Research Article
BibTex RIS Cite

CHEMICAL RECOVERY FROM POLYSTYRENE WASTE AND LOW DENSITY POLYETHYLENE VIA CONVENTIONAL PYROLYSIS

Year 2020, , 155 - 163, 31.08.2020
https://doi.org/10.31796/ogummf.734475

Abstract

In Turkey, plastic wastes have formed 5-14 % of total solid wastes. Plastic wastes have been classified as thermoplastic and thermosets. Thermoplastic wastes which covers Polyethylene (PE), Polystyrene (PS), Polypropylene (PP), Polyethylene terephthalate (PET) and Polyvinyl chloride (PVC) can be recycled by using mechanical recycling, energy recovery and chemical recovery routes. Pyrolysis as a chemical recovery technique is important to produce invaluable chemicals in high yields. In this study, it was aimed to obtain hydrocarbons from PS and Low density Polyethylene (LDPE) via pyrolysis. Product yields were calculated and liquid products were analyzed via GC-MS. In the light of the results, it was deduced that 520 ⁰C and 570 ⁰C were the suitable temperatures to obtain the liquid product with maximum yields for LDPE and PS respectively. That temperature was found for LDPE and PS co-pyrolysis as 570 ⁰C. It was determined that Benzene-Toluene-Ethyl Benzene (BTE) fraction amount increased from 5 % to 30 % with LDPE adding in the feed for almost same liquid product yields of PS (88%) and LDPE/PS (84 %). In addition, it was obtained the pyrolytic liquid which comprised of wholly alkanes and alkenes for LDPE with 70 % product yield.

Supporting Institution

Ankara Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Project Number

17L0443014

Thanks

This study was supported financially by Ankara University Coordinatorship of Scientific Research Projects (Project Number: 17L0443014).

References

  • Akubo, K., Nahil, M. A., & Williams, P. T. (2019). Aromatic fuel oils produced from the pyrolysis-catalysis of polyethylene plastic with metal-impregnated zeolite catalysts. Journal of the Energy Institute, 92(1), 195–202. doi: https://doi.org/10.1016/j.joei.2017.10.009
  • Al-Salem, S. M., Lettieri, P., & Baeyens, J. (2009). Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Management, 29(10), 2625–2643. doi: https://doi.org/10.1016/j.wasman.2009.06.004
  • Anuar Sharuddin, S. D., Abnisa, F., Wan Daud, W. M. A., & Aroua, M. K. (2016). A review on pyrolysis of plastic wastes. Energy Conversion and Management, 115, 308–326. doi: https://doi.org/10.1016/j.enconman.2016.02.037
  • Chae, Y., & An, Y. J. (2018). Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review. Environmental Pollution, 240, 387–395. doi: https://doi.org/10.1016/j.envpol.2018.05.008
  • Doddamani, M. (2020). Dynamic mechanical analysis of 3D printed eco-friendly lightweight composite. Composites Communications, 19, 177–181. doi: https://doi.org/10.1016/j.coco.2020.04.002
  • Francis, R. (2016). Recycling of polymers : methods, characterization and applications. Germany: John Wiley & Sons.
  • Karak, T., Bhagat, R. M., & Bhattacharyya, P. (2012). Municipal solid waste generation, composition, and management: The world scenario. Critical Reviews in Environmental Science and Technology, 42(15), 1509–1630. doi: https://doi.org/10.1080/10643389.2011.569871
  • Ko, S., Kwon, Y. J., Lee, J. U., & Jeon, Y. P. (2020). Preparation of synthetic graphite from waste PET plastic. Journal of Industrial and Engineering Chemistry, 83, 449–458. doi: https://doi.org/10.1016/j.jiec.2019.12.018
  • Koo, J. K., Kim, S. W., & Seo, Y. H. (1991). Characterization of aromatic hydrocarbon formation from pyrolysis of polyethylene-polystyrene mixtures. Resources, Conservation and Recycling, 5(4), 365–382. doi: https://doi.org/10.1016/0921-3449(91)90013-E
  • Lambert, S., & Wagner, M. (2016). Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere, 145, 265–268. doi: https://doi.org/10.1016/j.chemosphere.2015.11.078
  • Liu, Y., Qian, J., & Wang, J. (2000). Pyrolysis of polystyrene waste in a fluidized-bed reactor to obtain styrene monomer and gasoline fraction. Fuel Processing Technology, 63(1), 45–55. doi: https://doi.org/10.1016/S0378-3820(99)00066-1
  • Marcilla, A., Beltrán, M. I., & Navarro, R. (2009). Evolution of products during the degradation of polyethylene in a batch reactor. Journal of Analytical and Applied Pyrolysis, 86(1), 14–21. doi: https://doi.org/10.1016/j.jaap.2009.03.004
  • Miandad, R., Nizami, A. S., Rehan, M., Barakat, M. A., Khan, M. I., Mustafa, A., Ismail, I. M. I., & Murphy, J. D. (2016). Influence of temperature and reaction time on the conversion of polystyrene waste to pyrolysis liquid oil. Waste Management, 58, 250–259. doi: https://doi.org/10.1016/j.wasman.2016.09.023
  • Mukherjee, A., Ruj, B., Gupta, P., & Sadhukhan, A. K. (2020). A Study on Pyrolysis of Plastic Wastes for Product Recovery and Analysis. In: Urban Mining and Sustainable Waste Management, Springer, Singapore, 329–339. https://doi.org/10.1007/978-981-15-0532-4_32
  • Pascault, J.-P. Verdu, J., Williams R. (2002). Thermosetting polymers. New York: Marcel Dekker.
  • Plastics-the Facts 2018 An analysis of European plastics production, demand and waste data. (n.d.). Retrieved May 3, 2020, from https://www.plasticseurope.org/application/files/6315/4510/9658/Plastics_the_facts_2018_AF_web.pdf
  • Shankar, S., Bang, Y. J., & Rhim, J. W. (2019). Antibacterial LDPE/GSE/Mel/ZnONP composite film-coated wrapping paper for convenience food packaging application. Food Packaging and Shelf Life, 22, 100421. doi: https://doi.org/10.1016/j.fpsl.2019.100421
  • Singh, R. K., Ruj, B., Sadhukhan, A. K., & Gupta, P. (2020). Catalytic and Non-catalytic Thermolysis of Waste Polystyrene for Recovery of Fuel Grade Products and Their Characterization. In: Energy Recovery Processes from Wastes, Springer, Singapur, 23-32. https://doi.org/10.1007/978-981-32-9228-4_3
  • Trade Map - List of importing markets for a product exported by Turkey. (n.d.). Retrieved May 3, 2020, from https://www.trademap.org/Country_SelProductCountry_TS.aspx?nvpm=1%7C792%7C%7C%7C%7C39%7C%7C%7C2%7C1%7C1%7C2%7C2%7C1%7C2%7C1%7C1
  • Trade Map - List of supplying markets for a product imported by Turkey. (n.d.-a). Retrieved May 3, 2020, from https://www.trademap.org/Country_SelProductCountry_TS.aspx?nvpm=1%7C792%7C%7C%7C%7C39%7C%7C%7C2%7C1%7C1%7C1%7C2%7C1%7C2%7C1%7C1
  • Trade Map - List of supplying markets for a product imported by Turkey. (n.d.-b). Retrieved May 3, 2020, from https://www.trademap.org/Country_SelProductCountry_TS.aspx?nvpm=1%7C792%7C%7C%7C%7C3915%7C%7C%7C4%7C1%7C1%7C1%7C2%7C1%7C2%7C6%7C1
  • Vallabhy, S., Arun Kumar, M., Bharath, V., Dhakshina Moorthy, E., & Jain, H. K. (2019). Design of upvc windows for lateral wind loads sandwich with hurricane bars for multistorey structures. International Research Journal of Engineering and Technology. 6(3), 4473-4477. Retrieved from: https://www.irjet.net/archives/V6/i3/IRJET-V6I31164.pdf
  • Verma, R., Vinoda, K., Papireddy, M., & Gowda, A. (2016). Toxic Pollutants from Plastic Waste- A Review. Procedia Environmental Sciences, 35, 701-708. doi: https://doi.org/10.1016/j.proenv.2016.07.069
  • What a Waste : A Global Review of Solid Waste Management. (n.d.). Retrieved May 3, 2020, from https://openknowledge.worldbank.org/handle/10986/17388
  • Xu, Z., Liang, Y., Ma, X., Chen, S., Yu, C., Wang, Y., Zhang, D., & Miao, M. (2020). Recyclable thermoset hyperbranched polymers containing reversible hexahydro-s-triazine. Nature Sustainability, 3(1), 29–34. doi: https://doi.org/10.1038/s41893-019-0444-6
  • Zhao, G., Hu, C., & Luo, H. (2020). Effects of combined microwave-hot-air-drying on the physicochemical properties and antioxidant activity of Rhodomyrtus tomentosa berry powder. Journal of Food Measurement and Characterization, 14(3), 1433–1442. doi: https://doi.org/10.1007/s11694-020-00393-5

GELENEKSEL PİROLİZ İLE ALÇAK YOĞUNLUKLU POLİETİLEN VE POLİSTİREN ATIĞINDAN KİMYASAL GERİ KAZANIMI

Year 2020, , 155 - 163, 31.08.2020
https://doi.org/10.31796/ogummf.734475

Abstract

Plastik atıklar Türkiye’deki toplam katı atıkların %5-14’ünü oluşturmaktadır. Plastik atıklar termoplastik ve termosetler olarak sınıflandırılmaktadırlar. Polietilen (PE), Polistiren (PS), Polipropilen (PP), Polietilen Tereftalat (PET) ve Polivinil Klorürü (PVC) kapsayan Termoplastik atıklar, mekanik geri kazanım, enerji geri kazanımı ve kimyasal geri kazanımı yöntemleri kullanılarak geri kazanılabilirler. Bir kimyasal geri kazanımı tekniği olan piroliz, yüksek verimlerde değerli kimyasalları üretmek için önem taşımaktadır.Bu çalışmada, piroliz vasıtasıyla PS ve Alçak Yoğunluklu Polietilen (AYPE)’den hidrokarbonlar elde etmek amaçlanmıştır. Ürün verimleri hesaplanmış ve sıvı ürünler GC-MS aracılığıyla analizlenmiştir. Sonuçlar göz önüne alındığında, AYPE ve PS için sırasıyla 520 ⁰C ve 570 ⁰C’nin maksimum verimlerle sıvı ürün eldesi için uygun sıcaklıklar olduğu çıkarımı yapılmıştır. Bu sıcaklık, AYPE ve PS eş-pirolizi için 570 ⁰C olarak bulunmuştur. Benzen-Toluen-Etil Benzen (BTE) fraksiyon miktarının beslemeye AYPE eklenmesiyle, PS (%88) ve AYPE/PS (%84) için neredeyse aynı sıvı ürün verimlerinde, %5’ten %30’a arttığı belirlenmiştir. Ek olarak, AYPE için tamamen alkan ve alkenlerden oluşan %70 verimle pirolitik sıvı ürün elde edilmiştir.

Project Number

17L0443014

References

  • Akubo, K., Nahil, M. A., & Williams, P. T. (2019). Aromatic fuel oils produced from the pyrolysis-catalysis of polyethylene plastic with metal-impregnated zeolite catalysts. Journal of the Energy Institute, 92(1), 195–202. doi: https://doi.org/10.1016/j.joei.2017.10.009
  • Al-Salem, S. M., Lettieri, P., & Baeyens, J. (2009). Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Management, 29(10), 2625–2643. doi: https://doi.org/10.1016/j.wasman.2009.06.004
  • Anuar Sharuddin, S. D., Abnisa, F., Wan Daud, W. M. A., & Aroua, M. K. (2016). A review on pyrolysis of plastic wastes. Energy Conversion and Management, 115, 308–326. doi: https://doi.org/10.1016/j.enconman.2016.02.037
  • Chae, Y., & An, Y. J. (2018). Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review. Environmental Pollution, 240, 387–395. doi: https://doi.org/10.1016/j.envpol.2018.05.008
  • Doddamani, M. (2020). Dynamic mechanical analysis of 3D printed eco-friendly lightweight composite. Composites Communications, 19, 177–181. doi: https://doi.org/10.1016/j.coco.2020.04.002
  • Francis, R. (2016). Recycling of polymers : methods, characterization and applications. Germany: John Wiley & Sons.
  • Karak, T., Bhagat, R. M., & Bhattacharyya, P. (2012). Municipal solid waste generation, composition, and management: The world scenario. Critical Reviews in Environmental Science and Technology, 42(15), 1509–1630. doi: https://doi.org/10.1080/10643389.2011.569871
  • Ko, S., Kwon, Y. J., Lee, J. U., & Jeon, Y. P. (2020). Preparation of synthetic graphite from waste PET plastic. Journal of Industrial and Engineering Chemistry, 83, 449–458. doi: https://doi.org/10.1016/j.jiec.2019.12.018
  • Koo, J. K., Kim, S. W., & Seo, Y. H. (1991). Characterization of aromatic hydrocarbon formation from pyrolysis of polyethylene-polystyrene mixtures. Resources, Conservation and Recycling, 5(4), 365–382. doi: https://doi.org/10.1016/0921-3449(91)90013-E
  • Lambert, S., & Wagner, M. (2016). Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere, 145, 265–268. doi: https://doi.org/10.1016/j.chemosphere.2015.11.078
  • Liu, Y., Qian, J., & Wang, J. (2000). Pyrolysis of polystyrene waste in a fluidized-bed reactor to obtain styrene monomer and gasoline fraction. Fuel Processing Technology, 63(1), 45–55. doi: https://doi.org/10.1016/S0378-3820(99)00066-1
  • Marcilla, A., Beltrán, M. I., & Navarro, R. (2009). Evolution of products during the degradation of polyethylene in a batch reactor. Journal of Analytical and Applied Pyrolysis, 86(1), 14–21. doi: https://doi.org/10.1016/j.jaap.2009.03.004
  • Miandad, R., Nizami, A. S., Rehan, M., Barakat, M. A., Khan, M. I., Mustafa, A., Ismail, I. M. I., & Murphy, J. D. (2016). Influence of temperature and reaction time on the conversion of polystyrene waste to pyrolysis liquid oil. Waste Management, 58, 250–259. doi: https://doi.org/10.1016/j.wasman.2016.09.023
  • Mukherjee, A., Ruj, B., Gupta, P., & Sadhukhan, A. K. (2020). A Study on Pyrolysis of Plastic Wastes for Product Recovery and Analysis. In: Urban Mining and Sustainable Waste Management, Springer, Singapore, 329–339. https://doi.org/10.1007/978-981-15-0532-4_32
  • Pascault, J.-P. Verdu, J., Williams R. (2002). Thermosetting polymers. New York: Marcel Dekker.
  • Plastics-the Facts 2018 An analysis of European plastics production, demand and waste data. (n.d.). Retrieved May 3, 2020, from https://www.plasticseurope.org/application/files/6315/4510/9658/Plastics_the_facts_2018_AF_web.pdf
  • Shankar, S., Bang, Y. J., & Rhim, J. W. (2019). Antibacterial LDPE/GSE/Mel/ZnONP composite film-coated wrapping paper for convenience food packaging application. Food Packaging and Shelf Life, 22, 100421. doi: https://doi.org/10.1016/j.fpsl.2019.100421
  • Singh, R. K., Ruj, B., Sadhukhan, A. K., & Gupta, P. (2020). Catalytic and Non-catalytic Thermolysis of Waste Polystyrene for Recovery of Fuel Grade Products and Their Characterization. In: Energy Recovery Processes from Wastes, Springer, Singapur, 23-32. https://doi.org/10.1007/978-981-32-9228-4_3
  • Trade Map - List of importing markets for a product exported by Turkey. (n.d.). Retrieved May 3, 2020, from https://www.trademap.org/Country_SelProductCountry_TS.aspx?nvpm=1%7C792%7C%7C%7C%7C39%7C%7C%7C2%7C1%7C1%7C2%7C2%7C1%7C2%7C1%7C1
  • Trade Map - List of supplying markets for a product imported by Turkey. (n.d.-a). Retrieved May 3, 2020, from https://www.trademap.org/Country_SelProductCountry_TS.aspx?nvpm=1%7C792%7C%7C%7C%7C39%7C%7C%7C2%7C1%7C1%7C1%7C2%7C1%7C2%7C1%7C1
  • Trade Map - List of supplying markets for a product imported by Turkey. (n.d.-b). Retrieved May 3, 2020, from https://www.trademap.org/Country_SelProductCountry_TS.aspx?nvpm=1%7C792%7C%7C%7C%7C3915%7C%7C%7C4%7C1%7C1%7C1%7C2%7C1%7C2%7C6%7C1
  • Vallabhy, S., Arun Kumar, M., Bharath, V., Dhakshina Moorthy, E., & Jain, H. K. (2019). Design of upvc windows for lateral wind loads sandwich with hurricane bars for multistorey structures. International Research Journal of Engineering and Technology. 6(3), 4473-4477. Retrieved from: https://www.irjet.net/archives/V6/i3/IRJET-V6I31164.pdf
  • Verma, R., Vinoda, K., Papireddy, M., & Gowda, A. (2016). Toxic Pollutants from Plastic Waste- A Review. Procedia Environmental Sciences, 35, 701-708. doi: https://doi.org/10.1016/j.proenv.2016.07.069
  • What a Waste : A Global Review of Solid Waste Management. (n.d.). Retrieved May 3, 2020, from https://openknowledge.worldbank.org/handle/10986/17388
  • Xu, Z., Liang, Y., Ma, X., Chen, S., Yu, C., Wang, Y., Zhang, D., & Miao, M. (2020). Recyclable thermoset hyperbranched polymers containing reversible hexahydro-s-triazine. Nature Sustainability, 3(1), 29–34. doi: https://doi.org/10.1038/s41893-019-0444-6
  • Zhao, G., Hu, C., & Luo, H. (2020). Effects of combined microwave-hot-air-drying on the physicochemical properties and antioxidant activity of Rhodomyrtus tomentosa berry powder. Journal of Food Measurement and Characterization, 14(3), 1433–1442. doi: https://doi.org/10.1007/s11694-020-00393-5
There are 26 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Articles
Authors

Gamze Özçakır 0000-0003-0357-4176

Ali Karaduman 0000-0003-1061-8288

Project Number 17L0443014
Publication Date August 31, 2020
Acceptance Date July 16, 2020
Published in Issue Year 2020

Cite

APA Özçakır, G., & Karaduman, A. (2020). CHEMICAL RECOVERY FROM POLYSTYRENE WASTE AND LOW DENSITY POLYETHYLENE VIA CONVENTIONAL PYROLYSIS. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 28(2), 155-163. https://doi.org/10.31796/ogummf.734475
AMA Özçakır G, Karaduman A. CHEMICAL RECOVERY FROM POLYSTYRENE WASTE AND LOW DENSITY POLYETHYLENE VIA CONVENTIONAL PYROLYSIS. ESOGÜ Müh Mim Fak Derg. August 2020;28(2):155-163. doi:10.31796/ogummf.734475
Chicago Özçakır, Gamze, and Ali Karaduman. “CHEMICAL RECOVERY FROM POLYSTYRENE WASTE AND LOW DENSITY POLYETHYLENE VIA CONVENTIONAL PYROLYSIS”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 28, no. 2 (August 2020): 155-63. https://doi.org/10.31796/ogummf.734475.
EndNote Özçakır G, Karaduman A (August 1, 2020) CHEMICAL RECOVERY FROM POLYSTYRENE WASTE AND LOW DENSITY POLYETHYLENE VIA CONVENTIONAL PYROLYSIS. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 28 2 155–163.
IEEE G. Özçakır and A. Karaduman, “CHEMICAL RECOVERY FROM POLYSTYRENE WASTE AND LOW DENSITY POLYETHYLENE VIA CONVENTIONAL PYROLYSIS”, ESOGÜ Müh Mim Fak Derg, vol. 28, no. 2, pp. 155–163, 2020, doi: 10.31796/ogummf.734475.
ISNAD Özçakır, Gamze - Karaduman, Ali. “CHEMICAL RECOVERY FROM POLYSTYRENE WASTE AND LOW DENSITY POLYETHYLENE VIA CONVENTIONAL PYROLYSIS”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 28/2 (August 2020), 155-163. https://doi.org/10.31796/ogummf.734475.
JAMA Özçakır G, Karaduman A. CHEMICAL RECOVERY FROM POLYSTYRENE WASTE AND LOW DENSITY POLYETHYLENE VIA CONVENTIONAL PYROLYSIS. ESOGÜ Müh Mim Fak Derg. 2020;28:155–163.
MLA Özçakır, Gamze and Ali Karaduman. “CHEMICAL RECOVERY FROM POLYSTYRENE WASTE AND LOW DENSITY POLYETHYLENE VIA CONVENTIONAL PYROLYSIS”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, vol. 28, no. 2, 2020, pp. 155-63, doi:10.31796/ogummf.734475.
Vancouver Özçakır G, Karaduman A. CHEMICAL RECOVERY FROM POLYSTYRENE WASTE AND LOW DENSITY POLYETHYLENE VIA CONVENTIONAL PYROLYSIS. ESOGÜ Müh Mim Fak Derg. 2020;28(2):155-63.

20873 13565 13566 15461 13568  14913