Research Article
BibTex RIS Cite

MCM-41 VE MCM-48 Türü Katalizörlerin Üretimi Ve Karakterizasyonu

Year 2010, Volume: 23 Issue: 1, 63 - 81, 30.06.2010

Abstract



Bu
makalede, mezo-gözenekli, nano-yapılı MCM-41 ve MCM-48 türü katalizörler doğrudan
hidrotermal sentez (DHS) ve oda sıcaklığında sentez (OSS) metotları ile
üretilmiştir. MCM-41 türü katalizörler için her iki sentez metodunun da
başarılı olduğu ve düzgün kristal gözenek yapısına sahip katalizörler
üretildiği görülmüştür. MCM-48 türü katalizörlerin sentezinde ise OSS metodu
ile sentezlenen katalizörün kristal gözenek yapısının önemli ölçüde bozulduğu
görülmüştür. BET sonuçları incelendiğinde, altıgen gözenekli MCM-41
katalizörleri için OSS ve kübik gözenekli MCM-48 katalizörleri için DHS
metodunun daha yüksek yüzey alanı ve gözenek hacmi değerleri verdiği tespit
edilmiştir.




References

  • [1] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli ve J.S. Beck, “Ordered mesoporous molecular synthesized by a liquid-crystal template mechanism”, Nature, Vol. 359, pp. 710-712, 1992.
  • [2] J.S. Beck, J.C.Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson ve E.W. Sheppard, “A new family of mesoporous molecular sieves prepared with liquid crystal templates”, J. Am. Chem. Soc., Vol. 114, No. 27, pp. 10834–10843, 1992.
  • [3] G. Oye, J. Sjöblom ve M. Stöcker, “Synthesis, characterization and potential applications of new materials in mesoporous range”, Adv. In Coll. and Inter. Sci., Vol. 89-90, pp. 439-466, 2001.
  • [4] W. G. Shim, D. Y. Choi, S. P. Choi, J-W. Lee ve H. Moon, “Column Dynamics of Benzene Vapor Adsorption on MCM-48”, Vol. 11, No. 1, pp. 503-507, 2005.
  • [5] H. T. Janga, Y. Park, Y. S. Koc, J. Y. Lee ve B. Margandan, “Highly siliceous MCM-48 from rice husk ash for CO2 adsorption”, Int. J. Greenhouse Gas Control, Vol. 3, No. 5, pp. 545-549, 2009.
  • [6] X-W. Liu, L. Zhou, H. Chang, Y. Sun ve Y-P. Zhou, “Methane sorption on large-pore MCM-41 in the presence of water”, J. Porous Media, Vol. 9, No. 8, pp. 769-777, 2006.
  • [7] L- L.C. Juang, C-C. Wang ve C-K. Lee, “Adsorption of basic dyes onto MCM-41”, Chemosphere, Vol. 64, No. 11, pp. 1920-1928, 2006.
  • [8] Q. Qin, J. Ma ve K. Liu, “Adsorption of anionic dyes on ammonium-functionalized MCM- 41”, J. Hazard. Mater., Vol. 162, No. 1, pp. 133-139, 2009.
  • [9] S. G. Wang ve J. L. Li, “Thiol-functionalized MCM-48: An effective absorbent of mercury ions”, Chinese Chem. Lett., Vol. 17, No. 2, pp 221-224, 2006.
  • [10] J. W. Lee, D. L. Cho, W. G. Shim ve H. Moon, “Application of mesoporous MCM-48 and SBA-15 materials for the separation of biochemicals dissolved in aqueous solution”, Korean J. Chem. Eng., Vol. 21, No. 1, 2004.
  • [11] C. Liu, J. Wang ve Z. Rong, “Mesoporous MCM-48 silica membrane synthesized on a large-pore α-Al2O3 ceramic tube”, J. Membrane Sci., Vol. 287, No. 1, pp. 6-8, 2007.
  • [12] Y. Gucbilmez, T. Dogu ve S. Balci, “Activity comparison of MCM-41 and V-MCM-41 catalysts for ethanol selective oxidation and DRIFTS analysis”, Int. J. Chem. Reactor Eng., Vol. 7, A63, 2009.
  • [13] Y. Gucbilmez, T. Dogu ve S. Balci, “Ethylene and acetaldehyde production by selective oxidation of ethanol using mesoporous V-MCM-41 catalysts”, Ind. Eng. Chem. Res., Vol. 45, No. 10, pp. 3496–3502, 2006.
  • [14]M. Pirouzmand, M.M. Amini ve N. Safari, “Immobilization of iron tetrasulfophthalocyanine on functionalized MCM-48 and MCM-41 mesoporous silicas: catalysts for oxidation of styrene”, J. Colloid Interface Sci., Vol. 319, No. 1, pp. 199-205, 2008.
  • [15]M. Chatterjee, F. Y. Zhao ve Y. Ikushima, “Effect of synthesis variables on the hydrogenation of cinnamaldehyde over Pt-MCM-48 in supercritical CO2 medium”, App. Catal. A: General, Vol. 262, No. 1, pp. 93-100, 2004.
  • [16] J. -M. Clacens, Y. Pouilloux ve J. Barrault, “Selective etherification of glycerol to polyglycerols over impregnated basic MCM-41 type mesoporous catalysts”, App. Catal. A: General, Vol. 227, No 1-2, pp. 181-190, 2002.
  • [17] A. Sakthivel, K. Komura ve Y. Sugi, “MCM-48 Supported Tungstophosphoric Acid: An Efficient Catalyst for the Esterification of Long-Chain Fatty Acids and Alcohols in Supercritical Carbon Dioxide”, Ind. Eng. Chem. Res., Vol. 47, No. 8, pp. 2538–2544, 2008.
  • [18] V. Nieminen, N. Kumar, T. Salmi ve D. Yu. Murzin, “n-Butane isomerization over Pt–H– MCM-41”, Catal. Commun., Vol. 5, No. 1, pp. 15-19, 2004.
  • [19] M. Horňáček, P. Hudec ve A. Smiešková, “Synthesis and characterization of mesoporous molecular sieves”, Chem. Pap., Vol. 63, No 6, pp. 689-697, 2009.
  • [20] L. Wang, Y. Shao, J. Zhang ve M. Anpo, “Improvement of the hydrothermal stability of MCM-48 mesoporous molecular sieves”, Res. Chem. Intermed., Vol. 34, No. 2-3, pp. 267- 286, 2008.
  • [21] Q. Zhang, Y. Wang, Y. Ohishi, T. Shishido ve K. Takehiro, “Vanadium-containing MCM- 41 for partial oxidation of lower alkanes”, J. Catal., Vol. 202, No. 2, pp. 308–318, 2001.
  • [22] S. Wang, D. Wu, Y. Sun ve B. Zhong, ”The Synthesis of MCM-48 with high yields”, Mater. Res. Bull., Vol. 36, pp. 1717-1720, 2001.
  • [23] J. Choma, S. Pikus ve M. Jaroniec, “Adsorpsion characterization of surfactant-templated ordered mesoporous silicas synthesized with and without hyrothermal treatment”, App. Surf. Sci., Vol. 252, No. 3, pp. 562-569, 2005.
  • [24] Q. Chai, W. Lin, F. Xiao, W. Pang, X. Chen ve B. Zou, “The Preparation of highly ordered MCM-41 with extremely low surfactant concentration”, Micropor. Mesopor. Mater., Vol. 32, No. 9, pp. 1-15, 1999.
  • [25] D. Kumar, K. Schumacher, C. du Fresne von Hohenesche, M. Grün ve K. K. Unger, “MCM-41, MCM-48 and related mesoporous adsorbents: their synthesis and characterisation”, Colloids Surf. A: Physicochem. Eng. Aspects, Vol. 187-188, pp. 109-116, 2001.
  • [26] C. Galacho, M.M.L. Ribeiro Carrott ve P.J.M. Carrott, “Evaluation of the thermal and mechanical stability of Si-MCM-41 and Ti-MCM-41 synthesised at room temperature”, Micropor. Mesopor. Mater., Vol. 108, No. 1-3, pp. 283-293, 2008.
  • [27] T.R. Gaydhankar, V. Samuel, R.K. Jha, R. Kumar ve P.N. Joshi, “Room temperature synthesis of Si-MCM-41 using polymeric version of ethyl silicate as a source of silica”, Mater. Res. Bullet., Vol. 42, No. 8, 2007, pp. 1473-1484, 2007.
  • [28] Q. Huo, D.I. Margolese ve G.D. Stucky, “Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials”, Chem. Mater., Vol. 8, No. 5, pp. 1147-1160, 1996.
  • [29]S. Che, S. Lim, M. Kaneda, H. Yoshitake, O. Terasaki ve T., Tatsumi, “The effect of the counteranion on the formation of mesoporous materials under the acidic synthesis process”, J. Am. Chem. Soc., Vol. 124, No. 47, pp. 13962-13963, 2002. [30] X.S. Zhao, G.Q. (Max) Lu ve G.J. Millar, “Advances in mesoporous molecular sieve MCM-41”, Ind. Eng. Chem. Res., Vol. 35, No. 7, 2075-2090, 1996.
  • [31] P. Selvam, S.K. Bhatia ve C.G. Sonwane, “Recent advances in processing and characterization of periodic mesoporous MCM-41 silicate molecular sieves”, Ind. Eng. Chem. Res., Vol. 40, No. 15, pp. 3237-3261, 2001.
  • [32] A. Davidson, “Modifying the walls of mesoporous silicas prepared by supramoleculartemplating”, Curr. Opin. Colloid Interf. Sci., Vol. 7, No. 1-2, pp. 92-106, 2002.
  • [33] R.S. Somani, C.H. Ko, S.S. Han ve S.H. Cho, “Textural and structural properties of mesoporous silica synthesized under refluxing conditions”, J. Porous Mater., Vol. 12, No. 2, pp. 87-94, 2005.
  • [34] R.A.A. Melo, M.V. Giotto, J. Rocha ve E.A. Urquieta-Gonzalez, “MCM-41 ordered mesoporous molecular sieves synthesis and characterization”, Mat. Res., Vol. 2, No. 3, pp. 173-179, 1999.
  • [35] C.G. Wu, T. Bein, “Microwave synthesis of molecular sieve MCM-41”, Chem. Commun., No. 8, pp. 925-926, 1996.
  • [36] M. Bandyopadhyay ve H. Gies, “Synthesis of MCM-48 by microwave-hydrothermal process”, Comptes Rendus Chimie, Vol. 8, No. 3-4, pp. 621-626, 2005.
  • [37] A.S. Araujo ve M. Jaroniec, “Thermogravimetric monitoring of the MCM-41 synthesis”, Thermochimica Acta, Vol. 363, No. 1-2, pp. 175-180, 2000.
  • [38] L. Pei, K.-I. Kurumada, M. Tanigaki, M. Hiro ve K. Susa, “Effect of drying rate on mesoporous silica morphology templated from PEO-PPO-PEO block copolymer assemblies”, J. Mater. Sci., Vol. 39, pp. 4045 – 4047, 2004.
  • [39] W. Thitsartarna, E. Gularib ve S.Wongkasemjita, “Synthesis of Fe-MCM-41 from silatrane and FeCl3 via sol–gel process and its epoxidation acivity”, Appl. Organometal. Chem., Vol. 22, pp. 97–103, 2008.
  • [40] G. Zhang, L. Tao ve G. Zhang “MCM-41 prepared with ionic liquid and cethytrimethylammonium bromide as co-templates”, J. Mater. Sci., Vol. 24, No. 1, pp. 25- 29, 2009.
  • [41]P.I. Ravikovitch ve A.V. Neimark, “Relations between structural parameters and adsorption characterization of templated nanoporous materials with cubic symmetry”, Langmuir, Vol. 16, No. 6, pp. 2419-2423, 2000.
  • [42] Iler, R. K. The Chemistry of Silica; Wiley: New York, 1979.
  • [43] M. Kruk, M. Jaroniec ve A.J. Sayari, “Adsorption Study of Surface and Structural Properties of MCM-41 Materials of Different Pore Sizes”, J. Phys. Chem. B, Vol. 101, No. 4, pp. 583-589, 1997.
  • [44] M. Kruk, M. Jaroniec, R. Ryoo ve S.H. Joo, S.H., “Characterization of ordered mesoporous carbons synthesized using MCM-48 silicas as templates”, J. Phys. Chem. B, Vol. 104, pp. 7960-7968, 2000.
  • [45] 45. M.P. Mokhonoana ve N.J. Coville, “Synthesis of [Si]-MCM-41 from TEOS and water glass: the water glass-enhanced condensation of TEOS under alkaline conditions”, J. Sol- Gel Sci. Technol., in press, 2010. (http://www.springerlink.com/content/hq718712624k1232/fulltext.pdf)
  • [46] 46. J. Yu, J.L. Shi, L.Z. Wang, M.L. Ruan ve D.S. Yan, “Preparation of high thermal stability MCM-41 in the low surfactant/silicon molar ratio synthesis systems”, Mater. Lett., Vol. 48, No. 2, pp. 112-116, 2001.
  • [47]H. Chen ve Y. Wang, “Preparation of MCM-41 with high thermal stability and complementary textural porosity”, Ceram. Int., Vol. 28, pp. 541-547, 2002.

Production And Characterization Of MCM-41 And MCM-48 Type Catalysts

Year 2010, Volume: 23 Issue: 1, 63 - 81, 30.06.2010

Abstract

In
this paper, mesoporous, nano-structured MCM-41 and MCM-48 type catalysts were
synthesized by direct hydrothermal synthesis (DHS) and room temperature
synthesis (RTS) methods. It was seen for MCM-41 type catalysts that; both DHS
and RTS methods were successful yielding catalysts with regular crystalline
pore structures. In the case of MCM-48 type catalysts, however, the catalyst
produced by the RTS method had significant loss of crystalline pore structure.
Investigation of BET results showed that MCM-41 catalysts synthesized by the
DHS method and MCM-48 catalysts synthesized by the RTS method had higher
surface area and higher pore volume values than their counterparts.




References

  • [1] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli ve J.S. Beck, “Ordered mesoporous molecular synthesized by a liquid-crystal template mechanism”, Nature, Vol. 359, pp. 710-712, 1992.
  • [2] J.S. Beck, J.C.Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson ve E.W. Sheppard, “A new family of mesoporous molecular sieves prepared with liquid crystal templates”, J. Am. Chem. Soc., Vol. 114, No. 27, pp. 10834–10843, 1992.
  • [3] G. Oye, J. Sjöblom ve M. Stöcker, “Synthesis, characterization and potential applications of new materials in mesoporous range”, Adv. In Coll. and Inter. Sci., Vol. 89-90, pp. 439-466, 2001.
  • [4] W. G. Shim, D. Y. Choi, S. P. Choi, J-W. Lee ve H. Moon, “Column Dynamics of Benzene Vapor Adsorption on MCM-48”, Vol. 11, No. 1, pp. 503-507, 2005.
  • [5] H. T. Janga, Y. Park, Y. S. Koc, J. Y. Lee ve B. Margandan, “Highly siliceous MCM-48 from rice husk ash for CO2 adsorption”, Int. J. Greenhouse Gas Control, Vol. 3, No. 5, pp. 545-549, 2009.
  • [6] X-W. Liu, L. Zhou, H. Chang, Y. Sun ve Y-P. Zhou, “Methane sorption on large-pore MCM-41 in the presence of water”, J. Porous Media, Vol. 9, No. 8, pp. 769-777, 2006.
  • [7] L- L.C. Juang, C-C. Wang ve C-K. Lee, “Adsorption of basic dyes onto MCM-41”, Chemosphere, Vol. 64, No. 11, pp. 1920-1928, 2006.
  • [8] Q. Qin, J. Ma ve K. Liu, “Adsorption of anionic dyes on ammonium-functionalized MCM- 41”, J. Hazard. Mater., Vol. 162, No. 1, pp. 133-139, 2009.
  • [9] S. G. Wang ve J. L. Li, “Thiol-functionalized MCM-48: An effective absorbent of mercury ions”, Chinese Chem. Lett., Vol. 17, No. 2, pp 221-224, 2006.
  • [10] J. W. Lee, D. L. Cho, W. G. Shim ve H. Moon, “Application of mesoporous MCM-48 and SBA-15 materials for the separation of biochemicals dissolved in aqueous solution”, Korean J. Chem. Eng., Vol. 21, No. 1, 2004.
  • [11] C. Liu, J. Wang ve Z. Rong, “Mesoporous MCM-48 silica membrane synthesized on a large-pore α-Al2O3 ceramic tube”, J. Membrane Sci., Vol. 287, No. 1, pp. 6-8, 2007.
  • [12] Y. Gucbilmez, T. Dogu ve S. Balci, “Activity comparison of MCM-41 and V-MCM-41 catalysts for ethanol selective oxidation and DRIFTS analysis”, Int. J. Chem. Reactor Eng., Vol. 7, A63, 2009.
  • [13] Y. Gucbilmez, T. Dogu ve S. Balci, “Ethylene and acetaldehyde production by selective oxidation of ethanol using mesoporous V-MCM-41 catalysts”, Ind. Eng. Chem. Res., Vol. 45, No. 10, pp. 3496–3502, 2006.
  • [14]M. Pirouzmand, M.M. Amini ve N. Safari, “Immobilization of iron tetrasulfophthalocyanine on functionalized MCM-48 and MCM-41 mesoporous silicas: catalysts for oxidation of styrene”, J. Colloid Interface Sci., Vol. 319, No. 1, pp. 199-205, 2008.
  • [15]M. Chatterjee, F. Y. Zhao ve Y. Ikushima, “Effect of synthesis variables on the hydrogenation of cinnamaldehyde over Pt-MCM-48 in supercritical CO2 medium”, App. Catal. A: General, Vol. 262, No. 1, pp. 93-100, 2004.
  • [16] J. -M. Clacens, Y. Pouilloux ve J. Barrault, “Selective etherification of glycerol to polyglycerols over impregnated basic MCM-41 type mesoporous catalysts”, App. Catal. A: General, Vol. 227, No 1-2, pp. 181-190, 2002.
  • [17] A. Sakthivel, K. Komura ve Y. Sugi, “MCM-48 Supported Tungstophosphoric Acid: An Efficient Catalyst for the Esterification of Long-Chain Fatty Acids and Alcohols in Supercritical Carbon Dioxide”, Ind. Eng. Chem. Res., Vol. 47, No. 8, pp. 2538–2544, 2008.
  • [18] V. Nieminen, N. Kumar, T. Salmi ve D. Yu. Murzin, “n-Butane isomerization over Pt–H– MCM-41”, Catal. Commun., Vol. 5, No. 1, pp. 15-19, 2004.
  • [19] M. Horňáček, P. Hudec ve A. Smiešková, “Synthesis and characterization of mesoporous molecular sieves”, Chem. Pap., Vol. 63, No 6, pp. 689-697, 2009.
  • [20] L. Wang, Y. Shao, J. Zhang ve M. Anpo, “Improvement of the hydrothermal stability of MCM-48 mesoporous molecular sieves”, Res. Chem. Intermed., Vol. 34, No. 2-3, pp. 267- 286, 2008.
  • [21] Q. Zhang, Y. Wang, Y. Ohishi, T. Shishido ve K. Takehiro, “Vanadium-containing MCM- 41 for partial oxidation of lower alkanes”, J. Catal., Vol. 202, No. 2, pp. 308–318, 2001.
  • [22] S. Wang, D. Wu, Y. Sun ve B. Zhong, ”The Synthesis of MCM-48 with high yields”, Mater. Res. Bull., Vol. 36, pp. 1717-1720, 2001.
  • [23] J. Choma, S. Pikus ve M. Jaroniec, “Adsorpsion characterization of surfactant-templated ordered mesoporous silicas synthesized with and without hyrothermal treatment”, App. Surf. Sci., Vol. 252, No. 3, pp. 562-569, 2005.
  • [24] Q. Chai, W. Lin, F. Xiao, W. Pang, X. Chen ve B. Zou, “The Preparation of highly ordered MCM-41 with extremely low surfactant concentration”, Micropor. Mesopor. Mater., Vol. 32, No. 9, pp. 1-15, 1999.
  • [25] D. Kumar, K. Schumacher, C. du Fresne von Hohenesche, M. Grün ve K. K. Unger, “MCM-41, MCM-48 and related mesoporous adsorbents: their synthesis and characterisation”, Colloids Surf. A: Physicochem. Eng. Aspects, Vol. 187-188, pp. 109-116, 2001.
  • [26] C. Galacho, M.M.L. Ribeiro Carrott ve P.J.M. Carrott, “Evaluation of the thermal and mechanical stability of Si-MCM-41 and Ti-MCM-41 synthesised at room temperature”, Micropor. Mesopor. Mater., Vol. 108, No. 1-3, pp. 283-293, 2008.
  • [27] T.R. Gaydhankar, V. Samuel, R.K. Jha, R. Kumar ve P.N. Joshi, “Room temperature synthesis of Si-MCM-41 using polymeric version of ethyl silicate as a source of silica”, Mater. Res. Bullet., Vol. 42, No. 8, 2007, pp. 1473-1484, 2007.
  • [28] Q. Huo, D.I. Margolese ve G.D. Stucky, “Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials”, Chem. Mater., Vol. 8, No. 5, pp. 1147-1160, 1996.
  • [29]S. Che, S. Lim, M. Kaneda, H. Yoshitake, O. Terasaki ve T., Tatsumi, “The effect of the counteranion on the formation of mesoporous materials under the acidic synthesis process”, J. Am. Chem. Soc., Vol. 124, No. 47, pp. 13962-13963, 2002. [30] X.S. Zhao, G.Q. (Max) Lu ve G.J. Millar, “Advances in mesoporous molecular sieve MCM-41”, Ind. Eng. Chem. Res., Vol. 35, No. 7, 2075-2090, 1996.
  • [31] P. Selvam, S.K. Bhatia ve C.G. Sonwane, “Recent advances in processing and characterization of periodic mesoporous MCM-41 silicate molecular sieves”, Ind. Eng. Chem. Res., Vol. 40, No. 15, pp. 3237-3261, 2001.
  • [32] A. Davidson, “Modifying the walls of mesoporous silicas prepared by supramoleculartemplating”, Curr. Opin. Colloid Interf. Sci., Vol. 7, No. 1-2, pp. 92-106, 2002.
  • [33] R.S. Somani, C.H. Ko, S.S. Han ve S.H. Cho, “Textural and structural properties of mesoporous silica synthesized under refluxing conditions”, J. Porous Mater., Vol. 12, No. 2, pp. 87-94, 2005.
  • [34] R.A.A. Melo, M.V. Giotto, J. Rocha ve E.A. Urquieta-Gonzalez, “MCM-41 ordered mesoporous molecular sieves synthesis and characterization”, Mat. Res., Vol. 2, No. 3, pp. 173-179, 1999.
  • [35] C.G. Wu, T. Bein, “Microwave synthesis of molecular sieve MCM-41”, Chem. Commun., No. 8, pp. 925-926, 1996.
  • [36] M. Bandyopadhyay ve H. Gies, “Synthesis of MCM-48 by microwave-hydrothermal process”, Comptes Rendus Chimie, Vol. 8, No. 3-4, pp. 621-626, 2005.
  • [37] A.S. Araujo ve M. Jaroniec, “Thermogravimetric monitoring of the MCM-41 synthesis”, Thermochimica Acta, Vol. 363, No. 1-2, pp. 175-180, 2000.
  • [38] L. Pei, K.-I. Kurumada, M. Tanigaki, M. Hiro ve K. Susa, “Effect of drying rate on mesoporous silica morphology templated from PEO-PPO-PEO block copolymer assemblies”, J. Mater. Sci., Vol. 39, pp. 4045 – 4047, 2004.
  • [39] W. Thitsartarna, E. Gularib ve S.Wongkasemjita, “Synthesis of Fe-MCM-41 from silatrane and FeCl3 via sol–gel process and its epoxidation acivity”, Appl. Organometal. Chem., Vol. 22, pp. 97–103, 2008.
  • [40] G. Zhang, L. Tao ve G. Zhang “MCM-41 prepared with ionic liquid and cethytrimethylammonium bromide as co-templates”, J. Mater. Sci., Vol. 24, No. 1, pp. 25- 29, 2009.
  • [41]P.I. Ravikovitch ve A.V. Neimark, “Relations between structural parameters and adsorption characterization of templated nanoporous materials with cubic symmetry”, Langmuir, Vol. 16, No. 6, pp. 2419-2423, 2000.
  • [42] Iler, R. K. The Chemistry of Silica; Wiley: New York, 1979.
  • [43] M. Kruk, M. Jaroniec ve A.J. Sayari, “Adsorption Study of Surface and Structural Properties of MCM-41 Materials of Different Pore Sizes”, J. Phys. Chem. B, Vol. 101, No. 4, pp. 583-589, 1997.
  • [44] M. Kruk, M. Jaroniec, R. Ryoo ve S.H. Joo, S.H., “Characterization of ordered mesoporous carbons synthesized using MCM-48 silicas as templates”, J. Phys. Chem. B, Vol. 104, pp. 7960-7968, 2000.
  • [45] 45. M.P. Mokhonoana ve N.J. Coville, “Synthesis of [Si]-MCM-41 from TEOS and water glass: the water glass-enhanced condensation of TEOS under alkaline conditions”, J. Sol- Gel Sci. Technol., in press, 2010. (http://www.springerlink.com/content/hq718712624k1232/fulltext.pdf)
  • [46] 46. J. Yu, J.L. Shi, L.Z. Wang, M.L. Ruan ve D.S. Yan, “Preparation of high thermal stability MCM-41 in the low surfactant/silicon molar ratio synthesis systems”, Mater. Lett., Vol. 48, No. 2, pp. 112-116, 2001.
  • [47]H. Chen ve Y. Wang, “Preparation of MCM-41 with high thermal stability and complementary textural porosity”, Ceram. Int., Vol. 28, pp. 541-547, 2002.
There are 46 citations in total.

Details

Subjects Chemical Engineering
Journal Section Research Articles
Authors

Yeşim Güçbilmez

Publication Date June 30, 2010
Acceptance Date March 16, 2010
Published in Issue Year 2010 Volume: 23 Issue: 1

Cite

APA Güçbilmez, Y. (2010). MCM-41 VE MCM-48 Türü Katalizörlerin Üretimi Ve Karakterizasyonu. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 23(1), 63-81.
AMA Güçbilmez Y. MCM-41 VE MCM-48 Türü Katalizörlerin Üretimi Ve Karakterizasyonu. ESOGÜ Müh Mim Fak Derg. June 2010;23(1):63-81.
Chicago Güçbilmez, Yeşim. “MCM-41 VE MCM-48 Türü Katalizörlerin Üretimi Ve Karakterizasyonu”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 23, no. 1 (June 2010): 63-81.
EndNote Güçbilmez Y (June 1, 2010) MCM-41 VE MCM-48 Türü Katalizörlerin Üretimi Ve Karakterizasyonu. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 23 1 63–81.
IEEE Y. Güçbilmez, “MCM-41 VE MCM-48 Türü Katalizörlerin Üretimi Ve Karakterizasyonu”, ESOGÜ Müh Mim Fak Derg, vol. 23, no. 1, pp. 63–81, 2010.
ISNAD Güçbilmez, Yeşim. “MCM-41 VE MCM-48 Türü Katalizörlerin Üretimi Ve Karakterizasyonu”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 23/1 (June 2010), 63-81.
JAMA Güçbilmez Y. MCM-41 VE MCM-48 Türü Katalizörlerin Üretimi Ve Karakterizasyonu. ESOGÜ Müh Mim Fak Derg. 2010;23:63–81.
MLA Güçbilmez, Yeşim. “MCM-41 VE MCM-48 Türü Katalizörlerin Üretimi Ve Karakterizasyonu”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, vol. 23, no. 1, 2010, pp. 63-81.
Vancouver Güçbilmez Y. MCM-41 VE MCM-48 Türü Katalizörlerin Üretimi Ve Karakterizasyonu. ESOGÜ Müh Mim Fak Derg. 2010;23(1):63-81.

20873  13565  13566 15461  13568    14913