Research Article
BibTex RIS Cite

ANALYSIS OF THE ENVIRONMENTAL IMPACTS ASSOCIATED WITH WASTE GLASS INCORPORATION INTO ASPHALT MIXES USING LIFE CYCLE ASSESSMENT

Year 2024, , 1343 - 1355, 12.08.2024
https://doi.org/10.31796/ogummf.1436124

Abstract

The disposal of waste glass through landfilling is widely practiced but often criticized for its environmental impacts. This study focuses on assessing the environmental effects of using waste glass, ranging from 25% to 100%, instead of crushed stone aggregate in asphalt mixtures as an alternative to landfilling. The research investigates fuel consumption, greenhouse gas emissions (including CO2, SO2, NOX, N2O, CO, and CH4), climate change (GWP-100), acidification (AP), eutrophication (EP), toxicity (TP), photochemical ozone (FOP), and energy consumption (CED) indicators. Life cycle assessment (LCA) was used to analyze the stages of raw material supply (HM), asphalt production (AU), pavement construction (KI), and end-of-service life (SS). The findings indicate that diesel and electricity consumption, as well as emissions other than N2O, decrease in mixes containing waste glass. The highest energy requirements are observed in the HM and AU stages. In the HM stage, CO2 and N2O emissions increase with the amount of waste glass. Additionally, the highest environmental benefits are achieved in the TP and ÖP indicators with the addition of waste glass. Mixtures containing low amounts of waste glass show insignificant contributions to the GWP-100 indicator.

References

  • Agency, U. S. E. P. (2023). Emission Factors for Greenhouse Gas Inventories. Retrieved from https://www.epa.gov/system/files/documents/2023-03/ghg_emission_factors_hub.pdf
  • Aliyu, M. S., Ugochi, E. A., Ohagoro, O. C., Ahmad, U. H., ve Chibueze, A. (2021). A Review on Performance of Hybrid Asphalt Mix in Pavement Maintenance and Rehabilitation. environment, 3(8).
  • Almusawi, A., Sengoz, B., Ozdemir, D. K., ve Topal, A. (2022). Economic and environmental impacts of utilizing lower production temperatures for different bitumen samples in a batch plant. Case Studies in Construction Materials, 16, e00987.
  • Bianco, I., Tomos, B. A. D., ve Vinai, R. (2021). Analysis of the environmental impacts of alkali-activated concrete produced with waste glass-derived silicate activator–a LCA study. Journal of Cleaner Production, 316, 128383.
  • Bilgen, G. (2020). Utilization of powdered glass as an additive in clayey soils. Geotechnical and geological engineering, 38(3), 3163-3173.
  • Blayi, R. A., Sherwani, A. F. H., Ibrahim, H. H., Faraj, R. H., ve Daraei, A. (2020). Strength improvement of expansive soil by utilizing waste glass powder. Case Studies in Construction Materials, 13, e00427.
  • Blengini, G. A., Busto, M., Fantoni, M., ve Fino, D. (2012). Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA. Waste management, 32(5), 1000-1008.
  • Canpolat, M., Beycioglu, A., Morova, N., Cetin, S., Cetin, H. M., ve Gündoğan, H. (2022). Atık olivin mineralinin asfalt betonunda filler olarak kullanımı. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 10(2), 555-566.
  • Cheng, M., Chen, M., Wu, S., Yang, T., Zhang, J., ve Zhao, Y. (2021). Effect of waste glass aggregate on performance of asphalt micro-surfacing. Construction and Building Materials, 307, 125133.
  • Chiu, C.-T., Hsu, T.-H., ve Yang, W.-F. (2008). Life cycle assessment on using recycled materials for rehabilitating asphalt pavements. Resources, Conservation and Recycling, 52(3), 545-556.
  • Choudhary, J., Kumar, B., ve Gupta, A. (2021). Utilization of waste glass powder and glass composite fillers in asphalt pavements. Advances in Civil Engineering, 2021, 1-17.
  • Cong, L., Guo, G., Yu, M., Yang, F., ve Tan, L. (2020). The energy consumption and emission of polyurethane pavement construction based on life cycle assessment. Journal of Cleaner Production, 256, 120395.
  • Demirel, S., Öz, H. Ö., Güneş, M., Çiner, F., ve Adın, S. (2019). Life-cycle assessment (LCA) aspects and strength characteristics of self-compacting mortars (SCMs) incorporating fly ash and waste glass PET. The international journal of life cycle assessment, 24, 1139-1153.
  • Dias, A., Nezami, S., Silvestre, J., Kurda, R., Silva, R., Martins, I., ve de Brito, J. (2022). Environmental and economic comparison of natural and recycled aggregates using LCA. Recycling, 7(4), 43.
  • Farina, A., Kutay, M. E., ve Anctil, A. (2023). Environmental assessment of asphalt mixtures modified with polymer coated rubber from scrap tires. Journal of Cleaner Production, 418, 138090.
  • Gedik, A. (2021). An exploration into the utilization of recycled waste glass as a surrogate powder to crushed stone dust in asphalt pavement construction. Construction and Building Materials, 300, 123980.
  • Guillot, J. D. (2023). Waste management in the EU: infographic with facts and figures. (20180328STO00751). European Parliament Retrieved from https://www.europarl.europa.eu/pdfs/news/expert/2018/4/story/20180328STO00751/20180328STO00751_en.pdf#:~:text=Every%20year%202.2%20billion%20tonnes%20of%20waste%20are,by%20municipalities%2C%20which%20is%20mainly%20generated%20by%20households.
  • Günay, T., Katanalp, B. Y., Taştan, M., ve Ahmedzade, P. (2023). A posterior hybrid ML optimization to analyze the relationship between high temperature rheological factors of the Superpave PG and improved PG+ asphalt specifications. Construction and Building Materials, 401, 132803.
  • Hamzah, M. O., Jamshidi, A., ve Shahadan, Z. (2010). Evaluation of the potential of Sasobit® to reduce required heat energy and CO2 emission in the asphalt industry. Journal of Cleaner Production, 18(18), 1859-1865.
  • Hossain, M. U., Poon, C. S., Lo, I. M., ve Cheng, J. C. (2016). Comparative environmental evaluation of aggregate production from recycled waste materials and virgin sources by LCA. Resources, Conservation and Recycling, 109, 67-77.
  • Huang, Y., Bird, R., ve Heidrich, O. (2009). Development of a life cycle assessment tool for construction and maintenance of asphalt pavements. Journal of Cleaner Production, 17(2), 283-296.
  • Kalampokis, S., Kalama, D., Kesikidou, F., Stefanidou, M., ve Manthos, E. (2023). Assessment of waste glass incorporation in asphalt concrete for surface layer construction. Materials, 16(14), 4938.
  • Katanalp, B. Y., ve Ahmedzade, P. (2023). Rheological Evaluation and Life Cycle Cost Analysis of the Geopolymer Produced from Waste Ferrochrome Electric Arc Furnace Fume as a Composite Component in Bitumen Modification. Journal of Materials in Civil Engineering, 35(11), 04023401.
  • Katanalp, B. Y., Tastan, M., ve Ahmedzade, P. (2024). Recycling the electric arc furnace waste after geopolymerization in bitumen: experimental analyses and LCA study. Materials and Structures, 57(5), 103.
  • Katanalp, B. Y., Yildirim, Z. B., Karacasu, M., ve Ibrikci, T. (2019). Atik Kömür Katkili Asfalt Betonu performans KARAKTERİSTİKLERİNİN Yapay SİNİR AĞLARI ve MERKEZİ KOMPOZİT Tasarim YÖNTEMLERİ Kullanilarak Karşilaştirilmasi. Mühendislik Bilimleri ve Tasarım Dergisi, 7(3), 680-688.
  • Kazmi, D., Williams, D. J., ve Serati, M. (2020). Waste glass in civil engineering applications—A review. International Journal of Applied Ceramic Technology, 17(2), 529-554.
  • Khater, A., Luo, D., Abdelsalam, M., Ma, J., ve Ghazy, M. (2021). Comparative life cycle assessment of asphalt mixtures using composite admixtures of lignin and glass fibers. Materials, 14(21), 6589.
  • Mammeri, A., Vaillancourt, M., ve Shamsaei, M. (2023). Experimental and numerical investigation of using waste glass aggregates in asphalt pavement to mitigate urban heat islands. Clean Technologies and Environmental Policy, 1-14.
  • Marceau, M., Nisbet, M. A., ve Van Geem, M. G. (2007). Life cycle inventory of portland cement concrete: Portland Cement Association.
  • Ming, N. C., Jaya, R. P., Awang, H., Ing, N. L. S., Hasan, M. R. M., ve Al-Saffar, Z. H. (2022). Performance of glass powder as bitumen modifier in hot mix asphalt. Physics and Chemistry of the Earth, Parts A/B/C, 128, 103263.
  • Mohajerani, A., Vajna, J., Cheung, T. H. H., Kurmus, H., Arulrajah, A., ve Horpibulsuk, S. (2017). Practical recycling applications of crushed waste glass in construction materials: A review. Construction and Building Materials, 156, 443-467.
  • Moins, B., Beck, C., Hernando, D., ve Audenaert, A. (2023). An investigation on the use of lean asphalt as an alternative base material in asphalt pavements by means of laboratory testing, life cycle assessment, and life cycle cost analysis. Resources, Conservation and Recycling, 194, 106992.
  • Movilla-Quesada, D., Lagos-Varas, M., Raposeiras, A. C., Muñoz-Cáceres, O., Andrés-Valeri, V. C., ve Aguilar-Vidal, C. (2021). Analysis of greenhouse gas emissions and the environmental impact of the production of asphalt mixes modified with recycled materials. Sustainability, 13(14), 8081.
  • Oner, J., ve Yabaneri, Y. (2023). Carbon Footprint Detection of Asphalt Pavements. Usak University Journal of Engineering Sciences, 6(2), 83-89.
  • Qin, D., Hu, Y., ve Li, X. (2021). Waste glass utilization in cement-based materials for sustainable construction: A review. Crystals, 11(6), 710.
  • Shafabakhsh, G., ve Sajed, Y. (2014). Investigation of dynamic behavior of hot mix asphalt containing waste materials; case study: Glass cullet. Case Studies in Construction Materials, 1, 96-103.
  • Simone, A., Mazzotta, F., Eskandarsefat, S., Sangiorgi, C., Vignali, V., Lantieri, C., ve Dondi, G. (2019). Experimental application of waste glass powder filler in recycled dense-graded asphalt mixtures. Road Materials and Pavement Design, 20(3), 592-607.
  • Tahmoorian, F., Samali, B., Yeaman, J., ve Crabb, R. (2018). The use of glass to optimize bitumen absorption of hot mix asphalt containing recycled construction aggregates. Materials, 11(7), 1053.
  • Tian, H., Xu, R., Canadell, J. G., Thompson, R. L., Winiwarter, W., Suntharalingam, P., . . . Janssens-Maenhout, G. (2020). A comprehensive quantification of global nitrous oxide sources and sinks. Nature, 586(7828), 248-256.
  • Tushar, Q., Salehi, S., Santos, J., Zhang, G., Bhuiyan, M. A., Arashpour, M., ve Giustozzi, F. (2023). Application of recycled crushed glass in road pavements and pipeline bedding: An integrated environmental evaluation using LCA. Science of the Total Environment, 881, 163488.
  • Varol, H. (2023). Atık Cam Tozunun Bitümlü Sıcak Karışımlarda Filler Olarak Değerlendirilmesi. Teknik Bilimler Dergisi, 13(1), 29-33.
  • Wang, F., Hoff, I., Yang, F., Wu, S., Xie, J., Li, N., ve Zhang, L. (2021). Comparative assessments for environmental impacts from three advanced asphalt pavement construction cases. Journal of Cleaner Production, 297, 126659.
  • Yang, R. (2014). Development of a pavement life cycle assessment tool utilizing regional data and introducing an asphalt binder model.
  • Zarei, M., Rahmani, Z., Zahedi, M., ve Nasrollahi, M. (2020). Technical, economic, and environmental investigation of the effects of rubber powder additive on asphalt mixtures. Journal of Transportation Engineering, Part B: Pavements, 146(1), 04019039.
  • Zhang, Y., Luo, W., Wang, J., Wang, Y., Xu, Y., ve Xiao, J. (2019). A review of life cycle assessment of recycled aggregate concrete. Construction and Building Materials, 209, 115-125.

ATIK CAM KATKILI ASFALT KARIŞIMLARIN POTANSİYEL ÇEVRESEL ETKİLERİNİN YAŞAM DÖNGÜSÜ DEĞERLENDİRMESİ İLE ANALİZİ

Year 2024, , 1343 - 1355, 12.08.2024
https://doi.org/10.31796/ogummf.1436124

Abstract

Atık camların düzenli depolanma yöntemi ile bertarafı yaygın kullanılmakta ancak çevresel etkilerinden kaynaklı sıklıkla eleştirilmektedir. Bu çalışmada, düzenli depolamaya bir alternatif olarak farklı oranlarda (%25-%100) atık camın asfalt karışımda kırmataş agrega yerine kullanılmasının oluşturacağı çevresel etkilere odaklanılmıştır. Araştırmada karışımların yakıt tüketimi, sera gazı emisyonları (CO2, SO2, NOX, N2O, CO ve CH4) ile bu emisyonlara bağlı iklim değişikliği (GWP-100), asidifikasyon (AP), ötrofikasyon (ÖP), toksisite (TP), fotokimyasal ozon (FOP) ve enerji tüketimi (CED) indikatörleri incelenmiştir. Yaşam döngüsü değerlendirmesi (YDD) analizleri hammadde temini (HM), asfalt üretimi (AU), kaplama inşaatı (KI) ve servis ömrü sonu (SS) aşamalarını kapsamaktadır. Bulgular, atık cam içerikli kaplamalarda dizel ve elektrik tüketiminin ve N2O haricindeki emisyon değerlerinin azaldığını göstermiştir. En yüksek enerji gereksinimleri HM ve AU aşamalarında ortaya çıkmıştır. HM aşamasında CO2 ve N2O emisyonlarının atık cam miktarına bağlı yükseldiği görülmüştür. Atık cam ilavesi ile en yüksek çevresel kazanımlar TP ve ÖP indikatörlerinde elde edilmiştir. Düşük miktarda atık cam içerikli karışımların GWP-100 indikatörüne belirgin bir katkısının olmadığı tespit edilmiştir.

Ethical Statement

Bu makalenin yazar(lar)ı çalışmalarında kullandıkları materyal ve yöntemlerin etik kurul izni ve/veya yasal-özel bir izin gerektirmediğini beyan ederler.

References

  • Agency, U. S. E. P. (2023). Emission Factors for Greenhouse Gas Inventories. Retrieved from https://www.epa.gov/system/files/documents/2023-03/ghg_emission_factors_hub.pdf
  • Aliyu, M. S., Ugochi, E. A., Ohagoro, O. C., Ahmad, U. H., ve Chibueze, A. (2021). A Review on Performance of Hybrid Asphalt Mix in Pavement Maintenance and Rehabilitation. environment, 3(8).
  • Almusawi, A., Sengoz, B., Ozdemir, D. K., ve Topal, A. (2022). Economic and environmental impacts of utilizing lower production temperatures for different bitumen samples in a batch plant. Case Studies in Construction Materials, 16, e00987.
  • Bianco, I., Tomos, B. A. D., ve Vinai, R. (2021). Analysis of the environmental impacts of alkali-activated concrete produced with waste glass-derived silicate activator–a LCA study. Journal of Cleaner Production, 316, 128383.
  • Bilgen, G. (2020). Utilization of powdered glass as an additive in clayey soils. Geotechnical and geological engineering, 38(3), 3163-3173.
  • Blayi, R. A., Sherwani, A. F. H., Ibrahim, H. H., Faraj, R. H., ve Daraei, A. (2020). Strength improvement of expansive soil by utilizing waste glass powder. Case Studies in Construction Materials, 13, e00427.
  • Blengini, G. A., Busto, M., Fantoni, M., ve Fino, D. (2012). Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA. Waste management, 32(5), 1000-1008.
  • Canpolat, M., Beycioglu, A., Morova, N., Cetin, S., Cetin, H. M., ve Gündoğan, H. (2022). Atık olivin mineralinin asfalt betonunda filler olarak kullanımı. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 10(2), 555-566.
  • Cheng, M., Chen, M., Wu, S., Yang, T., Zhang, J., ve Zhao, Y. (2021). Effect of waste glass aggregate on performance of asphalt micro-surfacing. Construction and Building Materials, 307, 125133.
  • Chiu, C.-T., Hsu, T.-H., ve Yang, W.-F. (2008). Life cycle assessment on using recycled materials for rehabilitating asphalt pavements. Resources, Conservation and Recycling, 52(3), 545-556.
  • Choudhary, J., Kumar, B., ve Gupta, A. (2021). Utilization of waste glass powder and glass composite fillers in asphalt pavements. Advances in Civil Engineering, 2021, 1-17.
  • Cong, L., Guo, G., Yu, M., Yang, F., ve Tan, L. (2020). The energy consumption and emission of polyurethane pavement construction based on life cycle assessment. Journal of Cleaner Production, 256, 120395.
  • Demirel, S., Öz, H. Ö., Güneş, M., Çiner, F., ve Adın, S. (2019). Life-cycle assessment (LCA) aspects and strength characteristics of self-compacting mortars (SCMs) incorporating fly ash and waste glass PET. The international journal of life cycle assessment, 24, 1139-1153.
  • Dias, A., Nezami, S., Silvestre, J., Kurda, R., Silva, R., Martins, I., ve de Brito, J. (2022). Environmental and economic comparison of natural and recycled aggregates using LCA. Recycling, 7(4), 43.
  • Farina, A., Kutay, M. E., ve Anctil, A. (2023). Environmental assessment of asphalt mixtures modified with polymer coated rubber from scrap tires. Journal of Cleaner Production, 418, 138090.
  • Gedik, A. (2021). An exploration into the utilization of recycled waste glass as a surrogate powder to crushed stone dust in asphalt pavement construction. Construction and Building Materials, 300, 123980.
  • Guillot, J. D. (2023). Waste management in the EU: infographic with facts and figures. (20180328STO00751). European Parliament Retrieved from https://www.europarl.europa.eu/pdfs/news/expert/2018/4/story/20180328STO00751/20180328STO00751_en.pdf#:~:text=Every%20year%202.2%20billion%20tonnes%20of%20waste%20are,by%20municipalities%2C%20which%20is%20mainly%20generated%20by%20households.
  • Günay, T., Katanalp, B. Y., Taştan, M., ve Ahmedzade, P. (2023). A posterior hybrid ML optimization to analyze the relationship between high temperature rheological factors of the Superpave PG and improved PG+ asphalt specifications. Construction and Building Materials, 401, 132803.
  • Hamzah, M. O., Jamshidi, A., ve Shahadan, Z. (2010). Evaluation of the potential of Sasobit® to reduce required heat energy and CO2 emission in the asphalt industry. Journal of Cleaner Production, 18(18), 1859-1865.
  • Hossain, M. U., Poon, C. S., Lo, I. M., ve Cheng, J. C. (2016). Comparative environmental evaluation of aggregate production from recycled waste materials and virgin sources by LCA. Resources, Conservation and Recycling, 109, 67-77.
  • Huang, Y., Bird, R., ve Heidrich, O. (2009). Development of a life cycle assessment tool for construction and maintenance of asphalt pavements. Journal of Cleaner Production, 17(2), 283-296.
  • Kalampokis, S., Kalama, D., Kesikidou, F., Stefanidou, M., ve Manthos, E. (2023). Assessment of waste glass incorporation in asphalt concrete for surface layer construction. Materials, 16(14), 4938.
  • Katanalp, B. Y., ve Ahmedzade, P. (2023). Rheological Evaluation and Life Cycle Cost Analysis of the Geopolymer Produced from Waste Ferrochrome Electric Arc Furnace Fume as a Composite Component in Bitumen Modification. Journal of Materials in Civil Engineering, 35(11), 04023401.
  • Katanalp, B. Y., Tastan, M., ve Ahmedzade, P. (2024). Recycling the electric arc furnace waste after geopolymerization in bitumen: experimental analyses and LCA study. Materials and Structures, 57(5), 103.
  • Katanalp, B. Y., Yildirim, Z. B., Karacasu, M., ve Ibrikci, T. (2019). Atik Kömür Katkili Asfalt Betonu performans KARAKTERİSTİKLERİNİN Yapay SİNİR AĞLARI ve MERKEZİ KOMPOZİT Tasarim YÖNTEMLERİ Kullanilarak Karşilaştirilmasi. Mühendislik Bilimleri ve Tasarım Dergisi, 7(3), 680-688.
  • Kazmi, D., Williams, D. J., ve Serati, M. (2020). Waste glass in civil engineering applications—A review. International Journal of Applied Ceramic Technology, 17(2), 529-554.
  • Khater, A., Luo, D., Abdelsalam, M., Ma, J., ve Ghazy, M. (2021). Comparative life cycle assessment of asphalt mixtures using composite admixtures of lignin and glass fibers. Materials, 14(21), 6589.
  • Mammeri, A., Vaillancourt, M., ve Shamsaei, M. (2023). Experimental and numerical investigation of using waste glass aggregates in asphalt pavement to mitigate urban heat islands. Clean Technologies and Environmental Policy, 1-14.
  • Marceau, M., Nisbet, M. A., ve Van Geem, M. G. (2007). Life cycle inventory of portland cement concrete: Portland Cement Association.
  • Ming, N. C., Jaya, R. P., Awang, H., Ing, N. L. S., Hasan, M. R. M., ve Al-Saffar, Z. H. (2022). Performance of glass powder as bitumen modifier in hot mix asphalt. Physics and Chemistry of the Earth, Parts A/B/C, 128, 103263.
  • Mohajerani, A., Vajna, J., Cheung, T. H. H., Kurmus, H., Arulrajah, A., ve Horpibulsuk, S. (2017). Practical recycling applications of crushed waste glass in construction materials: A review. Construction and Building Materials, 156, 443-467.
  • Moins, B., Beck, C., Hernando, D., ve Audenaert, A. (2023). An investigation on the use of lean asphalt as an alternative base material in asphalt pavements by means of laboratory testing, life cycle assessment, and life cycle cost analysis. Resources, Conservation and Recycling, 194, 106992.
  • Movilla-Quesada, D., Lagos-Varas, M., Raposeiras, A. C., Muñoz-Cáceres, O., Andrés-Valeri, V. C., ve Aguilar-Vidal, C. (2021). Analysis of greenhouse gas emissions and the environmental impact of the production of asphalt mixes modified with recycled materials. Sustainability, 13(14), 8081.
  • Oner, J., ve Yabaneri, Y. (2023). Carbon Footprint Detection of Asphalt Pavements. Usak University Journal of Engineering Sciences, 6(2), 83-89.
  • Qin, D., Hu, Y., ve Li, X. (2021). Waste glass utilization in cement-based materials for sustainable construction: A review. Crystals, 11(6), 710.
  • Shafabakhsh, G., ve Sajed, Y. (2014). Investigation of dynamic behavior of hot mix asphalt containing waste materials; case study: Glass cullet. Case Studies in Construction Materials, 1, 96-103.
  • Simone, A., Mazzotta, F., Eskandarsefat, S., Sangiorgi, C., Vignali, V., Lantieri, C., ve Dondi, G. (2019). Experimental application of waste glass powder filler in recycled dense-graded asphalt mixtures. Road Materials and Pavement Design, 20(3), 592-607.
  • Tahmoorian, F., Samali, B., Yeaman, J., ve Crabb, R. (2018). The use of glass to optimize bitumen absorption of hot mix asphalt containing recycled construction aggregates. Materials, 11(7), 1053.
  • Tian, H., Xu, R., Canadell, J. G., Thompson, R. L., Winiwarter, W., Suntharalingam, P., . . . Janssens-Maenhout, G. (2020). A comprehensive quantification of global nitrous oxide sources and sinks. Nature, 586(7828), 248-256.
  • Tushar, Q., Salehi, S., Santos, J., Zhang, G., Bhuiyan, M. A., Arashpour, M., ve Giustozzi, F. (2023). Application of recycled crushed glass in road pavements and pipeline bedding: An integrated environmental evaluation using LCA. Science of the Total Environment, 881, 163488.
  • Varol, H. (2023). Atık Cam Tozunun Bitümlü Sıcak Karışımlarda Filler Olarak Değerlendirilmesi. Teknik Bilimler Dergisi, 13(1), 29-33.
  • Wang, F., Hoff, I., Yang, F., Wu, S., Xie, J., Li, N., ve Zhang, L. (2021). Comparative assessments for environmental impacts from three advanced asphalt pavement construction cases. Journal of Cleaner Production, 297, 126659.
  • Yang, R. (2014). Development of a pavement life cycle assessment tool utilizing regional data and introducing an asphalt binder model.
  • Zarei, M., Rahmani, Z., Zahedi, M., ve Nasrollahi, M. (2020). Technical, economic, and environmental investigation of the effects of rubber powder additive on asphalt mixtures. Journal of Transportation Engineering, Part B: Pavements, 146(1), 04019039.
  • Zhang, Y., Luo, W., Wang, J., Wang, Y., Xu, Y., ve Xiao, J. (2019). A review of life cycle assessment of recycled aggregate concrete. Construction and Building Materials, 209, 115-125.
There are 45 citations in total.

Details

Primary Language Turkish
Subjects Civil Construction Engineering, Transportation Engineering
Journal Section Research Articles
Authors

Burak Yiğit Katanalp 0000-0002-7172-8192

Early Pub Date August 6, 2024
Publication Date August 12, 2024
Submission Date February 13, 2024
Acceptance Date July 6, 2024
Published in Issue Year 2024

Cite

APA Katanalp, B. Y. (2024). ATIK CAM KATKILI ASFALT KARIŞIMLARIN POTANSİYEL ÇEVRESEL ETKİLERİNİN YAŞAM DÖNGÜSÜ DEĞERLENDİRMESİ İLE ANALİZİ. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 32(2), 1343-1355. https://doi.org/10.31796/ogummf.1436124
AMA Katanalp BY. ATIK CAM KATKILI ASFALT KARIŞIMLARIN POTANSİYEL ÇEVRESEL ETKİLERİNİN YAŞAM DÖNGÜSÜ DEĞERLENDİRMESİ İLE ANALİZİ. ESOGÜ Müh Mim Fak Derg. August 2024;32(2):1343-1355. doi:10.31796/ogummf.1436124
Chicago Katanalp, Burak Yiğit. “ATIK CAM KATKILI ASFALT KARIŞIMLARIN POTANSİYEL ÇEVRESEL ETKİLERİNİN YAŞAM DÖNGÜSÜ DEĞERLENDİRMESİ İLE ANALİZİ”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 32, no. 2 (August 2024): 1343-55. https://doi.org/10.31796/ogummf.1436124.
EndNote Katanalp BY (August 1, 2024) ATIK CAM KATKILI ASFALT KARIŞIMLARIN POTANSİYEL ÇEVRESEL ETKİLERİNİN YAŞAM DÖNGÜSÜ DEĞERLENDİRMESİ İLE ANALİZİ. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 32 2 1343–1355.
IEEE B. Y. Katanalp, “ATIK CAM KATKILI ASFALT KARIŞIMLARIN POTANSİYEL ÇEVRESEL ETKİLERİNİN YAŞAM DÖNGÜSÜ DEĞERLENDİRMESİ İLE ANALİZİ”, ESOGÜ Müh Mim Fak Derg, vol. 32, no. 2, pp. 1343–1355, 2024, doi: 10.31796/ogummf.1436124.
ISNAD Katanalp, Burak Yiğit. “ATIK CAM KATKILI ASFALT KARIŞIMLARIN POTANSİYEL ÇEVRESEL ETKİLERİNİN YAŞAM DÖNGÜSÜ DEĞERLENDİRMESİ İLE ANALİZİ”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 32/2 (August 2024), 1343-1355. https://doi.org/10.31796/ogummf.1436124.
JAMA Katanalp BY. ATIK CAM KATKILI ASFALT KARIŞIMLARIN POTANSİYEL ÇEVRESEL ETKİLERİNİN YAŞAM DÖNGÜSÜ DEĞERLENDİRMESİ İLE ANALİZİ. ESOGÜ Müh Mim Fak Derg. 2024;32:1343–1355.
MLA Katanalp, Burak Yiğit. “ATIK CAM KATKILI ASFALT KARIŞIMLARIN POTANSİYEL ÇEVRESEL ETKİLERİNİN YAŞAM DÖNGÜSÜ DEĞERLENDİRMESİ İLE ANALİZİ”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, vol. 32, no. 2, 2024, pp. 1343-55, doi:10.31796/ogummf.1436124.
Vancouver Katanalp BY. ATIK CAM KATKILI ASFALT KARIŞIMLARIN POTANSİYEL ÇEVRESEL ETKİLERİNİN YAŞAM DÖNGÜSÜ DEĞERLENDİRMESİ İLE ANALİZİ. ESOGÜ Müh Mim Fak Derg. 2024;32(2):1343-55.

20873 13565 13566 15461 13568  14913