DEPRESSANT IN GOLD ORE FLOTATION. ESOGÜ Müh Mim Fak Derg. 2024;32(1):1152-8.

20873 13565 13566 15461 13568  14913