Research Article
BibTex RIS Cite

GENLEŞTİRİLMİŞ POLİSTİREN GRANÜLLERİ İÇEREN HAFİF BETONLARIN ÖZELİKLERİ

Year 2022, , 31 - 38, 15.04.2022
https://doi.org/10.31796/ogummf.962354

Abstract

Geleneksel malzeme bileşenlerinin yerine atık malzemelerin, bağlayıcı malzemelerin veya farklı agrega tür ve boyutlarının kullanılmasıyla elde edilen betonların davranışları üzerine önemli çalışmalar yapılmaktadır. Farklı amaçlarla kullanılmak üzere ya da bazı zorunluluklar sebebiyle, yapıların iyi bir ısı yalıtımına, depreme karşı dayanıklı ve yapı elemanlarının hafif olma gereksinimi ortaya çıkmıştır. Bunun yanında, inşaat malzemeleri üzerine çevresel olarak sürdürülebilir hammaddelerin kullanılmasına olan ilginin artması da araştırmaların yoğun bir şekilde devam etmesini sağlamıştır. Bu amaçla, bu çalışmada Agrega olarak EPS granüller kullanılmıştır. Çalışma kapsamında su-çimento oranı 0.4 ve 0.5 olacak şekilde, agrega-çimento oranı 1 ve 2 olacak şekilde 4 farklı kaşırım hazırlanmıştır. Üretilen karışımlardan 4x4x16 cm boyutlu prizma kalıplar kullanılarak numuneler alınmıştır. Üretilen numunelerin birim ağırlıkları, ultrases geçiş hızları, ağırlıkça su emmeleri, eğilme ve basınç dayanımları hesaplanmıştır. Deney sonuçları, birim ağırlığı 1500-1000 kg/m³ aralığında basınç dayanımı 10-17 MPa aralığında taşıyıcı hafif betonlar elde edilmiştir. Karışım hacminin % 65 gibi yüksek oranda EPS granüllerinin hafif beton üretiminde kullanılması önerilir. 10 MPa’nın altına düşmeyen dayanımları bu ürünlerin blok veya panel şeklinde bölme duvar elemanı olarak kullanılabileceğini göstermektedir. Dayanım artışı istendiğinde su-çimento oranının 0.4’e düşürülerek 15 MPa üstünde basınç dayanımları elde edilebileceği görülmüştür.

References

  • Allahverdi, A., Azimi, S.A., & Alibabaie M. (2018). Development of multi-strength grade green lightweight reactive powder concrete using expanded polystyrene beads. Construction and Building Materials, 172, 457–467. doi:10.1016/j.conbuildmat.2018.03.260.
  • Babavalian, A., Ranjbaran, A. H., & Shahbeyk S. (2020). Uniaxial and triaxial failure strength of fiber reinforced EPS concrete. Construction and Building Materials, 247, 118617. doi:10.1016/j.conbuildmat.2020.118617.
  • Babu, K.G., & Babu, D.S. (2003). Behaviour of lightweight expanded polystyrene concrete containing silica fume. Cement and Concrete Research, 33, 755–762. doi:10.1016/S0008-8846(02)01055-4.
  • Boyuejia Industrial Co., Ltd. (2021). Erişim adresi: https://www.byjbuilding.com/products/eps-cement-solid-panels/
  • Cadere, C.A., Barbuta, M., Rosca, B., Serbanoiu, A. A., Burlacu, A., & Oancea, I. (2017). Engineering properties of concrete with polystyrene granules. Procedia Manufacturing, 22, 288-293. doi:10.1016/j.promfg.2018.03.044.
  • Chen, B., & Liu, J. (2004). Properties of lightweight expanded polystyrene concrete reinforced with steel fiber. Cement and Concrete Research, 34, 1259–1263. doi:10.1016/j.cemconres.2003.12.014.
  • Dixit, A., Pang, S.D., Kang, S.H., & Moon, J. (2019). Lightweight structural cement composites with expanded polystyrene (EPS) for enhanced thermal. Cement and Concrete Composites, 102, 185–197. doi:10.1016/j.cemconcomp.2019.04.023
  • Li, C., Miao, L., You, Q., Hu, S., & Fang, H. (2018). Effects of viscosity modifying admixture on workability and compressive strength of structural EPS concrete. Construction and Building Materials, 175, 342–350. doi:10.1016/j.conbuildmat.2018.04.176.
  • Liu, Y., Ma, D., Jiang, Z., Xiao, F., Huang, X., Liu, Z., & Tang, L. (2016). Dynamic response of expanded polystyrene concrete during low speed impact. Construction and Building Materials, 122, 72–80. doi:10.1016/j.conbuildmat.2016.06.059.
  • Petrella, A., Mundo R. D., & Notarnicola, M. (2020). Recycled expanded polystyrene as lightweight aggregate for environmentally sustainable cement conglomerates. Materials, 13(4), 988. doi:10.3390/ma13040988.
  • Ravindrarajah, R. S., & Tuck, A.J. (1994). Properties of hardened concrete containing treated expanded polystyrene beads. Cement & Concrete Composites 16, 273-277. doi:10.1016/0958-9465(94)90039-6.
  • Rosca, B., & Corobceanu, V. (2021). Structural grade concrete containing expanded polystyrene beads with different particle distributions of normal weight aggregate. Materials Today: Proceedings, 42, 548–554. doi:10.1016/j.matpr.2020.10.517.
  • Schackow, A., Effting, C., Folgueras, M.V., Güths, S., & Mendes, G.A. (2014). Mechanical and thermal properties of lightweight concretes with vermiculite and EPS using air-entraining agent. Construction and building materials, 57, 190-197. doi:10.1016/j.conbuildmat.2014.02.009.
  • Tamut, T., Prabhu, R., Venkataramana, K., & Yaragal, S. C. (2014). Partial replacement of coarse aggregates by expanded polystyrene beads in concrete. International Journal of Research in Engineering and Technology eISSN: 2319-1163, http://www.ijret.org
  • Vakhshouri, B., & Nejadi, S. (2018). Review on the mixture design and mechanical properties of the lightweight concrete containing expanded polystyrene beads. Australian Journal of Structural Engineering, 19 (1), 1-23. doi:10.1080/13287982.2017.1353330.

PROPERTIES OF LIGHTWEIGHT CONCRETE CONTAINING EXPANDED POLYSTYRENE BEADS

Year 2022, , 31 - 38, 15.04.2022
https://doi.org/10.31796/ogummf.962354

Abstract

There are important studies on the behavior of concrete obtained by using waste materials, binding materials or different aggregate types and sizes instead of traditional material components. In order to be used for different purposes or due to some necessities, the need for good thermal insulation, earthquake resistance and lightness of building elements has emerged. In addition, the increasing interest in the use of environmentally sustainable raw materials on construction materials has also ensured that researches continue intensively. For this purpose, EPS granules were used as aggregate in this study. Within the scope of the study, 4 different mixes were prepared with a water-cement ratio of 0.4 and 0.5, and an aggregate-cement ratio of 1 and 2. Samples were taken from the mixtures produced using 4x4x16 cm prism molds. The unit weights, ultrasound transmission rates, water absorption by weight, bending and compressive strengths of the produced samples were calculated. According to the test results, light bearing concretes with a unit weight of 1500 to 1000 kg/m³ and a compressive strength of 10 to 17 MPa were obtained. It is recommended to use EPS granules as high as 65% of the mixing volume in light concrete production. Their strengths that do not fall below 10 MPa show that these products can be used as partition wall elements in the form of blocks or panels. It has been observed that compressive strengths above 15 MPa can be obtained by reducing the water cement ratio to 0.4 when an increase in strength is required.

References

  • Allahverdi, A., Azimi, S.A., & Alibabaie M. (2018). Development of multi-strength grade green lightweight reactive powder concrete using expanded polystyrene beads. Construction and Building Materials, 172, 457–467. doi:10.1016/j.conbuildmat.2018.03.260.
  • Babavalian, A., Ranjbaran, A. H., & Shahbeyk S. (2020). Uniaxial and triaxial failure strength of fiber reinforced EPS concrete. Construction and Building Materials, 247, 118617. doi:10.1016/j.conbuildmat.2020.118617.
  • Babu, K.G., & Babu, D.S. (2003). Behaviour of lightweight expanded polystyrene concrete containing silica fume. Cement and Concrete Research, 33, 755–762. doi:10.1016/S0008-8846(02)01055-4.
  • Boyuejia Industrial Co., Ltd. (2021). Erişim adresi: https://www.byjbuilding.com/products/eps-cement-solid-panels/
  • Cadere, C.A., Barbuta, M., Rosca, B., Serbanoiu, A. A., Burlacu, A., & Oancea, I. (2017). Engineering properties of concrete with polystyrene granules. Procedia Manufacturing, 22, 288-293. doi:10.1016/j.promfg.2018.03.044.
  • Chen, B., & Liu, J. (2004). Properties of lightweight expanded polystyrene concrete reinforced with steel fiber. Cement and Concrete Research, 34, 1259–1263. doi:10.1016/j.cemconres.2003.12.014.
  • Dixit, A., Pang, S.D., Kang, S.H., & Moon, J. (2019). Lightweight structural cement composites with expanded polystyrene (EPS) for enhanced thermal. Cement and Concrete Composites, 102, 185–197. doi:10.1016/j.cemconcomp.2019.04.023
  • Li, C., Miao, L., You, Q., Hu, S., & Fang, H. (2018). Effects of viscosity modifying admixture on workability and compressive strength of structural EPS concrete. Construction and Building Materials, 175, 342–350. doi:10.1016/j.conbuildmat.2018.04.176.
  • Liu, Y., Ma, D., Jiang, Z., Xiao, F., Huang, X., Liu, Z., & Tang, L. (2016). Dynamic response of expanded polystyrene concrete during low speed impact. Construction and Building Materials, 122, 72–80. doi:10.1016/j.conbuildmat.2016.06.059.
  • Petrella, A., Mundo R. D., & Notarnicola, M. (2020). Recycled expanded polystyrene as lightweight aggregate for environmentally sustainable cement conglomerates. Materials, 13(4), 988. doi:10.3390/ma13040988.
  • Ravindrarajah, R. S., & Tuck, A.J. (1994). Properties of hardened concrete containing treated expanded polystyrene beads. Cement & Concrete Composites 16, 273-277. doi:10.1016/0958-9465(94)90039-6.
  • Rosca, B., & Corobceanu, V. (2021). Structural grade concrete containing expanded polystyrene beads with different particle distributions of normal weight aggregate. Materials Today: Proceedings, 42, 548–554. doi:10.1016/j.matpr.2020.10.517.
  • Schackow, A., Effting, C., Folgueras, M.V., Güths, S., & Mendes, G.A. (2014). Mechanical and thermal properties of lightweight concretes with vermiculite and EPS using air-entraining agent. Construction and building materials, 57, 190-197. doi:10.1016/j.conbuildmat.2014.02.009.
  • Tamut, T., Prabhu, R., Venkataramana, K., & Yaragal, S. C. (2014). Partial replacement of coarse aggregates by expanded polystyrene beads in concrete. International Journal of Research in Engineering and Technology eISSN: 2319-1163, http://www.ijret.org
  • Vakhshouri, B., & Nejadi, S. (2018). Review on the mixture design and mechanical properties of the lightweight concrete containing expanded polystyrene beads. Australian Journal of Structural Engineering, 19 (1), 1-23. doi:10.1080/13287982.2017.1353330.
There are 15 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Research Articles
Authors

Mehmet Canbaz 0000-0002-0175-6155

Mustafa Ezici 0000-0001-6037-9022

Publication Date April 15, 2022
Acceptance Date November 22, 2021
Published in Issue Year 2022

Cite

APA Canbaz, M., & Ezici, M. (2022). GENLEŞTİRİLMİŞ POLİSTİREN GRANÜLLERİ İÇEREN HAFİF BETONLARIN ÖZELİKLERİ. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 30(1), 31-38. https://doi.org/10.31796/ogummf.962354
AMA Canbaz M, Ezici M. GENLEŞTİRİLMİŞ POLİSTİREN GRANÜLLERİ İÇEREN HAFİF BETONLARIN ÖZELİKLERİ. ESOGÜ Müh Mim Fak Derg. April 2022;30(1):31-38. doi:10.31796/ogummf.962354
Chicago Canbaz, Mehmet, and Mustafa Ezici. “GENLEŞTİRİLMİŞ POLİSTİREN GRANÜLLERİ İÇEREN HAFİF BETONLARIN ÖZELİKLERİ”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 30, no. 1 (April 2022): 31-38. https://doi.org/10.31796/ogummf.962354.
EndNote Canbaz M, Ezici M (April 1, 2022) GENLEŞTİRİLMİŞ POLİSTİREN GRANÜLLERİ İÇEREN HAFİF BETONLARIN ÖZELİKLERİ. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 30 1 31–38.
IEEE M. Canbaz and M. Ezici, “GENLEŞTİRİLMİŞ POLİSTİREN GRANÜLLERİ İÇEREN HAFİF BETONLARIN ÖZELİKLERİ”, ESOGÜ Müh Mim Fak Derg, vol. 30, no. 1, pp. 31–38, 2022, doi: 10.31796/ogummf.962354.
ISNAD Canbaz, Mehmet - Ezici, Mustafa. “GENLEŞTİRİLMİŞ POLİSTİREN GRANÜLLERİ İÇEREN HAFİF BETONLARIN ÖZELİKLERİ”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 30/1 (April 2022), 31-38. https://doi.org/10.31796/ogummf.962354.
JAMA Canbaz M, Ezici M. GENLEŞTİRİLMİŞ POLİSTİREN GRANÜLLERİ İÇEREN HAFİF BETONLARIN ÖZELİKLERİ. ESOGÜ Müh Mim Fak Derg. 2022;30:31–38.
MLA Canbaz, Mehmet and Mustafa Ezici. “GENLEŞTİRİLMİŞ POLİSTİREN GRANÜLLERİ İÇEREN HAFİF BETONLARIN ÖZELİKLERİ”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, vol. 30, no. 1, 2022, pp. 31-38, doi:10.31796/ogummf.962354.
Vancouver Canbaz M, Ezici M. GENLEŞTİRİLMİŞ POLİSTİREN GRANÜLLERİ İÇEREN HAFİF BETONLARIN ÖZELİKLERİ. ESOGÜ Müh Mim Fak Derg. 2022;30(1):31-8.

20873 13565 13566 15461 13568  14913