Research Article
BibTex RIS Cite

UÇUCU KÜL VE PERLİT ESASLI GEOPOLİMER HARÇLARDA ÇÖMLEK SIR ATIĞI İKAMESİNİN YÜKSEK SICAKLIK DAYANIKLILIĞI ÜZERİNDEKİ ETKİSİ

Year 2024, , 1326 - 1334, 12.08.2024
https://doi.org/10.31796/ogummf.1430527

Abstract

Bu çalışmada, perlit (PT) ve uçucu kül (UK) bazlı geopolimerlere çömlek sırı atığı (ÇSA) ikamesinin mekanik özellikler ve yüksek sıcaklık performansı üzerindeki etkisi araştırılmıştır. Sadece PT, sadece UK ve ağırlıkça %75 UK ve %25 PT içeriği ile üretilen geopolimer harçlara %10, 20 ve 30 oranlarında ÇSA ikame edilmiştir. Harçlar, sabit 10M NaOH içeriği ve 8 saat 100 ºC ısıl kür ile üretilmiştir. Üretilen harçların 7, 28 ve 90 günlük eğilme ve basınç dayanımları belirlenmiş ve 500 ºC, 750 ºC ve 1000 ºC sıcaklıklarındaki performansları değerlendirilmiştir. Deneyler sonucunda, ÇSA malzemesinin PT ve UK+PT içeren numunelere kütlece %20 oranına kadar ikame edilmesinin nihai basınç dayanımı açısından olumlu yönde etkileri olduğu, UK içeren numunelerde ise ÇSA ikamesinin nihai basınç dayanımı açısından olumsuz etkileri olduğu tespit edilmiştir. Nihai dayanımlarda en yüksek değerler, 34.4 ve 32.41 MPa basınç ve 6.46 ve 6.3 MPa eğilme dayanımları ile UK+PT+ÇSA içeren numunelerde sırasıyla %10 ve 20 ÇSA oranlarında elde edilmiştir. Eğilme ve basınç dayanımları açısından optimum ÇSA oranının %10-20 aralığında olduğu söylenebilir. UK malzemesine ÇSA malzemesinin ikamesi, kür yaşına göre dayanım gelişimlerini olumsuz etkilerken, PT ve UK+PT içeren numunelere ÇSA malzemesi ikamesi dayanım gelişimlerinde olumlu etkiler meydana getirmiştir. ÇSA malzemesi yüksek sıcaklık performansı açısından tüm gruplarda olumlu etki meydana getirmiştir. ÇSA malzemesinin karışımlarda kütlece ikame yüzdesi arttıkça, dayanım kayıpları azalmıştır. UK malzemesinin yerine %30 ÇSA malzemesinin ikame edildiği numunelerde 750 ºC’de %40’a varan dayanım artışı tespit edilmiştir.

References

  • Acar, M. C., Çelik, A. İ., Kayabaşı, R., Şener, A., Özdöner, N., ve Özkılıç, Y. O. (2023). Production of perlite-based-aerated geopolymer using hydrogen peroxide as eco-friendly material for energy-efficient buildings. Journal of Materials Research and Technology, 24, 81-99. https://doi.org/10.1016/j.jmrt.2023.02.179
  • Amran, M., Debbarma, S., ve Ozbakkaloglu, T. (2021). Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability properties. Içinde Construction and Building Materials (C. 270). Elsevier Ltd. https://doi.org/10.1016/j.conbuildmat.2020.121857
  • Atabey, İ. İ., Karahan, O., Bilim, C., ve Atiş, C. D. (2020). The influence of activator type and quantity on the transport properties of class F fly ash geopolymer. Construction and Building Materials, 264. https://doi.org/10.1016/j.conbuildmat.2020.120268
  • Bakharev, T. (2005). Geopolymeric materials prepared using Class F fly ash and elevated temperature curing. Cement and Concrete Research, 35(6), 1224-1232. https://doi.org/10.1016/j.cemconres.2004.06.031
  • Baran, P., Nazarko, M., Włosińska, E., Kanciruk, A., ve Zarębska, K. (2021). Synthesis of geopolymers derived from fly ash with an addition of perlite. Journal of Cleaner Production, 293. https://doi.org/10.1016/j.jclepro.2021.126112
  • Bayer Öztürk, Z., ve Çam, T. (2023). Performance of eco-friendly fly ash-based geopolymer mortars with stone-cutting waste. Materials Chemistry and Physics, 307, 128112. https://doi.org/10.1016/j.matchemphys.2023.128112
  • Çelikten, S., ve Erdoğan, G. (2022). Effects of perlite/fly ash ratio and the curing conditions on the mechanical and microstructural properties of geopolymers subjected to elevated temperatures. Ceramics International, 48(19), 27870-27877. https://doi.org/10.1016/j.ceramint.2022.06.089
  • Çelikten, S., ve Işıkdağ, B. (2020). Strength Development of Ground Perlite-Based Geopolymer Mortars. Advances in Concrete Construction, 9(3), 227-234. https://doi.org/10.12989/acc.2020.9.3.227
  • Çelikten, S., Sarıdemir, M., ve Akçaözoğlu, K. (2020). Effect of calcined perlite content on elevated temperature behaviour of alkali activated slag mortars. Journal of Building Engineering, 32. https://doi.org/10.1016/j.jobe.2020.101717
  • Çelikten, S., Sarıdemir, M., ve Özgür Deneme, İ. (2019). Mechanical and microstructural properties of alkali-activated slag and slag + fly ash mortars exposed to high temperature. Construction and Building Materials, 217, 50-61. https://doi.org/10.1016/j.conbuildmat.2019.05.055
  • Davidovits, J. (1989). Geopolymers and Geopolymeric New Material. Journal of Thermal Analysis, 35, 429-441.
  • Demirboǧa, R., ve Gül, R. (2003). The effects of expanded perlite aggregate, silica fume and fly ash on the thermal conductivity of lightweight concrete. Cement and Concrete Research, 33(5), 723-727. https://doi.org/10.1016/S0008-8846(02)01032-3
  • Dişçi, E., ve Polat, R. (2022). The influence of nano-CaO and nano-Al2O3 and curing conditions on perlite based geopolymer concrete produced by the one-part mixing method. Construction and Building Materials, 346. https://doi.org/10.1016/j.conbuildmat.2022.128484
  • Doğan, H. (2018). Erişim adresi: http://www.turktarim.gov.tr/Haber/82/insanlik-tarihi-kadar-eski-bir-sanat-comlekcilik.
  • Durak, U., İlkentapar, S., Karahan, O., Uzal, B., ve Atiş, C. D. (2021). A new parameter influencing the reaction kinetics and properties of fly ash based geopolymers: A pre-rest period before heat curing. Journal of Building Engineering, 35. https://doi.org/10.1016/j.jobe.2020.102023
  • Duxson, P., Provis, J. L., Lukey, G. C., ve van Deventer, J. S. J. (2007). The role of inorganic polymer technology in the development of “green concrete”. Cement and Concrete Research, 37(12), 1590-1597. https://doi.org/10.1016/j.cemconres.2007.08.018
  • El-Mir, A., Hwalla, J., El-Hassan, H., Assaad, J. J., El-Dieb, A., ve Shehab, E. (2023). Valorization of waste perlite powder in geopolymer composites. Construction and Building Materials, 368. https://doi.org/10.1016/j.conbuildmat.2023.130491
  • Erdogan, S. T. (2015). Properties of Ground Perlite Geopolymer Mortars. Journal of Materials in Civil Engineering, 27(7). https://doi.org/10.1061/(asce)mt.1943-5533.0001172
  • Hojati, M., ve Radlińska, A. (2017). Shrinkage and strength development of alkali-activated fly ash-slag binary cements. Construction and Building Materials, 150, 808-816. https://doi.org/10.1016/j.conbuildmat.2017.06.040
  • Hossain, M. M., Karim, M. R., Hossain, M. K., Islam, M. N., ve Zain, M. F. M. (2015). Durability of mortar and concrete containing alkali-activated binder with pozzolans: A review. Içinde Construction and Building Materials (C. 93, ss. 95-109). Elsevier Ltd. https://doi.org/10.1016/j.conbuildmat.2015.05.094
  • Işıkdağ, B. (2015). Characterization of lightweight ferrocement panels containing expanded perlite-based mortar. Construction and Building Materials, 81, 15-23. https://doi.org/10.1016/j.conbuildmat.2015.02.009
  • Işıkhan, S. (2015). Tarihi Çanakkale seramiklerinin yeniden üretimine yönelik güncel-teknolojik denemeler. Atatürk Üniversitesi Güzel Sanatlar Enstitüsü Dergisi, 34, 133-169.
  • Photisan, M. S., ve Sangphong, O. (2022). STRENGTH DEVELOPMENT OF FLY ASH-PERLITE BASED GEOPOLYMER MORTAR USING RECYCLED WASTE GLASS AS FINE AGGREGATE. Naresuan University Journal: Science and Technology, 31(1), 1-9.
  • Provis, J. L. (2014). Geopolymers and other alkali activated materials: Why, how, and what? Materials and Structures/Materiaux et Constructions, 47(1-2), 11-25. https://doi.org/10.1617/s11527-013-0211-5
  • Provis, J. L., ve Bernal, S. A. (2014). Geopolymers and related alkali-activated materials. Annual Review of Materials Research, 44, 299-327. https://doi.org/10.1146/annurev-matsci-070813-113515
  • Sarıdemir, M., ve Bulut, M. (2021). Effects of ground basaltic pumice and high temperatures on the properties of HSMs. Journal of Building Engineering, 41. https://doi.org/10.1016/j.jobe.2021.102772
  • Saridemir, M., ve Celikten, S. (2017). The strength properties of alkali-activated silica fume mortars. Computers and Concrete, 19(2), 153-159. https://doi.org/10.12989/cac.2017.19.2.153
  • Singh, M., ve Garg, M. (1991). Perlite-based building materials — a review of current applications. Construction and Building Materials, 5(2), 75-81. https://doi.org/10.1016/0950-0618(91)90004-5
  • TS EN 196-1. (2016). TS EN 196-1, Turkish Standards European Norms, Methods of Testing Cement-Part 1: Determination of Strength, Turkish Standards Institution, Ankara, Turkey.
  • TS EN 1015-11/A1. (2020). TS EN 1015-11/A1, Methods of Test for Mortar for Masonry- Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar, Turkish Standard Institute, Ankara, Turkey.
  • Turhan, D., Karagöl, F., ve Polat, R. (2021). Investigation of the Properties of Perlite-Based Geopolymer Concrete with Red Mud. In PACE-2021 International Congress on the Phenomenological Aspects of Civil Engineering, 1-7.
  • Uğurlu, A. İ., Karakoç, M. B., ve Özcan, A. (2021). Effect of binder content and recycled concrete aggregate on freeze-thaw and sulfate resistance of GGBFS based geopolymer concretes. Construction and Building Materials, 301. https://doi.org/10.1016/j.conbuildmat.2021.124246
  • Ulugöl, H., Günal, M. F., Yaman, İ. Ö., Yıldırım, G., ve Şahmaran, M. (2021). Effects of self-healing on the microstructure, transport, and electrical properties of 100% construction- and demolition-waste-based geopolymer composites. Cement and Concrete Composites, 121. https://doi.org/10.1016/j.cemconcomp.2021.104081
  • Zhang, H. Y., Qiu, G. H., Kodur, V., ve Yuan, Z. S. (2020). Spalling behavior of metakaolin-fly ash based geopolymer concrete under elevated temperature exposure. Cement and Concrete Composites, 106. https://doi.org/10.1016/j.cemconcomp.2019.103483

THE EFFECT OF POTTERY GLAZE WASTE SUBSTITUTION ON HIGH-TEMPERATURE RESISTANCE OF FLY ASH AND PERLITE-BASED GEOPOLYMER MORTARS

Year 2024, , 1326 - 1334, 12.08.2024
https://doi.org/10.31796/ogummf.1430527

Abstract

In this study, the effect of substituting pottery glaze waste (PGW) into perlite (PT) and fly ash (FA) based geopolymers on mechanical properties and high-temperature performance has been investigated. Geopolymer mortars were produced with only PT, only FA, and a mixture of 75% FA and 25% PT by weight. PGW was substituted in these geopolymers at rates of 10%, 20%, and 30%. The mortars were produced with a constant 10M NaOH content and subjected to an 8-hour thermal curing at 100 ºC. The flexural and compressive strengths of the produced mortars were determined at 7, 28, and 90 days, and their performance at temperatures of 500 ºC, 750 ºC, and 1000 ºC was evaluated. As a result of the experiments, it has been determined that substituting PGW in specimens containing PT and FA +PT up to 20% by weight has a positive effect on the ultimate compressive strength. However, in samples containing FA, the substitution of PGW has been found to have negative effects on the ultimate compressive strength. The highest values in strengths were achieved in samples containing FA+PT+PGW, with compressive strengths of 34.4 and 32.41 MPa, and flexural strengths of 6.46 and 6.3 MPa, respectively, at PGW substitution rates of 10% and 20%. It can be stated that the optimum PGW substitution rate is in the range of 10-20% in terms of flexural and compressive strengths. Substituting PGW material into FA adversely affects strength development based on curing age, while substituting PGW material in samples containing PT and FA+PT has positive effects on strength. The PGW material has had a positive effect on high-temperature performance in all groups. As the mass substitution percentage of PGW material increased in the mixtures, strength losses decreased. In samples where 30% of the FA material was substituted with PGW, a strength increase of up to 40% was observed at 750 ºC.

References

  • Acar, M. C., Çelik, A. İ., Kayabaşı, R., Şener, A., Özdöner, N., ve Özkılıç, Y. O. (2023). Production of perlite-based-aerated geopolymer using hydrogen peroxide as eco-friendly material for energy-efficient buildings. Journal of Materials Research and Technology, 24, 81-99. https://doi.org/10.1016/j.jmrt.2023.02.179
  • Amran, M., Debbarma, S., ve Ozbakkaloglu, T. (2021). Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability properties. Içinde Construction and Building Materials (C. 270). Elsevier Ltd. https://doi.org/10.1016/j.conbuildmat.2020.121857
  • Atabey, İ. İ., Karahan, O., Bilim, C., ve Atiş, C. D. (2020). The influence of activator type and quantity on the transport properties of class F fly ash geopolymer. Construction and Building Materials, 264. https://doi.org/10.1016/j.conbuildmat.2020.120268
  • Bakharev, T. (2005). Geopolymeric materials prepared using Class F fly ash and elevated temperature curing. Cement and Concrete Research, 35(6), 1224-1232. https://doi.org/10.1016/j.cemconres.2004.06.031
  • Baran, P., Nazarko, M., Włosińska, E., Kanciruk, A., ve Zarębska, K. (2021). Synthesis of geopolymers derived from fly ash with an addition of perlite. Journal of Cleaner Production, 293. https://doi.org/10.1016/j.jclepro.2021.126112
  • Bayer Öztürk, Z., ve Çam, T. (2023). Performance of eco-friendly fly ash-based geopolymer mortars with stone-cutting waste. Materials Chemistry and Physics, 307, 128112. https://doi.org/10.1016/j.matchemphys.2023.128112
  • Çelikten, S., ve Erdoğan, G. (2022). Effects of perlite/fly ash ratio and the curing conditions on the mechanical and microstructural properties of geopolymers subjected to elevated temperatures. Ceramics International, 48(19), 27870-27877. https://doi.org/10.1016/j.ceramint.2022.06.089
  • Çelikten, S., ve Işıkdağ, B. (2020). Strength Development of Ground Perlite-Based Geopolymer Mortars. Advances in Concrete Construction, 9(3), 227-234. https://doi.org/10.12989/acc.2020.9.3.227
  • Çelikten, S., Sarıdemir, M., ve Akçaözoğlu, K. (2020). Effect of calcined perlite content on elevated temperature behaviour of alkali activated slag mortars. Journal of Building Engineering, 32. https://doi.org/10.1016/j.jobe.2020.101717
  • Çelikten, S., Sarıdemir, M., ve Özgür Deneme, İ. (2019). Mechanical and microstructural properties of alkali-activated slag and slag + fly ash mortars exposed to high temperature. Construction and Building Materials, 217, 50-61. https://doi.org/10.1016/j.conbuildmat.2019.05.055
  • Davidovits, J. (1989). Geopolymers and Geopolymeric New Material. Journal of Thermal Analysis, 35, 429-441.
  • Demirboǧa, R., ve Gül, R. (2003). The effects of expanded perlite aggregate, silica fume and fly ash on the thermal conductivity of lightweight concrete. Cement and Concrete Research, 33(5), 723-727. https://doi.org/10.1016/S0008-8846(02)01032-3
  • Dişçi, E., ve Polat, R. (2022). The influence of nano-CaO and nano-Al2O3 and curing conditions on perlite based geopolymer concrete produced by the one-part mixing method. Construction and Building Materials, 346. https://doi.org/10.1016/j.conbuildmat.2022.128484
  • Doğan, H. (2018). Erişim adresi: http://www.turktarim.gov.tr/Haber/82/insanlik-tarihi-kadar-eski-bir-sanat-comlekcilik.
  • Durak, U., İlkentapar, S., Karahan, O., Uzal, B., ve Atiş, C. D. (2021). A new parameter influencing the reaction kinetics and properties of fly ash based geopolymers: A pre-rest period before heat curing. Journal of Building Engineering, 35. https://doi.org/10.1016/j.jobe.2020.102023
  • Duxson, P., Provis, J. L., Lukey, G. C., ve van Deventer, J. S. J. (2007). The role of inorganic polymer technology in the development of “green concrete”. Cement and Concrete Research, 37(12), 1590-1597. https://doi.org/10.1016/j.cemconres.2007.08.018
  • El-Mir, A., Hwalla, J., El-Hassan, H., Assaad, J. J., El-Dieb, A., ve Shehab, E. (2023). Valorization of waste perlite powder in geopolymer composites. Construction and Building Materials, 368. https://doi.org/10.1016/j.conbuildmat.2023.130491
  • Erdogan, S. T. (2015). Properties of Ground Perlite Geopolymer Mortars. Journal of Materials in Civil Engineering, 27(7). https://doi.org/10.1061/(asce)mt.1943-5533.0001172
  • Hojati, M., ve Radlińska, A. (2017). Shrinkage and strength development of alkali-activated fly ash-slag binary cements. Construction and Building Materials, 150, 808-816. https://doi.org/10.1016/j.conbuildmat.2017.06.040
  • Hossain, M. M., Karim, M. R., Hossain, M. K., Islam, M. N., ve Zain, M. F. M. (2015). Durability of mortar and concrete containing alkali-activated binder with pozzolans: A review. Içinde Construction and Building Materials (C. 93, ss. 95-109). Elsevier Ltd. https://doi.org/10.1016/j.conbuildmat.2015.05.094
  • Işıkdağ, B. (2015). Characterization of lightweight ferrocement panels containing expanded perlite-based mortar. Construction and Building Materials, 81, 15-23. https://doi.org/10.1016/j.conbuildmat.2015.02.009
  • Işıkhan, S. (2015). Tarihi Çanakkale seramiklerinin yeniden üretimine yönelik güncel-teknolojik denemeler. Atatürk Üniversitesi Güzel Sanatlar Enstitüsü Dergisi, 34, 133-169.
  • Photisan, M. S., ve Sangphong, O. (2022). STRENGTH DEVELOPMENT OF FLY ASH-PERLITE BASED GEOPOLYMER MORTAR USING RECYCLED WASTE GLASS AS FINE AGGREGATE. Naresuan University Journal: Science and Technology, 31(1), 1-9.
  • Provis, J. L. (2014). Geopolymers and other alkali activated materials: Why, how, and what? Materials and Structures/Materiaux et Constructions, 47(1-2), 11-25. https://doi.org/10.1617/s11527-013-0211-5
  • Provis, J. L., ve Bernal, S. A. (2014). Geopolymers and related alkali-activated materials. Annual Review of Materials Research, 44, 299-327. https://doi.org/10.1146/annurev-matsci-070813-113515
  • Sarıdemir, M., ve Bulut, M. (2021). Effects of ground basaltic pumice and high temperatures on the properties of HSMs. Journal of Building Engineering, 41. https://doi.org/10.1016/j.jobe.2021.102772
  • Saridemir, M., ve Celikten, S. (2017). The strength properties of alkali-activated silica fume mortars. Computers and Concrete, 19(2), 153-159. https://doi.org/10.12989/cac.2017.19.2.153
  • Singh, M., ve Garg, M. (1991). Perlite-based building materials — a review of current applications. Construction and Building Materials, 5(2), 75-81. https://doi.org/10.1016/0950-0618(91)90004-5
  • TS EN 196-1. (2016). TS EN 196-1, Turkish Standards European Norms, Methods of Testing Cement-Part 1: Determination of Strength, Turkish Standards Institution, Ankara, Turkey.
  • TS EN 1015-11/A1. (2020). TS EN 1015-11/A1, Methods of Test for Mortar for Masonry- Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar, Turkish Standard Institute, Ankara, Turkey.
  • Turhan, D., Karagöl, F., ve Polat, R. (2021). Investigation of the Properties of Perlite-Based Geopolymer Concrete with Red Mud. In PACE-2021 International Congress on the Phenomenological Aspects of Civil Engineering, 1-7.
  • Uğurlu, A. İ., Karakoç, M. B., ve Özcan, A. (2021). Effect of binder content and recycled concrete aggregate on freeze-thaw and sulfate resistance of GGBFS based geopolymer concretes. Construction and Building Materials, 301. https://doi.org/10.1016/j.conbuildmat.2021.124246
  • Ulugöl, H., Günal, M. F., Yaman, İ. Ö., Yıldırım, G., ve Şahmaran, M. (2021). Effects of self-healing on the microstructure, transport, and electrical properties of 100% construction- and demolition-waste-based geopolymer composites. Cement and Concrete Composites, 121. https://doi.org/10.1016/j.cemconcomp.2021.104081
  • Zhang, H. Y., Qiu, G. H., Kodur, V., ve Yuan, Z. S. (2020). Spalling behavior of metakaolin-fly ash based geopolymer concrete under elevated temperature exposure. Cement and Concrete Composites, 106. https://doi.org/10.1016/j.cemconcomp.2019.103483
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Construction Materials
Journal Section Research Articles
Authors

Serhat Çelikten 0000-0001-8154-7590

Bilal Baran 0000-0002-2568-7035

Zahide Bayer Oztürk 0000-0001-8069-0694

Early Pub Date August 6, 2024
Publication Date August 12, 2024
Submission Date February 2, 2024
Acceptance Date May 23, 2024
Published in Issue Year 2024

Cite

APA Çelikten, S., Baran, B., & Bayer Oztürk, Z. (2024). UÇUCU KÜL VE PERLİT ESASLI GEOPOLİMER HARÇLARDA ÇÖMLEK SIR ATIĞI İKAMESİNİN YÜKSEK SICAKLIK DAYANIKLILIĞI ÜZERİNDEKİ ETKİSİ. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 32(2), 1326-1334. https://doi.org/10.31796/ogummf.1430527
AMA Çelikten S, Baran B, Bayer Oztürk Z. UÇUCU KÜL VE PERLİT ESASLI GEOPOLİMER HARÇLARDA ÇÖMLEK SIR ATIĞI İKAMESİNİN YÜKSEK SICAKLIK DAYANIKLILIĞI ÜZERİNDEKİ ETKİSİ. ESOGÜ Müh Mim Fak Derg. August 2024;32(2):1326-1334. doi:10.31796/ogummf.1430527
Chicago Çelikten, Serhat, Bilal Baran, and Zahide Bayer Oztürk. “UÇUCU KÜL VE PERLİT ESASLI GEOPOLİMER HARÇLARDA ÇÖMLEK SIR ATIĞI İKAMESİNİN YÜKSEK SICAKLIK DAYANIKLILIĞI ÜZERİNDEKİ ETKİSİ”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 32, no. 2 (August 2024): 1326-34. https://doi.org/10.31796/ogummf.1430527.
EndNote Çelikten S, Baran B, Bayer Oztürk Z (August 1, 2024) UÇUCU KÜL VE PERLİT ESASLI GEOPOLİMER HARÇLARDA ÇÖMLEK SIR ATIĞI İKAMESİNİN YÜKSEK SICAKLIK DAYANIKLILIĞI ÜZERİNDEKİ ETKİSİ. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 32 2 1326–1334.
IEEE S. Çelikten, B. Baran, and Z. Bayer Oztürk, “UÇUCU KÜL VE PERLİT ESASLI GEOPOLİMER HARÇLARDA ÇÖMLEK SIR ATIĞI İKAMESİNİN YÜKSEK SICAKLIK DAYANIKLILIĞI ÜZERİNDEKİ ETKİSİ”, ESOGÜ Müh Mim Fak Derg, vol. 32, no. 2, pp. 1326–1334, 2024, doi: 10.31796/ogummf.1430527.
ISNAD Çelikten, Serhat et al. “UÇUCU KÜL VE PERLİT ESASLI GEOPOLİMER HARÇLARDA ÇÖMLEK SIR ATIĞI İKAMESİNİN YÜKSEK SICAKLIK DAYANIKLILIĞI ÜZERİNDEKİ ETKİSİ”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 32/2 (August 2024), 1326-1334. https://doi.org/10.31796/ogummf.1430527.
JAMA Çelikten S, Baran B, Bayer Oztürk Z. UÇUCU KÜL VE PERLİT ESASLI GEOPOLİMER HARÇLARDA ÇÖMLEK SIR ATIĞI İKAMESİNİN YÜKSEK SICAKLIK DAYANIKLILIĞI ÜZERİNDEKİ ETKİSİ. ESOGÜ Müh Mim Fak Derg. 2024;32:1326–1334.
MLA Çelikten, Serhat et al. “UÇUCU KÜL VE PERLİT ESASLI GEOPOLİMER HARÇLARDA ÇÖMLEK SIR ATIĞI İKAMESİNİN YÜKSEK SICAKLIK DAYANIKLILIĞI ÜZERİNDEKİ ETKİSİ”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, vol. 32, no. 2, 2024, pp. 1326-34, doi:10.31796/ogummf.1430527.
Vancouver Çelikten S, Baran B, Bayer Oztürk Z. UÇUCU KÜL VE PERLİT ESASLI GEOPOLİMER HARÇLARDA ÇÖMLEK SIR ATIĞI İKAMESİNİN YÜKSEK SICAKLIK DAYANIKLILIĞI ÜZERİNDEKİ ETKİSİ. ESOGÜ Müh Mim Fak Derg. 2024;32(2):1326-34.

20873 13565 13566 15461 13568  14913