Research Article
BibTex RIS Cite

KABLOSUZ YERALTI ALGILAYICI AĞLAR İÇİN DÜĞÜM İLETİŞİMİNDE DERİNLİK FAKTÖRÜNÜN ANALİZİ

Year 2019, , 93 - 99, 15.08.2019
https://doi.org/10.31796/ogummf.545943

Abstract

Kablosuz yeraltı
algılayıcı ağlar, yeni bir araştırma alanı olarak karşımıza çıkmaktadır. Akıllı
sulamadan, güvenlik ve yardım tabanlı yönlendirmeye kadar birçok mühendislik
uygulamasında yaygın bir şekilde kullanılmaktadır. Kablosuz yeraltı algılayıcı
ağların uygulama alanlarının bir kısmı tünel, mağara, vb. yeraltı boşluklu
alanlardan oluşurken, bir kısmı da yeraltı boşluksuz katı ortamlardan
oluşmaktadır. Bu bağlamda, kablosuz yeraltı algılayıcı ağlar tarımsal amaçlı
olarak son zamanlarda büyük önem kazanmaya başlamıştır. Bu makale çalışmasında,
toprağın yeraltı-yeraltı ve yeraltı-yerüstü kablosuz yeraltı algılayıcı düğüm
iletişimine olan etkisi matematiksel olarak benzetim modeli ile incelenmiştir.
Ağ yapısının başarımını değerlendirmek amacıyla, alınan sinyal gücü ve yol
kaybı parametreleri ele alınmıştır. Derinlik mesafesi arttıkça, iletişimde
yaşanan yol kayıplarının da arttığı gözler önüne serilmiştir. Elde edilen
başarım değerlendirmesi sonuçları, kablosuz yeraltı algılayıcı ağlarda derinlik
tabanlı iletişim için farklı gönderici gücü ile sinyal iletimi gerekliliğini
ortaya çıkarmaktadır.

References

  • Akyildiz, I. F. and Stuntebeck, E. P. (2006). Wireless underground sensor networks: Research challenges. Ad Hoc Networks, 4(6), 669-686.
  • Cao, Z., Lu, H. and He, Q. (2011). Research of underground staff positioning system based on wireless sensor network, International Conference on Computer Science and Service System (CSSS), Nanjing, 600-603.
  • Chehri, A., Fortier, P. and Tardif, P. (2006). Application of Ad-hoc sensor networks for localization in underground mines, IEEE Annual Wireless and Microwave Technology Conference, Clearwater Beach, FL, 1-4.
  • Dohare, Y. S., Maity, T., Paul, P. S. and Prasad, H. (2016). Smart low power wireless sensor network for underground mine environment monitoring, 3rd International Conference on Recent Advances in Information Technology (RAIT), Dhanbad, 112-116.
  • Dong, X. and Vuran, M. C. (2013). Environment aware connectivity for wireless underground sensor networks, Proceedings IEEE INFOCOM, Turin, 674-682.
  • Dung, L. T., Trang, H. T. H., Choi, S. and Hwang, S. O. (2016). Impact of soil medium on the path connectivity of sensors in wireless underground sensor networks, International Conference on Advanced Technologies for Communications (ATC), Hanoi, 60-64.
  • Elleithy, A. and Liu, G. (2013). Analysis of the lifetime of wireless sensor networks for underground communications in dry sand, WAMICON, Orlando, FL, 1-6.
  • Jiang, H., Qian, J. and Peng, W. (2009). Energy efficient sensor placement for tunnel wireless sensor network in underground mine, 2nd International Conference on Power Electronics and Intelligent Transportation System (PEITS), Shenzhen, 219-222.
  • Kisseleff, S., Chen, X., Akyildiz, I. F. and Gerstacker, W. (2016). Wireless power transfer for access limited wireless underground sensor networks, IEEE International Conference on Communications (ICC), Kuala Lumpur, 1-7.
  • Ma, F. (2012). Sensor networks-based monitoring and fuzzy information fusion System for underground Gas disaster, 9th International Conference on Fuzzy Systems and Knowledge Discovery, Sichuan, 596-600.
  • Nan, W. and Xue-Li S. (2009). Research on Nodes Location Technology in Wireless Sensor Network Underground, Third International Symposium on Intelligent Information Technology Application Workshops, Nanchang, 273-275.
  • Ndoh, M. and Delisle, G. Y. (2005). Geolocation in underground mines using wireless sensor networks, IEEE Antennas and Propagation Society International Symposium, Washington, DC, 229-232.
  • Stuntebeck, E. P., Pompili, D. and Melodia, T. (2006). Wireless underground sensor networks using commodity terrestrial motes, 2nd IEEE Workshop on Wireless Mesh Networks, Reston, VA, 112-114.
  • Tooker, J., Dong, X., Vuran, M. C. and Irmak, S. (2012). Connecting soil to the cloud: A wireless underground sensor network testbed, 9th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), Seoul, 79-81.
  • Tooker, J. and Vuran, M. C. (2012). Mobile data harvesting in wireless underground sensor networks, 9th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), Seoul, 560-568.
  • Trinchero, D., Fiorelli, B., Galardini, A. and Stefanelli, R. (2009). Underground wireless sensor networks, IEEE 10th Annual Wireless and Microwave Technology Conference, Clearwater, FL, 1-3.
  • Ünsal, E., Akkan, T., Akkan, L. Ö. and Çebi, Y. (2016). Power management for Wireless Sensor Networks in underground mining, 24th Signal Processing and Communication Application Conference (SIU), Zonguldak, 1053-1056.
  • Zemmour, H., Baudoin, G. and Diet, A. (2017). Soil Effects on the Underground-to-Aboveground Communication Link in Ultrawideband Wireless Underground Sensor Networks. IEEE Antennas and Wireless Propagation Letters, 16, 218-221.

ANALYSIS OF DEPTH FACTOR IN NODE COMMUNICATION FOR WIRELESS UNDERGROUND SENSOR NETWORKS

Year 2019, , 93 - 99, 15.08.2019
https://doi.org/10.31796/ogummf.545943

Abstract

Wireless underground sensor
networks are a new area of research. It is widely used in many engineering
applications, from smart irrigation to security and help based routing. Some of
the application areas of wireless underground sensor networks are underground
with space such as tunnel, cave, etc. while some consists of no spaced
underground solid areas as well. In this context, the wireless underground
sensor networks have recently become very important for agricultural purposes.
In this paper, the effect of soil on underground-underground and
underground-surface wireless underground sensor node communication has been
investigated with a mathematical simulation model. In order to evaluate the
performance of the network structure, the received signal strength and path
loss parameters are discussed. As the depth distance increases, the increase in
path loss of communication has been revealed. The acquired performance
evaluation result reveals the need for signal transmission with different
transmitter power for depth-based communication in wireless underground sensor
networks.

References

  • Akyildiz, I. F. and Stuntebeck, E. P. (2006). Wireless underground sensor networks: Research challenges. Ad Hoc Networks, 4(6), 669-686.
  • Cao, Z., Lu, H. and He, Q. (2011). Research of underground staff positioning system based on wireless sensor network, International Conference on Computer Science and Service System (CSSS), Nanjing, 600-603.
  • Chehri, A., Fortier, P. and Tardif, P. (2006). Application of Ad-hoc sensor networks for localization in underground mines, IEEE Annual Wireless and Microwave Technology Conference, Clearwater Beach, FL, 1-4.
  • Dohare, Y. S., Maity, T., Paul, P. S. and Prasad, H. (2016). Smart low power wireless sensor network for underground mine environment monitoring, 3rd International Conference on Recent Advances in Information Technology (RAIT), Dhanbad, 112-116.
  • Dong, X. and Vuran, M. C. (2013). Environment aware connectivity for wireless underground sensor networks, Proceedings IEEE INFOCOM, Turin, 674-682.
  • Dung, L. T., Trang, H. T. H., Choi, S. and Hwang, S. O. (2016). Impact of soil medium on the path connectivity of sensors in wireless underground sensor networks, International Conference on Advanced Technologies for Communications (ATC), Hanoi, 60-64.
  • Elleithy, A. and Liu, G. (2013). Analysis of the lifetime of wireless sensor networks for underground communications in dry sand, WAMICON, Orlando, FL, 1-6.
  • Jiang, H., Qian, J. and Peng, W. (2009). Energy efficient sensor placement for tunnel wireless sensor network in underground mine, 2nd International Conference on Power Electronics and Intelligent Transportation System (PEITS), Shenzhen, 219-222.
  • Kisseleff, S., Chen, X., Akyildiz, I. F. and Gerstacker, W. (2016). Wireless power transfer for access limited wireless underground sensor networks, IEEE International Conference on Communications (ICC), Kuala Lumpur, 1-7.
  • Ma, F. (2012). Sensor networks-based monitoring and fuzzy information fusion System for underground Gas disaster, 9th International Conference on Fuzzy Systems and Knowledge Discovery, Sichuan, 596-600.
  • Nan, W. and Xue-Li S. (2009). Research on Nodes Location Technology in Wireless Sensor Network Underground, Third International Symposium on Intelligent Information Technology Application Workshops, Nanchang, 273-275.
  • Ndoh, M. and Delisle, G. Y. (2005). Geolocation in underground mines using wireless sensor networks, IEEE Antennas and Propagation Society International Symposium, Washington, DC, 229-232.
  • Stuntebeck, E. P., Pompili, D. and Melodia, T. (2006). Wireless underground sensor networks using commodity terrestrial motes, 2nd IEEE Workshop on Wireless Mesh Networks, Reston, VA, 112-114.
  • Tooker, J., Dong, X., Vuran, M. C. and Irmak, S. (2012). Connecting soil to the cloud: A wireless underground sensor network testbed, 9th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), Seoul, 79-81.
  • Tooker, J. and Vuran, M. C. (2012). Mobile data harvesting in wireless underground sensor networks, 9th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), Seoul, 560-568.
  • Trinchero, D., Fiorelli, B., Galardini, A. and Stefanelli, R. (2009). Underground wireless sensor networks, IEEE 10th Annual Wireless and Microwave Technology Conference, Clearwater, FL, 1-3.
  • Ünsal, E., Akkan, T., Akkan, L. Ö. and Çebi, Y. (2016). Power management for Wireless Sensor Networks in underground mining, 24th Signal Processing and Communication Application Conference (SIU), Zonguldak, 1053-1056.
  • Zemmour, H., Baudoin, G. and Diet, A. (2017). Soil Effects on the Underground-to-Aboveground Communication Link in Ultrawideband Wireless Underground Sensor Networks. IEEE Antennas and Wireless Propagation Letters, 16, 218-221.
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Computer Software
Journal Section Research Articles
Authors

Muhammed Enes Bayrakdar 0000-0001-9446-0988

Publication Date August 15, 2019
Acceptance Date July 11, 2019
Published in Issue Year 2019

Cite

APA Bayrakdar, M. E. (2019). KABLOSUZ YERALTI ALGILAYICI AĞLAR İÇİN DÜĞÜM İLETİŞİMİNDE DERİNLİK FAKTÖRÜNÜN ANALİZİ. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 27(2), 93-99. https://doi.org/10.31796/ogummf.545943
AMA Bayrakdar ME. KABLOSUZ YERALTI ALGILAYICI AĞLAR İÇİN DÜĞÜM İLETİŞİMİNDE DERİNLİK FAKTÖRÜNÜN ANALİZİ. ESOGÜ Müh Mim Fak Derg. August 2019;27(2):93-99. doi:10.31796/ogummf.545943
Chicago Bayrakdar, Muhammed Enes. “KABLOSUZ YERALTI ALGILAYICI AĞLAR İÇİN DÜĞÜM İLETİŞİMİNDE DERİNLİK FAKTÖRÜNÜN ANALİZİ”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 27, no. 2 (August 2019): 93-99. https://doi.org/10.31796/ogummf.545943.
EndNote Bayrakdar ME (August 1, 2019) KABLOSUZ YERALTI ALGILAYICI AĞLAR İÇİN DÜĞÜM İLETİŞİMİNDE DERİNLİK FAKTÖRÜNÜN ANALİZİ. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 27 2 93–99.
IEEE M. E. Bayrakdar, “KABLOSUZ YERALTI ALGILAYICI AĞLAR İÇİN DÜĞÜM İLETİŞİMİNDE DERİNLİK FAKTÖRÜNÜN ANALİZİ”, ESOGÜ Müh Mim Fak Derg, vol. 27, no. 2, pp. 93–99, 2019, doi: 10.31796/ogummf.545943.
ISNAD Bayrakdar, Muhammed Enes. “KABLOSUZ YERALTI ALGILAYICI AĞLAR İÇİN DÜĞÜM İLETİŞİMİNDE DERİNLİK FAKTÖRÜNÜN ANALİZİ”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 27/2 (August 2019), 93-99. https://doi.org/10.31796/ogummf.545943.
JAMA Bayrakdar ME. KABLOSUZ YERALTI ALGILAYICI AĞLAR İÇİN DÜĞÜM İLETİŞİMİNDE DERİNLİK FAKTÖRÜNÜN ANALİZİ. ESOGÜ Müh Mim Fak Derg. 2019;27:93–99.
MLA Bayrakdar, Muhammed Enes. “KABLOSUZ YERALTI ALGILAYICI AĞLAR İÇİN DÜĞÜM İLETİŞİMİNDE DERİNLİK FAKTÖRÜNÜN ANALİZİ”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, vol. 27, no. 2, 2019, pp. 93-99, doi:10.31796/ogummf.545943.
Vancouver Bayrakdar ME. KABLOSUZ YERALTI ALGILAYICI AĞLAR İÇİN DÜĞÜM İLETİŞİMİNDE DERİNLİK FAKTÖRÜNÜN ANALİZİ. ESOGÜ Müh Mim Fak Derg. 2019;27(2):93-9.

20873 13565 13566 15461 13568  14913