Research Article
BibTex RIS Cite

Trafik Ağlarında Anomali Tespiti

Year 2018, , 132 - 138, 30.09.2018
https://doi.org/10.31796/ogummf.440285

Abstract

Trafik ağlarının gittikçe büyümesiyle beraber izlenmesi ve kontrolünün sağlanması da zorlaşmıştır. Bu izlemenin sağlanmasında da anomali tespiti çok önemli bir yere sahiptir. Trafik ağlarında anomali tespiti yaklaşımları ile olaylar erkenden tespit edilerek hızlı müdahale imkanı sağlanır. Bu ise zaman ve maliyet tasarrufu sağlar. Literatürde farklı alanlardaki problemler için anomali tespitinde sınıflandırma, kümeleme, istatistiksel vb. yaklaşımlar bulunmaktadır. Bu alanda destek vektör makineleri, bayes ağları, bulanık mantık, genetik algoritmalar vb. birçok yöntem anomali tespiti için kullanılmaktadır. Bu çalışmada karar ağacı algoritması ile trafik ağlarında anomali tespiti için bir yöntem önerilmiştir. Önerilen yöntem Britanya Kolumbiyasına ait trafik veri seti kullanılarak test edilmiştir. Yapılan testlerde trafik ağındaki bazı anormal olayların önerilen yöntem ile tespit edilebileceği görülmüştür. 

References

  • Lazarevic, A., Banerjee, A., Chandola, V., Kumar, V., & Srivastava, J. (2008, September). Data mining for anomaly detection. In Tutorial at the European Conference on Principles and Practice of Knowledge Discovery in Databases.
  • Chandola, V., Banerjee, A., & Kumar, V. (2007). Anomaly detection: A survey. ACM computing surveys (CSUR), 41(3), 15.
  • British Columbia Ministry of Transportation and Infrastructure-Business Management Services. Historical DriveBC Events. https://catalogue.data.gov.bc.ca/dataset/historical-drivebc-events . Erişim Tarihi: Temmuz 2018.
  • Chen, S., & Wang, W. (2009). Decision tree learning for freeway automatic incident detection. Expert Systems with Applications, 36(2), 4101-4105.
  • Payne, H. J., & Tignor, S. C. (1978). Freeway incident-detection algorithms based on decision trees with states. Transportation Research Record, (682).
  • Lu, J., Liu, Q., Yuan, L., & Chen, S. (2014). Grafted Decision Tree for Freeway Incident Detection. In CICTP 2014: Safe, Smart, and Sustainable Multimodal Transportation Systems (pp. 467-477).
  • Jiang, G., Niu, S., Li, Q., Chang, A., & Jiang, H. (2010, March). Automated incident detection algorithms for urban expressway. In Advanced Computer Control (ICACC), 2010 2nd International Conference on (Vol. 3, pp. 70-74). IEEE.
  • Patel, N., & Upadhyay, S. (2012). Study of various decision tree pruning methods with their empirical comparison in WEKA. International journal of computer applications, 60(12).
  • Quinlan, J. R. (2014). C4. 5: programs for machine learning. Elsevier.
  • Lior, R. (2014). Data mining with decision trees: theory and applications (Vol. 81). World scientific.
  • Brijain, M., Patel, R., Kushik, M., & Rana, K. (2014). A survey on decision tree algorithm for classification.
  • Grąbczewski, K. (2014). Meta-learning in decision tree induction(Vol. 1). Springer International Publishing.
  • Sewaiwar, P., & Verma, K. K. (2015). Comparative study of various decision tree classification algorithm using WEKA. International Journal of Emerging Research in Management &Technology, 4, 2278-9359.
  • Drazin, S., & Montag, M. (2012). Decision tree analysis using weka. Machine Learning-Project II, University of Miami, 1-3.
  • Kaur, G., & Chhabra, A. (2014). Improved J48 classification algorithm for the prediction of diabetes. International Journal of Computer Applications, 98(22).
  • La-inchua, J., Chivapreecha, S., & Thajchayapong, S. (2013, May). A new system for traffic incident detection using fuzzy logic and majority voting. In Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 2013 10th International Conference on (pp. 1-5). IEEE.
  • Liu, Q., Lu, J., Chen, S., & Zhao, K. (2014). Multiple Naïve bayes classifiers ensemble for traffic incident detection. Mathematical Problems in Engineering, 2014.
  • Chen, L., Cao, Y., & Ji, R. (2010, August). Automatic incident detection algorithm based on support vector machine. In Natural Computation (ICNC), 2010 Sixth International Conference on(Vol. 2, pp. 864-866). IEEE.
  • Raiyn, J., & Toledo, T. (2014). Real-time road traffic anomaly detection. Journal of Transportation Technologies, 4(03), 256.
  • Kinoshita, A., Takasu, A., & Adachi, J. (2014, October). Real-time traffic incident detection using probe-car data on the Tokyo Metropolitan Expressway. In Big Data (Big Data), 2014 IEEE International Conference on (pp. 43-45). IEEE.
  • Barria, J. A., & Thajchayapong, S. (2011). Detection and classification of traffic anomalies using microscopic traffic variables. IEEE Transactions on Intelligent Transportation Systems, 12(3), 695-704.
  • Hodge, V., & Austin, J. (2004). A survey of outlier detection methodologies. Artificial intelligence review, 22(2), 85-126.
  • Alpaydin, E. (2009). Introduction to machine learning. MIT press.
  • Witten, I. H., & Frank, E. (1999). Data mining: Practical machine learning tools and techniques with java implementations. San Francisco: Morgan Kaufmann Publishers. pp. 89–97, 125–127, 159–161.
  • Friedman J., Kohavi R., and Yun Y., (1996, August). Lazy decision trees, In Proceedings of the Thirteenth National Conference on Artificial Intelligence, pp. 717–724. Cambridge, MA: AAAI Press/MIT Press.

Anomaly Detection in Traffic Networks

Year 2018, , 132 - 138, 30.09.2018
https://doi.org/10.31796/ogummf.440285

Abstract

Along with the growing traffic networks, the control of traffic networks has become increasingly difficult. The detection of anomaly is very important in ensuring this monitoring. With anomaly detection approaches in traffic networks, events are detected early and quick intervention is provided. This saves time and money. There are classification, clustering, statistical, etc. approaches in anomaly detection for problems in the literature. Support vector machines, Bayesian networks, fuzzy logic, genetic algorithms, etc. are main approaches that used to detect anomalies. In this study, a decision tree algorithm is proposed to detect anomaly in traffic networks. The proposed method has been tested using the British Colombia traffic data set. It is seen that some abnormal events in the traffic network can be detected by using the proposed method. 

References

  • Lazarevic, A., Banerjee, A., Chandola, V., Kumar, V., & Srivastava, J. (2008, September). Data mining for anomaly detection. In Tutorial at the European Conference on Principles and Practice of Knowledge Discovery in Databases.
  • Chandola, V., Banerjee, A., & Kumar, V. (2007). Anomaly detection: A survey. ACM computing surveys (CSUR), 41(3), 15.
  • British Columbia Ministry of Transportation and Infrastructure-Business Management Services. Historical DriveBC Events. https://catalogue.data.gov.bc.ca/dataset/historical-drivebc-events . Erişim Tarihi: Temmuz 2018.
  • Chen, S., & Wang, W. (2009). Decision tree learning for freeway automatic incident detection. Expert Systems with Applications, 36(2), 4101-4105.
  • Payne, H. J., & Tignor, S. C. (1978). Freeway incident-detection algorithms based on decision trees with states. Transportation Research Record, (682).
  • Lu, J., Liu, Q., Yuan, L., & Chen, S. (2014). Grafted Decision Tree for Freeway Incident Detection. In CICTP 2014: Safe, Smart, and Sustainable Multimodal Transportation Systems (pp. 467-477).
  • Jiang, G., Niu, S., Li, Q., Chang, A., & Jiang, H. (2010, March). Automated incident detection algorithms for urban expressway. In Advanced Computer Control (ICACC), 2010 2nd International Conference on (Vol. 3, pp. 70-74). IEEE.
  • Patel, N., & Upadhyay, S. (2012). Study of various decision tree pruning methods with their empirical comparison in WEKA. International journal of computer applications, 60(12).
  • Quinlan, J. R. (2014). C4. 5: programs for machine learning. Elsevier.
  • Lior, R. (2014). Data mining with decision trees: theory and applications (Vol. 81). World scientific.
  • Brijain, M., Patel, R., Kushik, M., & Rana, K. (2014). A survey on decision tree algorithm for classification.
  • Grąbczewski, K. (2014). Meta-learning in decision tree induction(Vol. 1). Springer International Publishing.
  • Sewaiwar, P., & Verma, K. K. (2015). Comparative study of various decision tree classification algorithm using WEKA. International Journal of Emerging Research in Management &Technology, 4, 2278-9359.
  • Drazin, S., & Montag, M. (2012). Decision tree analysis using weka. Machine Learning-Project II, University of Miami, 1-3.
  • Kaur, G., & Chhabra, A. (2014). Improved J48 classification algorithm for the prediction of diabetes. International Journal of Computer Applications, 98(22).
  • La-inchua, J., Chivapreecha, S., & Thajchayapong, S. (2013, May). A new system for traffic incident detection using fuzzy logic and majority voting. In Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 2013 10th International Conference on (pp. 1-5). IEEE.
  • Liu, Q., Lu, J., Chen, S., & Zhao, K. (2014). Multiple Naïve bayes classifiers ensemble for traffic incident detection. Mathematical Problems in Engineering, 2014.
  • Chen, L., Cao, Y., & Ji, R. (2010, August). Automatic incident detection algorithm based on support vector machine. In Natural Computation (ICNC), 2010 Sixth International Conference on(Vol. 2, pp. 864-866). IEEE.
  • Raiyn, J., & Toledo, T. (2014). Real-time road traffic anomaly detection. Journal of Transportation Technologies, 4(03), 256.
  • Kinoshita, A., Takasu, A., & Adachi, J. (2014, October). Real-time traffic incident detection using probe-car data on the Tokyo Metropolitan Expressway. In Big Data (Big Data), 2014 IEEE International Conference on (pp. 43-45). IEEE.
  • Barria, J. A., & Thajchayapong, S. (2011). Detection and classification of traffic anomalies using microscopic traffic variables. IEEE Transactions on Intelligent Transportation Systems, 12(3), 695-704.
  • Hodge, V., & Austin, J. (2004). A survey of outlier detection methodologies. Artificial intelligence review, 22(2), 85-126.
  • Alpaydin, E. (2009). Introduction to machine learning. MIT press.
  • Witten, I. H., & Frank, E. (1999). Data mining: Practical machine learning tools and techniques with java implementations. San Francisco: Morgan Kaufmann Publishers. pp. 89–97, 125–127, 159–161.
  • Friedman J., Kohavi R., and Yun Y., (1996, August). Lazy decision trees, In Proceedings of the Thirteenth National Conference on Artificial Intelligence, pp. 717–724. Cambridge, MA: AAAI Press/MIT Press.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Computer Software
Journal Section Research Articles
Authors

Özlem Örnek 0000-0002-8775-8695

Seval Vatan This is me 0000-0002-1015-7445

Serpil Sarıoğlu This is me 0000-0003-0702-1704

Ahmet Yazıcı 0000-0001-5589-2032

Publication Date September 30, 2018
Acceptance Date November 5, 2018
Published in Issue Year 2018

Cite

APA Örnek, Ö., Vatan, S., Sarıoğlu, S., Yazıcı, A. (2018). Trafik Ağlarında Anomali Tespiti. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 26(3), 132-138. https://doi.org/10.31796/ogummf.440285
AMA Örnek Ö, Vatan S, Sarıoğlu S, Yazıcı A. Trafik Ağlarında Anomali Tespiti. ESOGÜ Müh Mim Fak Derg. September 2018;26(3):132-138. doi:10.31796/ogummf.440285
Chicago Örnek, Özlem, Seval Vatan, Serpil Sarıoğlu, and Ahmet Yazıcı. “Trafik Ağlarında Anomali Tespiti”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 26, no. 3 (September 2018): 132-38. https://doi.org/10.31796/ogummf.440285.
EndNote Örnek Ö, Vatan S, Sarıoğlu S, Yazıcı A (September 1, 2018) Trafik Ağlarında Anomali Tespiti. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 26 3 132–138.
IEEE Ö. Örnek, S. Vatan, S. Sarıoğlu, and A. Yazıcı, “Trafik Ağlarında Anomali Tespiti”, ESOGÜ Müh Mim Fak Derg, vol. 26, no. 3, pp. 132–138, 2018, doi: 10.31796/ogummf.440285.
ISNAD Örnek, Özlem et al. “Trafik Ağlarında Anomali Tespiti”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 26/3 (September 2018), 132-138. https://doi.org/10.31796/ogummf.440285.
JAMA Örnek Ö, Vatan S, Sarıoğlu S, Yazıcı A. Trafik Ağlarında Anomali Tespiti. ESOGÜ Müh Mim Fak Derg. 2018;26:132–138.
MLA Örnek, Özlem et al. “Trafik Ağlarında Anomali Tespiti”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, vol. 26, no. 3, 2018, pp. 132-8, doi:10.31796/ogummf.440285.
Vancouver Örnek Ö, Vatan S, Sarıoğlu S, Yazıcı A. Trafik Ağlarında Anomali Tespiti. ESOGÜ Müh Mim Fak Derg. 2018;26(3):132-8.

20873 13565 13566 15461 13568  14913