INSTRUMENTED FIELD DATA-BASED ASSESSMENT ON LOAD TRANSFER BEHAVIOR IN RAMMED AGGREGATE PIER® (RAP) ELEMENTS
Year 2025,
Volume: 33 Issue: 3, 2066 - 2077, 19.12.2025
Ece Kurt Bal
,
Mustafa Kubilay Keleşoğlu
,
Kemal Önder Çetin
Abstract
Among the methods of stone column installation, the use of Rammed Aggregate Pier® (RAP) elements offers an alternative to traditional methods like deep foundations or excavation/backfill for sites with challenging soil conditions that cannot meet the performance criteria of superstructures. The goal of using RAP elements is to reduce settlements to acceptable levels, increase load-bearing capacity, and minimize liquefaction potential. In this study, full-scale field load test was performed to identify the variation of shear resistance along RAP element installed by the Impact® System (displacement), making this research the first and only study conducted on RAP elements produced using the displacement system. More specifically, load cells were used to assess the mobilization of vertical load distribution along the column. By utilizing these load cells positioned at various levels along the column, the axial load distribution was monitored concurrently during the loading test. Full-scale load test results demonstrated that, under a 57.5 ton load, the displacement measured at the tell-tale element (reading bars mounted on load cells) varied relative to the displacement measured at the top level of the column, by approximately 15% at the 1 m level, and in the other levels (2 m, 4 m, and 6 m) by about 2-5%. When these results were evaluated in terms of the literature-defined settlement ratio (Rb >> 1), the measured displacements indicated that the response was governed by lateral expansion of the column. Furthermore, the load cells indicated that the applied load mobilized rapidly up to the 1 m level (~2D; D: pier diameter), with only about 10% of the load being transmitted; in other words, the load was accommodated predominantly by circumferential friction rather than transmission to the column tip. These findings support a deformation mechanism for RAP elements with L/D >> 3.5 (L: pier length) that is driven by circumferential friction rather than tip capacity.
Ethical Statement
The authors have no conflicts of interest to declare regarding the content of this article.
Thanks
This research has been sponsored by Sentez Insaat, Istanbul, Türkiye, whose contribution and support for the publication of the project data is greatly appreciated by the authors.
References
-
ASTM D1143 – 81 (Reapproved 1994). Standard test methods for deep foundations under static axial compressive load. Annual Book of ASTM Standards.
-
Barksdale, R.D., & Bachus, R.C. (1983). Design and construction of stone columns. Federal Highway Administration, Final Report SCEGIT, 83-104.
-
Chen, J.F., Han, J., Oztoprak, S., & Yang, X.M. (2009). Behavior of single rammed aggregate piers considering installation effects. Comput. Geotech., 36(7), 1191-1199.
-
Gamboa, W. (2022). Aggregate piers: stress transfer mechanism and construction effect. Master of Science in Civil Engineering, Montana State University, Montana.
-
Greenwood, D.A. (1970). Mechanical improvement of soils below ground surfaces. Proceedings of the Ground Engineering Conference, Institution of Civil Engineers, London, 11-22.
-
Handy, R.L., & White, D.J. (2006). Stress zones near displacement piers. II: radial cracking and wedging. J. Geotech. Geoenviron. Eng., 1O.1O61/(ASCE) 1090-0241 (2006) 132: 1(63), 63-71.
-
Hughes, J.M.O. & Withers, N.J. (1974). Reinforcing of soft cohesive soils with stone columns. Ground Engineering, 7(3), 42-49.
-
John, B., Tim., C., Hilary, S., & Michael, B. (2012). ICE manual of geotechnical engineering volume ll. geotechnical design construction and verification. Chapter 84: Ground Improvement.
-
Lawton, E.C., & Fox, N.S. (1994). Settlement of structures supported on marginal or inadequate soils stiffened with short aggregate piers. Proc., Vertical and Horizontal Deformations of Foundations and Embankments, Geotechnical Special Publication No. 40, ASCE, College Station, Tex., Vol. 2, 962–974.
-
Lawton, E.C., Fox, N.S., & Handy, R.L. (1994). Control of settlement and uplift of structures using short aggregate piers. Proceedings of ASCE National Convention, Atlanta, Georgia.
-
Madhav, M.R., & Vitkar, P.P. (1978). Strip footing on weak clay stabilized with a granular trench or pile. Canadian Geotechnical Journal, 15(4), 605-609.
-
Suleiman, M.T., & White, D.J., (2006). Load transfer in rammed aggregate piers. Int. J. Geomech., 10.1061/(ASCE)1532-3641(2006)6:6(389), 389-398.
-
Vesic, A.S. (1972). Expansion of cavities in infinite soil mass, Journal of Soil Mechanics and Foundation Engineering Division, ASCE, No. SM3, Vol. 98, pp. 265-290. The design of vibro-replacement. Ground Engineering, 31–37.
-
White, K.J., Pham, H.T.V., & Hoevelkamp, K.K. (2007). Support mechanisms of rammed aggregate piers. I: Experimental results. J. Geotech. Geoenviron. Eng., 10.1061/(ASCE)1090-0241(2007)133: 12(1503), 1503–1511.
-
White, D.J., Wissmann, K.J., Barnes, A.G., & Gaul, A.J. (2002). Embankment support: a comparison of stone column and rammed aggregate pier soil reinforcement. Transportation Research Board, 81st Annual Meeting, Washington, DC.
-
Wissmann, K.J. (1999). Bearing capacity of Geopier-supported foundation systems. Technical Bulletin No. 2, Geopier Foundation Company, Inc., Blacksburg, VA, USA.
-
Wissmann, K.J., Ballegooy, S. van, Metcalfe, B.C. Dismuke, J.N., & Anderson, C.K. (2015). Rammed aggregate pier ground improvement as a liquefaction mitigation method in sandy and silty soils. 6th ICEGE, Christchurch, New Zealand.
-
Wissmann, K.J., & Fox, N.S. (2000). Design and analysis of short aggregate piers used to reinforce soil for foundation support. Proceedings, Darmstadt Technical University Colloquium. Germany.
-
Wissmann, K.J., Moser, K., & Pando, M. (2001). Reducing settlement risks in residual piedmont soil using rammed aggregate pier elements. Proc., Foundations and Ground Improvement, Geotechnical Special Publication No.113, ASCE, Blacksburg, Va, 943-957.
-
Wissmann, K.J., White, D.J., & Lawton, E. (2007). Load test comparisons for rammed aggregate piers and pier groups. Univ. of Utah, Salt Lake City, Utah.
-
Wong, H.Y. (1975). Vibroflotation- its effect on weak cohesive soils. Civil Engineering (London), No.82:44-67.
-
McKelvey, D., Sivakumar, V., Bell, A., & Graham, J. (2004). Modelling vibrated stone columns in soft clay. Proc ICE Geotech Eng 157(3):137–149.
-
Mitchell, J.K. (1981). Soil improvement-state-of-the-art report. Proceedings of 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, Sweden, June 15-19.
-
Naval Facilities Design Command (NAVFAC). (1983). Design Manual DM 7.2.
DARBELİ KIRMATAŞ KOLON® (DKK) ELEMANLARINDA YÜK TRANSFER DAVRANIŞININ ENSTRÜMANTASYONLU SAHA VERİ TABANLI DEĞERLENDİRİLMESİ
Year 2025,
Volume: 33 Issue: 3, 2066 - 2077, 19.12.2025
Ece Kurt Bal
,
Mustafa Kubilay Keleşoğlu
,
Kemal Önder Çetin
Abstract
Taş Kolon imalat yöntemleri arasında yer alan ve üst yapı performans kriterlerini karşılayamayacak özelliklere sahip olan zeminlerde derin temel ya da kazı/dolgu gibi mevcut yöntemlere alternatif olan Darbeli Kırmataş Kolon® (DKK) elemanları ile oturmaların uygun seviyelere indirilmesi, taşıma kapasitesinin arttırılması ve sıvılaşma potansiyelinin azaltılması hedeflenmektedir. Bu çalışmada, enstrümantasyonlu DKK elemanı üzerinde gerçekleştirilen tam ölçekli yükleme testi sonuçları değerlendirmeye alınmış olup, bu araştırma Impact® Sistemi (displacement) ile imal edilen Darbeli Kırmataş Kolon® elemanlarındaki yük mobilizasyonunun anlaşılmasına yönelik yürütülen ilk ve tek çalışma niteliğindedir. Bu kapsamda özel olarak tasarlanan ve kolonun farklı kademelerine yerleştirilen yük hücreleri ile yükleme testi sırasında ölçümler yapılarak kolon boyunca mobilize olan eksenel yük dağılımı eşzamanlı olarak ölçülmüştür. Tam ölçekli yükleme testi sonuçları, 57.5 ton yükleme altında tell-tale (yük hücrelerine monte edilmiş okuma çubukları) elemanlarında ölçülen deplasmanın, kolon üst kotunda ölçülen deplasmana göre 1 m seviyesinde yaklaşık %15’i, diğer seviyelerde (2 m, 4 m ve 6 m) ise %2-5’i aralığında değiştiğini göstermiştir. Elde edilen bu sonuçlar literatürde tariflenen oturma oranı (Rb >> 1) cinsinden de değerlendirildiğinde ölçülen deplasmanların kolonun yanal genişlemesinden kaynaklı olduğunu göstermiştir. Ayrıca yük hücreleri, uygulanan yükün 1 m seviyelerinde (~2D; D: kolon çapı) hızla mobilize olduğunu ve bu seviyelere yükün ancak %10’unun iletildiğini; başka bir ifade ile yükün kolon ucuna aktarılmadan çevre sürtünmesi ile karşılandığını göstermiştir. Bu sonuçlar, L/D >> 3.5 (L: kolon boyu) olan DKK elemanlarının, uç kapasitesinden ziyade çevre sürtünmesine dayalı olan çalışma prensibini de destekler mahiyette bulunmuştur.
References
-
ASTM D1143 – 81 (Reapproved 1994). Standard test methods for deep foundations under static axial compressive load. Annual Book of ASTM Standards.
-
Barksdale, R.D., & Bachus, R.C. (1983). Design and construction of stone columns. Federal Highway Administration, Final Report SCEGIT, 83-104.
-
Chen, J.F., Han, J., Oztoprak, S., & Yang, X.M. (2009). Behavior of single rammed aggregate piers considering installation effects. Comput. Geotech., 36(7), 1191-1199.
-
Gamboa, W. (2022). Aggregate piers: stress transfer mechanism and construction effect. Master of Science in Civil Engineering, Montana State University, Montana.
-
Greenwood, D.A. (1970). Mechanical improvement of soils below ground surfaces. Proceedings of the Ground Engineering Conference, Institution of Civil Engineers, London, 11-22.
-
Handy, R.L., & White, D.J. (2006). Stress zones near displacement piers. II: radial cracking and wedging. J. Geotech. Geoenviron. Eng., 1O.1O61/(ASCE) 1090-0241 (2006) 132: 1(63), 63-71.
-
Hughes, J.M.O. & Withers, N.J. (1974). Reinforcing of soft cohesive soils with stone columns. Ground Engineering, 7(3), 42-49.
-
John, B., Tim., C., Hilary, S., & Michael, B. (2012). ICE manual of geotechnical engineering volume ll. geotechnical design construction and verification. Chapter 84: Ground Improvement.
-
Lawton, E.C., & Fox, N.S. (1994). Settlement of structures supported on marginal or inadequate soils stiffened with short aggregate piers. Proc., Vertical and Horizontal Deformations of Foundations and Embankments, Geotechnical Special Publication No. 40, ASCE, College Station, Tex., Vol. 2, 962–974.
-
Lawton, E.C., Fox, N.S., & Handy, R.L. (1994). Control of settlement and uplift of structures using short aggregate piers. Proceedings of ASCE National Convention, Atlanta, Georgia.
-
Madhav, M.R., & Vitkar, P.P. (1978). Strip footing on weak clay stabilized with a granular trench or pile. Canadian Geotechnical Journal, 15(4), 605-609.
-
Suleiman, M.T., & White, D.J., (2006). Load transfer in rammed aggregate piers. Int. J. Geomech., 10.1061/(ASCE)1532-3641(2006)6:6(389), 389-398.
-
Vesic, A.S. (1972). Expansion of cavities in infinite soil mass, Journal of Soil Mechanics and Foundation Engineering Division, ASCE, No. SM3, Vol. 98, pp. 265-290. The design of vibro-replacement. Ground Engineering, 31–37.
-
White, K.J., Pham, H.T.V., & Hoevelkamp, K.K. (2007). Support mechanisms of rammed aggregate piers. I: Experimental results. J. Geotech. Geoenviron. Eng., 10.1061/(ASCE)1090-0241(2007)133: 12(1503), 1503–1511.
-
White, D.J., Wissmann, K.J., Barnes, A.G., & Gaul, A.J. (2002). Embankment support: a comparison of stone column and rammed aggregate pier soil reinforcement. Transportation Research Board, 81st Annual Meeting, Washington, DC.
-
Wissmann, K.J. (1999). Bearing capacity of Geopier-supported foundation systems. Technical Bulletin No. 2, Geopier Foundation Company, Inc., Blacksburg, VA, USA.
-
Wissmann, K.J., Ballegooy, S. van, Metcalfe, B.C. Dismuke, J.N., & Anderson, C.K. (2015). Rammed aggregate pier ground improvement as a liquefaction mitigation method in sandy and silty soils. 6th ICEGE, Christchurch, New Zealand.
-
Wissmann, K.J., & Fox, N.S. (2000). Design and analysis of short aggregate piers used to reinforce soil for foundation support. Proceedings, Darmstadt Technical University Colloquium. Germany.
-
Wissmann, K.J., Moser, K., & Pando, M. (2001). Reducing settlement risks in residual piedmont soil using rammed aggregate pier elements. Proc., Foundations and Ground Improvement, Geotechnical Special Publication No.113, ASCE, Blacksburg, Va, 943-957.
-
Wissmann, K.J., White, D.J., & Lawton, E. (2007). Load test comparisons for rammed aggregate piers and pier groups. Univ. of Utah, Salt Lake City, Utah.
-
Wong, H.Y. (1975). Vibroflotation- its effect on weak cohesive soils. Civil Engineering (London), No.82:44-67.
-
McKelvey, D., Sivakumar, V., Bell, A., & Graham, J. (2004). Modelling vibrated stone columns in soft clay. Proc ICE Geotech Eng 157(3):137–149.
-
Mitchell, J.K. (1981). Soil improvement-state-of-the-art report. Proceedings of 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, Sweden, June 15-19.
-
Naval Facilities Design Command (NAVFAC). (1983). Design Manual DM 7.2.