EXPERIMENTAL ANALYSIS OF THE EFFECTS OF USING DIFFERENT WATER-ETHYLENE GLYCOL MIXTURE RATES ON HEAT TRANSFER PERFORMANCE IN A HEAT EXCHANGER
Year 2021,
, 145 - 157, 31.08.2021
Bahadır Gemicioğlu
,
Tolga Demircan
Abstract
In this study, the effects of using different water-ethylene glycol mixture rates on heat transfer performance put in an automobile radiator as a liquid is experimentally analysed. Ethylene glycol is added in water volumetrically and experiments are conducted for 0%, 25%, 50%, 75% and 100% volumetric ratio of ethylene glycol. For all these mixture rates, 300 experiments are conducted for fluid inlet temperature between 40-80 °C, fluid inlet flow rate between 10-22 l/min and cooling air between 1-4 m/s. As a result of the experiments, it is observed that as ethylene glycol mixture ratio passing from the radiator increased, heat transfer decreased. However, as cooling air velocity, fluid inlet flow rate and radiator inlet temperature increased, heat transfer increased as well. When water-ethylene glycol mixture is used in the radiator instead of water, it is observed that radiator fluid freezing temperature decrease and radiator heat transfer performance is negatively impacted.
Supporting Institution
Scientific Research Projects Coordination Unit of Kırıkkale University
Thanks
This work was supported by Scientific Research Projects Coordination Unit of Kırıkkale University. Project number is 2019/057 and the project name is “Experimental Analysis of Using Nanofluids in Automobile Radiator”.
References
- Calisir, T., Yazar, H. O. & Baskaya, S. (2019). Thermal performance of pccp panel radiators for different convector dimensions –An experimental and numerical study. International Journal of Thermal Sciences, 137, 375–387. doi: https://doi.org/10.1016/j.ijthermalsci.2018.12.007
- Çengel, Y. A. & Boles, A. M. (2006). Thermodynamics an engineering approach, New York, USA: McGraw-Hill.
- Çengel, Y. A. & Cimbala, J. M. (2006). Fluid mechanics fundamentals and applications. New York, USA: McGraw-Hill.
- Elsaid, M. A. (2019). Experimental study on the heat transfer performance and friction factor characteristics of Co3O4 and Al2O3 based H2O/(CH2OH)2 nanofluids in a vehicle engine radiator. International Communications in Heat and Mass Transfer, 108, 104263. doi: https://doi.org/10.1016/j.icheatmasstransfer.2019.05.009
- Goudarzi, K. & Jamali, H. (2017). Heat transfer enhancement of Al2O3-EG nanofluid in a car radiator with wire coil ınserts. Applied Thermal Engineering, 118, 510–517. doi: https://doi.org/10.1016/j.applthermaleng.2017.03.016
- Habibian, S. H., Abolmaali, A. M. & Afshin, H. (2018). Numerical investigation of the effects of fin shape, antifreeze and nanoparticles on the performance of compact finned-tube heat exchangers for automobile radiator. Applied Thermal Engineering, 133, 248-260. doi: https://doi.org/10.1016/j.applthermaleng.2018.01.032
- Harsh, R., Srivastav, H., Balakrishnan, P., Saini, V., Kumar, D.S., Rajni, K.S. & Thirumalini, S. (2018). Study of heat transfer characteristics of nanofluids in an automotive radiator, IOP Conf. Series: Materials Science and Engineering, Bengaluru, India.
- Holman, J. P. (2012). Experimental methods for engineers. New York, USA: McGraw-Hill.
- Incropera, P.F., Dewitt, P. D., Bergman, L. T. & Lavine, S. A. (2007). Fundementals of heat and mass transfer. New Jersey, USA: John Wiley & Sons.
- Kakaç, S., Liu, H. & Pramuanjaroenkij, A. (2012). Heat exchangers selection, rating, and thermal design. Florida, USA: CRC Press.
- Karimi, A. & Afrand, M. (2018). Numerical study on thermal performance of an air-cooled heat exchanger: effects of hybrid nanofluid, pipe arrangement and cross section. Energy Conversion and Management, 164, 615-628. doi: https://doi.org/10.1016/j.enconman.2018.03.038
- Leu, J. S., Liu, M. S., Liaw, J.S. & Wang, C.C. (2011). A numerical investigation of louvered fin and tube heat exchangers having circular and oval tube configurations. International Journal of Heat and Mass Transfer, 44(22), 4235-4243. doi: https://doi.org/10.1016/S0017-9310(01)00081-3
- Nambeesan, K. P. V., Parthiban, R., Kumar, K.R., Athul, U. R., Vivek, M. & Thirumalini, S. (2015). Experimental study of heat transfer enhancement in automobile radiator using Al2O3/water–ethylene glycol nanonofluid coolants. International Journal of Automotive and Mechanical Engineering, 12, 2857-2865. doi: http://dx.doi.org/10.15282/ijame.12.2015.5.0240
- Nuntaphan, A., Vithayasai, S., Kiatsiriroat, T. & Wang, C.-C. (2007). Effect of inclination angle on free convection thermal performance of louver finned heat exchanger. International Journal of Heat and Mass Transfer, 50(1-2), 361–366. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2006.06.008
- Ponangi, B. R., Sumanth, S., Krishna, V., Seetharam, T. R. & Seetharamu, K.N. (2018). Performance analysis of automobile radiator using carboxyl graphene nanofluids, IOP Conf. Series: Materials Science and Engineering, Dubai, UAE.
- Ravisankar, R., Venkatachalapathy, V. S. K. & Alagumurthy, N. (2015). Thermal performance improvement of tractor radiator using CuO/water nanofluid. Heat Transfer—Asian Research, 46(1), 61-74. doi: https://doi.org/10.1002/htj.21198
- Said, Z., Assad, H. E. M., Hachicha, A. A., Bellos, E., Alazaizeh, M. A. & Yousef, A. A. B. (2019). Enhancing the performance of automotive radiators using nanofluids. Renewable and Sustainable Energy Reviews, 112, 183-194. doi: https://doi.org/10.1016/j.rser.2019.05.052
- Sandhya, D., Reddy, M. C. S. & Rao, V. V. (2016). Improving the cooling performance of automobile radiator with ethylene glycol water based TiO2 nanofluids. International Communications in Heat and Mass Transfer, 78, 121–126. doi: https://doi.org/10.1016/j.icheatmasstransfer.2016.09.002
- Selvam, C., Lal, D. M. & Harish, S. (2017). Enhanced heat transfer performance of an automobile radiator with graphene based suspensions. Applied Thermal Engineering, 123, 50-60. doi: https://doi.org/10.1016/j.applthermaleng.2017.05.076
- Soylu, S. K., Atmaca, İ., Asiltürk, M. & Doğan, A. (2019). Improving heat transfer performance of an automobile radiator using Cu and Ag doped TiO2 based nanofluids. Applied Thermal Engineering, 157, 113743. doi: https://doi.org/10.1016/j.applthermaleng.2019.113743
- Subhedar, D.G., Ramani, B. M. & Gupta, A. (2018). Experimental ınvestigation of heat transfer potential of Al2O3/water-mono ethylene glycol nanofluids as a car radiator coolant. Case Studies in Thermal Engineering, 11, 26–34. doi: https://doi.org/10.1016/j.csite.2017.11.009
- Tijani, A. S. & Sudirman, A. S. (2018). Thermos-physical properties and heat transfer characteristics of water/anti-freezing and Al2O3/CuO based nanofluid as a coolant for car radiator. International Journal of Heat and Mass Transfer, 118, 48-57. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.083
- Vaisi, A., Esmaeilpour, M. & Taherian, H. (2011). Experimental investigation of geometry effects on the performance of a compact louvered heat exchanger. Applied Thermal Engineering, 31(16), 3337-3346. doi: https://doi.org/10.1016/j.applthermaleng.2011.06.014
BİR ISI DEĞİŞTİRİCİSİNDE FARKLI SU-ETİLEN GLİKOL KARIŞIMI KULLANIMININ ISI TRANSFER PERFORMANSINA ETKİLERİNİN DENEYSEL ANALİZİ
Year 2021,
, 145 - 157, 31.08.2021
Bahadır Gemicioğlu
,
Tolga Demircan
Abstract
Bu çalışmada bir otomobil radyatöründe akışkan olarak farklı karışım oranlarında su-etilen glikol karışımının kullanımının, radyatörün ısı transfer performansı üzerindeki etkileri deneysel olarak incelenmiştir. Bu amaçla, su içerisine hacimsel olarak etilen glikol ilave edilmiş ve etilen glikolün hacimsel oranı %0, %25, %50, %75 ve %100 olduğu durumlar için deneyler gerçekleştirilmiştir. Tüm bu karışım oranları için, akışkan giriş sıcaklığı 40-80 °C aralığında, akışkan giriş debisi 10-22 l/dk aralığında ve soğutma hava ise 1-4 m/s aralığında değiştirilmek üzere toplam 300 adet deney gerçekleştirilmiştir. Yapılan deneyler sonucunda etilen glikolün karışım oranının artması durumunda radyatörden gerçekleşen ısı transferinin azaldığı gözlemlenmiştir. Ancak soğutma hava hızı, akışkanın giriş debisi ve radyatör giriş sıcaklığı arttıkça, gerçekleşen ısı transferinde de artış olduğu belirlenmiştir. Dolayısıyla radyatörlerde su yerine su-etilen glikol karışımının kullanılması durumunda, radyatör akışkanının donma nokta sıcaklığının düşürülmesi sağlanırken, radyatörün ısı transfer performansının olumsuz olarak etkilendiği gözlemlenmiştir.
References
- Calisir, T., Yazar, H. O. & Baskaya, S. (2019). Thermal performance of pccp panel radiators for different convector dimensions –An experimental and numerical study. International Journal of Thermal Sciences, 137, 375–387. doi: https://doi.org/10.1016/j.ijthermalsci.2018.12.007
- Çengel, Y. A. & Boles, A. M. (2006). Thermodynamics an engineering approach, New York, USA: McGraw-Hill.
- Çengel, Y. A. & Cimbala, J. M. (2006). Fluid mechanics fundamentals and applications. New York, USA: McGraw-Hill.
- Elsaid, M. A. (2019). Experimental study on the heat transfer performance and friction factor characteristics of Co3O4 and Al2O3 based H2O/(CH2OH)2 nanofluids in a vehicle engine radiator. International Communications in Heat and Mass Transfer, 108, 104263. doi: https://doi.org/10.1016/j.icheatmasstransfer.2019.05.009
- Goudarzi, K. & Jamali, H. (2017). Heat transfer enhancement of Al2O3-EG nanofluid in a car radiator with wire coil ınserts. Applied Thermal Engineering, 118, 510–517. doi: https://doi.org/10.1016/j.applthermaleng.2017.03.016
- Habibian, S. H., Abolmaali, A. M. & Afshin, H. (2018). Numerical investigation of the effects of fin shape, antifreeze and nanoparticles on the performance of compact finned-tube heat exchangers for automobile radiator. Applied Thermal Engineering, 133, 248-260. doi: https://doi.org/10.1016/j.applthermaleng.2018.01.032
- Harsh, R., Srivastav, H., Balakrishnan, P., Saini, V., Kumar, D.S., Rajni, K.S. & Thirumalini, S. (2018). Study of heat transfer characteristics of nanofluids in an automotive radiator, IOP Conf. Series: Materials Science and Engineering, Bengaluru, India.
- Holman, J. P. (2012). Experimental methods for engineers. New York, USA: McGraw-Hill.
- Incropera, P.F., Dewitt, P. D., Bergman, L. T. & Lavine, S. A. (2007). Fundementals of heat and mass transfer. New Jersey, USA: John Wiley & Sons.
- Kakaç, S., Liu, H. & Pramuanjaroenkij, A. (2012). Heat exchangers selection, rating, and thermal design. Florida, USA: CRC Press.
- Karimi, A. & Afrand, M. (2018). Numerical study on thermal performance of an air-cooled heat exchanger: effects of hybrid nanofluid, pipe arrangement and cross section. Energy Conversion and Management, 164, 615-628. doi: https://doi.org/10.1016/j.enconman.2018.03.038
- Leu, J. S., Liu, M. S., Liaw, J.S. & Wang, C.C. (2011). A numerical investigation of louvered fin and tube heat exchangers having circular and oval tube configurations. International Journal of Heat and Mass Transfer, 44(22), 4235-4243. doi: https://doi.org/10.1016/S0017-9310(01)00081-3
- Nambeesan, K. P. V., Parthiban, R., Kumar, K.R., Athul, U. R., Vivek, M. & Thirumalini, S. (2015). Experimental study of heat transfer enhancement in automobile radiator using Al2O3/water–ethylene glycol nanonofluid coolants. International Journal of Automotive and Mechanical Engineering, 12, 2857-2865. doi: http://dx.doi.org/10.15282/ijame.12.2015.5.0240
- Nuntaphan, A., Vithayasai, S., Kiatsiriroat, T. & Wang, C.-C. (2007). Effect of inclination angle on free convection thermal performance of louver finned heat exchanger. International Journal of Heat and Mass Transfer, 50(1-2), 361–366. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2006.06.008
- Ponangi, B. R., Sumanth, S., Krishna, V., Seetharam, T. R. & Seetharamu, K.N. (2018). Performance analysis of automobile radiator using carboxyl graphene nanofluids, IOP Conf. Series: Materials Science and Engineering, Dubai, UAE.
- Ravisankar, R., Venkatachalapathy, V. S. K. & Alagumurthy, N. (2015). Thermal performance improvement of tractor radiator using CuO/water nanofluid. Heat Transfer—Asian Research, 46(1), 61-74. doi: https://doi.org/10.1002/htj.21198
- Said, Z., Assad, H. E. M., Hachicha, A. A., Bellos, E., Alazaizeh, M. A. & Yousef, A. A. B. (2019). Enhancing the performance of automotive radiators using nanofluids. Renewable and Sustainable Energy Reviews, 112, 183-194. doi: https://doi.org/10.1016/j.rser.2019.05.052
- Sandhya, D., Reddy, M. C. S. & Rao, V. V. (2016). Improving the cooling performance of automobile radiator with ethylene glycol water based TiO2 nanofluids. International Communications in Heat and Mass Transfer, 78, 121–126. doi: https://doi.org/10.1016/j.icheatmasstransfer.2016.09.002
- Selvam, C., Lal, D. M. & Harish, S. (2017). Enhanced heat transfer performance of an automobile radiator with graphene based suspensions. Applied Thermal Engineering, 123, 50-60. doi: https://doi.org/10.1016/j.applthermaleng.2017.05.076
- Soylu, S. K., Atmaca, İ., Asiltürk, M. & Doğan, A. (2019). Improving heat transfer performance of an automobile radiator using Cu and Ag doped TiO2 based nanofluids. Applied Thermal Engineering, 157, 113743. doi: https://doi.org/10.1016/j.applthermaleng.2019.113743
- Subhedar, D.G., Ramani, B. M. & Gupta, A. (2018). Experimental ınvestigation of heat transfer potential of Al2O3/water-mono ethylene glycol nanofluids as a car radiator coolant. Case Studies in Thermal Engineering, 11, 26–34. doi: https://doi.org/10.1016/j.csite.2017.11.009
- Tijani, A. S. & Sudirman, A. S. (2018). Thermos-physical properties and heat transfer characteristics of water/anti-freezing and Al2O3/CuO based nanofluid as a coolant for car radiator. International Journal of Heat and Mass Transfer, 118, 48-57. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.083
- Vaisi, A., Esmaeilpour, M. & Taherian, H. (2011). Experimental investigation of geometry effects on the performance of a compact louvered heat exchanger. Applied Thermal Engineering, 31(16), 3337-3346. doi: https://doi.org/10.1016/j.applthermaleng.2011.06.014